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Introduction

Since the discovery of metabolic feedback in the form of end-product inhibition
of an allosteric enzyme upstream from the end-product [1,2] an extensive body of
literature has been built up around the mathematical and computer modelling of
this phenomenon. To our knowledge the allosteric enzymes in these model feed-
back systems have usually been represented by rate equations derived from irre-
versible reaction mechanisms such as the Monod-Wyman-Changeux (MWC) equa-
tion [3], the Adair equation [4] or the Hill equation [5] (due its complexity the
Koshland-Nemethy-Filmer equation [6] has been little used, if at all). Other rate
equations have been developed to explain cooperativity but usually do not incor-
porate allosteric end-product inhibition [7]. The generalisation that most allosteric
enzymes catalyse reactions with large equilibrium constants seemed to serve as a
justification for ignoring possible inhibition effects by the direct reaction product,
whether thermodynamic (mass action) or kinetic (competition with substrate for
binding to the active site). However, it is not the equilibrium constant per se but
the disequilibrium ratio (mass-action ratio/equilibrium constant) that determines
to which degree the product will affect reaction rate by mass-action (for an exam-
ple of the dangers of ignoring this, see the paper by Cornish-Bowden and Cárdenas
in this volume, p. 65); the current paper serves as another such reminder).

Only in the late 1970s, in a four-part study [9–12], did Popova and Sel’kov
extend the MWC equation to cover reversible reaction mechanisms. However, to
the best of our knowledge, this important work has largely been ignored and cer-
tainly not used in modelling. Because the Hill-equation has definite advantages
for modelling (such as (i) fewer parameters, and (ii) parameters that have a clear
operational meaning) we developed a reversible Hill equation that incorporates
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Fig. 30.1 A supply-demand system in which the first enzyme of the 3-step supply is
subject to end-product inhibition. The supply system is contained in the shaded area and
it is its steady-state flux response to variation in the concentration of P that is simulated.
The rate of E1 is described by the reversible Hill equation with one allosteric modifier [8].
In all simulations of this system the s0.5-value of E1 was 1 mM; the concentration of S
was also clamped at 1 mM. The strength of inhibition factor α was set to 0.01. The rate
equations for the other supply enzymes are instances of the reversible Michaelis-Menten
equation v = Vf

Ks

(
s − p

Keq

)/(
1+ s

Ks
+ p
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)
. For all reactions Ks and Kp were set to 1 mM

and therefore have been omitted from the rate equations.

allosteric modulator effects, starting from a reversible Adair binding mechanism
[8]. This equation shares an interesting feature with the reversible MWC equation
[9] (and with the parent Adair equation): besides the usual mass-action and com-
petitive inhibitory effects, the product can also activate the enzyme. Microscopic
reversibility in the mechanism requires that binding of product enhances not only
subsequent product binding, but also subsequent substrate binding, making this
activation effect unavoidable. Mathematically all three product effects are clearly
visible in the rate equation (see, for example, the functional positions of product
concentration a in the rate equation for step 1 in Fig. 30.1): The inhibitory mass-
action effect is due to the numerator term (s − a

400), competitive inhibition by A is
possible because its concentration occurs as a positive term in the denominator,
while activation by A is possible because its concentration occurs as a positive
term in the numerator.

In this paper we ask the questions: How do these direct product effects affect
the system in practice? How is the behaviour of the supply system affected? An
attempt to answer these questions allows us to evaluate not only the relative con-
tribution of the various product effects on the behaviour of the system, but also
the role of the downstream enzymes in setting the steady-state value of the prod-
uct concentration. In this paper we shall treat only steady-state behaviour and not
time-dependent phenomena.
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Fig. 30.2 Response of the supply flux and steady-state concentration of A to changing
p at different values of a0.5, the half-saturation constant of E1 for its immediate prod-
uct A. Simulation conditions were as in Fig. 30.1; the values of a0.5 are shown on the
graphs. Flux units are mM.min−1 and concentration units are mM. The dotted line is the
theoretical equilibrium value of a as it varies with p (peq/aeq = K2K3 = 100). In graph a
the shaded bands show two regions where the supply flux responds sensitively to P: the
leftmost one a far-from-equilibrium region and the rightmost one a near-equilibrium re-
gion (for this system the equilibrium concentration of P at s = 1 mM is 4× 104 mM.). In
graph b the shaded block delineates a region flanked by hysteretic responses, forming
a so-called mushroom. In graph c the mushroom has pinched off to form the shaded
closed-form response called an isola. In graph d the isola has vanished, leaving a typical
competitive product-inhibition flux-response curve. Simulations were performed with
Scamp [13] using its continuation algorithm.

