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Introduction

Carnitine palmitoyl transferase I (CPT I), a transmembrane enzyme of the mito-
chondrial outer membrane, catalyses the transfer of an acyl moiety from a long-
chain acyl-CoA ester to carnitine to form a long-chain acyl-carnitine ester, which
can then enter the mitochondrion and undergo β-oxidation. The enzyme is a po-
tential site for regulation of β-oxidation flux via its physiological inibitor, malonyl-
CoA [1, 2] and is widely assumed to be the rate-limiting step in the β-oxidation of
long-chain fatty acids in the heart [1] and other tissues. It has been found to have
significant control over β-oxidation flux in hepatocytes [3–5], liver mitochondria
[6] and astrocytes [7]. However, the concentration of malonyl-CoA in the heart
is estimated to be in the range of 1-10 µM [2]. This greatly exceeds the IC50 of
heart CPT I for malonyl-CoA [8] so it is difficult to see how β-oxidation proceeds
in cardiac tissue if CPT I activity is rate-limiting for β-oxidation, unless most of the
malonyl-CoA is intramitochondrial or bound and therefore not available to inhibit
CPT I.

There are two isoforms (liver and muscle) of carnitine palmitoyl transferase I
(CPT I) in the heart [9, 10]. Inborn errors of carnitine palmitoyl transferase II are
well-known to present with myopathy and cardiomyopathy; defects in the liver
isoform of CPT I have also been diagnosed but to date no patients defective in the
muscle form of CPT I have been diagnosed. We wished to investigate the role of
the two isoforms in control of β-oxidation in the heart and in skeletal muscle.
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Fig. 4.1 Inhibition of CPT I activity

Methods

Mitochondria were isolated from the hearts and skeletal muscle of 11–15d old
peak suckling Wistar rats as previously described [11]. Incubations were carried
out at 37◦C in a medium containing; 80 mM KCl, 10 mM Hepes, 5 mM MgCl2,
2.5 mM KH2PO4, 1 mM EGTA, 1 mM ATP, 0.2 mg/ml cytochrome c, 30 mM creatine
phosphate, 20 mM creatine, 0.1 mg/ml creatine phosphokinase (to maintain state
3.5), and 1.6 mg/ml bovine serum albumin, pH 7.2.

After 4 min preincubation with a range of concentrations of etomoxir-CoA and
DNP-etomoxir-CoA, β-oxidation flux as total acid-soluble radioactivity (in the pres-
ence of 1 mM carnitine and 1mM malate [11] and CPT I activity (in the presence of
40 µg/ml myxothiazol [12]) were measured. Curve fitting and statistical analysis
were carried out by means of linear and non-linear regression using the program
Prism 2.01 (Graphpad Software, San Diego, California, USA) using the equation
described by Gellerich et al. [13] for non-linear regression.
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Results and discussion

Approximately 50% of CPT I activity in heart mitochondria could be inhibited by
etomoxir-CoA before β-oxidation flux was affected (Fig. 4.1A). The full data and
control analysis will be presented elsewhere, but the flux control coefficient of
CPT I was 0.08±0.05 (mean±SEM). This was contrary to the expectation that CPT I
would be rate-limiting for β-oxidation in the heart. However, an explanation for
these results could be that normally, the malonyl-CoA concentration in the heart
is such that remaining CPT I activity is within the range where it can be considered
to be rate-limiting (i.e., >50% inhibition of CPT I activity; the unshaded portion of
the curve). An additional explanation for this phenomenon could be that the low
flux control coefficient of CPT I over β-oxidation flux could be due to the presence
of the liver isoform of CPT I at relatively high levels in the neonatal heart [9, 10].
To explore this question further, we attempted to repeat these incubations using
DNP-etomoxir-CoA which, in contrast to etomoxir-CoA, is a specific inhibitor of
the liver isoform at low concentrations [9, 10]. However, preliminary results in-
dicated that DNP-etomoxir-CoA is not a suitable inhibitor: at low concentrations
of DNP-etomoxir-CoA, β-oxidation flux was stimulated rather than inhibited. This
appears to be due to the high instability of DNP-etomoxir-CoA; there is always
some unesterified DNP-etomoxir present, which is a weak uncoupler of the respi-
ratory chain (stimulated state IV oxygen consumption from glutamate plus malate
by 30%). For these reasons, we decided to measure the flux control coefficient of
CPT I over β-oxidation in skeletal muscle mitochondria from rats of the same age,
as the liver isoform of CPT I is not present in this tissue. The results of this
control analysis are presented in Fig. 4.1B. Although it appears that there may
be a difference between heart and muscle in the control exerted by CPT I over
β-oxidation flux (flux control coefficient = 0.49), the standard error of the flux
control coefficient obtained for skeletal muscle is very large (0.41).

In both heart and skeletal muscle, malonyl-CoA, formed by the action of cy-
tosolic acetyl-CoA carboxylase, is the physiological inhibitor of CPT I. These ex-
periments used etomoxir-CoA rather than malonyl-CoA to titrate CPT I activity
because etomoxir-CoA is a strong irreversible inhibitor of CPT I that forms a co-
valent adduct and is more potent than malonyl-CoA [14].

Conclusions

The apparent paradox of high rates of β-oxidation flux in the heart despite the
presence of significant levels of malonyl-CoA may be explained by the low flux
control coefficient of CPT I over β-oxidation flux. However, further experiments
are necessary to define more precisely the role played by the two different iso-
forms of CPT I in the control of β-oxidation flux, particularly in relating these
findings to the working heart.
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