Simulation study

Fig. 30.1 is a scheme of the system studied (the so-called ‘Stellenbosch organ-
ism’). We considered only the steady-state response of the shaded supply block
to changes in the ‘end-product’ P. This allowed us to construct supply character-
istics, which could then be used in a supply-demand analysis of the full system
(such as described in [14]). We performed a digital experiment in which the steady-
state of the supply was calculated for a series of P concentrations, from zero to
its equilibrium value of 4× 104 mM, at a fixed S concentration of 1 mM. To study
the effect of the accompanying variation in the steady-state concentration of A
on its producing enzyme E1, the experiment was repeated for different half-effect
concentrations a0.5, from 104 mM (weak binding of A to E1) to 0.01 mM (strong
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binding of A to E1). The results are shown in Fig. 30.2.
In Fig. 30.2A E1 is kinetically-speaking practically insensitive to A. Most of

the supply flux characteristic is completely determined by the inhibitory effect
of P; only at very high, near-equilibrium concentrations of P does a become high
enough to inhibit step 1 through mass action (the contribution of the mass-action
term in the elasticity coefficient εv1

a will be more negative than −1 only at a-values
greater than 200 mM under these simulation conditions). For most of the range
of p-variation the E2-E3 reaction block is near equilibrium (as shown by the close
proximity of the steady-state concentration of A and its calculated equilibrium
value with respect to P, shown by the dashed line). Starting at equilibrium p, a
decreases with p. However, at the point where the flux starts increasing because
end-product inhibition by P weakens (shown by the left-hand shaded band), a in-
creases sharply. The reason for this is that the degree of saturation of E2 by A
must increase to sustain the concomitant flux-increase that occurs in that region
of p. The prediction that the higher the Vmax of E2, the less the increase in a
needed to match the flux-increase, and therefore the lower the plateau in a, has
been confirmed by simulation (results not shown). From a regulatory point of view
[14] the flux behaviour in Fig. 30.2A is ideal in that it shows a sensitive response
in a narrow, far-from-equilibrium range of p around p0.5, with the flux-response
profile solely due to cooperative end-product inhibition.

When the strength of binding of A to E1 increases a point is reached where the
activation effect of A on E1 becomes visible (the right-hand side of the shaded area
in Fig. 30.2B). Here both Jsupply and a respond hysterically to p. Close inspection
reveals that the curves also become hysteretic at the left-hand side of the shaded
area (this is more visible in Fig. 30.3). Such a double hysteresis is known as a
mushroom [15], albeit it an upside-down mushroom in this instance.

A further increase in the strength of binding of A to E1 magnifies the mush-
room profile until a point is reached where the mushroom pinches off to form an
isola [15] (see Fig. 30.3, which illustrates this effect clearly). The remaining sta-
ble monotonic rate curve is determined solely by competitive inhibition of E1 by A
and, at high p, also by mass-action. Although the isola has stable sections (so that,
in principle at least, the system could exist in a steady state on the isola) enough
variation in p will invariably cause a jump onto the monotonic steady-state curve.

Finally, when A binds very strongly to E1, the isola vanishes and the observed
flux response is determined solely by the competitive inhibitory effect of A, which
effectively swamps both end-product inhibition by P and the activatory effect of
A. Here the flux response of the supply to p has lost its regulatory properties.

Discussion

This study arose from an attempt to design a regulated metabolic system bottom-
up from first principles [14,16]. The rather exotic kinetic behaviour described
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Fig. 30.3 A 3-dimensional representation of the mushroom transforming into a vanish-
ing isola, with supply flux plotted against p at different values of a0.5. Similar graphs can
be constructed for the steady-state concentrations a or b: the shapes of the mushrooms
and the isolas are different, but on the whole the same picture is obtained.

above was discovered rather than predicted. Note that this type of simple negative
feedback system has been the subject of numerous studies; the study described
here differed only in that a more general reversible rate equation was used for the
allosteric enzyme. This introduced the possibility of rate activation by immediate
product. Product activation is not a common phenomenon and only a few exam-
ples are known, such as the inhibition of NADH-dependent nitrite reductase from
Escherichia coli by NAD [17], but these examples do not seem to be explainable
in terms of the mechanisms of the sort considered here. Because it is a possible
source of instability one would expect most occurrences of it during evolution to
have been eliminated by selection. Despite this, the study still serves as a lesson
in the dangers of making limiting assumptions about the behaviour of a model
system.

The hysteretic behaviour also leads to a number of other important issues,
such as oscillatory behaviour, the possibility of metabolic switches, and issues of
stability. These aspects are under investigation and will be published elsewhere.

Although space constraints prevent us from exploring this matter in detail,
the role of the intermediate enzymes E2 and E3 in determining the steady-state
concentration of A and, therefore, the effect of A on E1 should also be consid-
ered in analysing the overall behaviour of this system (see [14,16]). In fact, in any
experimental search for this type of behaviour, using, for example, reconstituted
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enzyme systems, variation in the activities of E2 and E3 can be used to vary a (the
variation of a0.5—possible in experiments in silico—not being feasible experimen-
tally).

This paper again illustrates how useful modelling can be to discover new forms
of metabolic behaviour, although the phenomena described here have not yet been
looked for in real systems. An example of where modelling led to the discovery of
a new type of behaviour which was subsequently found to exist in the real system
is given by Poolman and Fell (this volume, p. 249), who describe the existence of
two steady states in the Calvin cycle.
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