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Introduction

Since the 1960s, the 2,3-DPG concentration in human erythrocytes is considered
to be a significant index of adaptation to hypoxia, because it increases at high alti-
tudes [1–4]. White et al. [1] have found a 20% increase in the 2,3-DPG concentration
at an altitude of 15 000 feet. The mechanism responsible for elevated 2,3-DPG at
high altitudes is an as yet “unresolved problem of respiratory physiology” [2].

We proposed a mathematical model to describe this mechanism. Analysis
of the model shows that the amount of 2,3-DPG associated with hemoglobin in-
creases but free 2,3-DPG remains at an approximately constant level with increas-
ing the altitude.

Mathematical model

We constructed the model by combining the model of glycolysis [5] and the model
of Di Cera et al. describing hemoglobin interaction with organic phosphate and
oxygen [6,7].

The limited space does not allow us to present this model comprehensively.
Therefore, we describe here only its part concerning 2,3-DPG metabolism and
organic phosphate interaction with hemoglobin and oxygen. The description of
glycolysis and energy metabolism was given at the 8th International meeting on
the BioThermoKinetics in Göteborg [5].

2,3-DPG in the human erythrocyte exists in two forms: free and hemoglobin-
bound. Although the relationship between these two forms changes during the
oxygenation-deoxygenation cycle, we do not consider these changes in the model.
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The model variables are the average concentrations of free 2,3-DPG ([23DPG]), 2,3-
DPG bound to hemoglobin ([23DPGasHb]), and total 2,3-DPG ([23DPGsum]). They
are related by the following equation (eq. 13.1):

[23DPGsum] = [23DPG]+ [23DPGasHb] (13.1)

The equations describing hemoglobin interaction with organic phosphate and oxy-
gen (eqs. 13.2–13.6) are from [6, 7]:

[Hbsum] = [Hb1]+ [Hb2] (13.2)

Here, [Hbsum] denotes the total hemoglobin in human erythrocytes; [Hb1] is the
hemoglobin free of 2,3-DPG, and [Hb2] is the hemoglobin bound to 2,3-DPG.

[Hb1] = [Hb] · P0 (13.3)

[Hb2] = [Hb] · P1 · [23DPG] (13.4)

Here, [Hb] denoted the concentration of free hemoglobin, and P0 and P1 are the
polynomials (see [6] for their description):

P0 = (1+Kr · q)4 + L(1+ 2Kt · q+ δ · (Kt · q)2) (13.5)

P1 = λ1(1+Kr · q)4 + L(λ2 + 2λ3Kt · q + δ · λ4 · (Kt · q)2) (13.6)

Here, q is the blood oxygen concentration (averaged over the entire blood volume),
Kr = 12 Torr−1, Kt = 0.1 Torr−1, L = 8 × 107, δ = 1.1, λ1 = 370 M−1, λ2 =
3×104 M−1, λ3 = 9× 103 M−1, and λ4 = 3.5× 103 M−1.

Hemoglobin binds 2,3-DPG at a 1:1 ratio [1], hence

[23DPGasHb] = [Hb2] (13.7)

Substituting this into eqs. 13.2 to 13.4 and 13.7, we arrive at:

[23DPGasHb] = [Hbsum]/(1+ P0/(P1 · [23DPG])) (13.8)

The concentration of hemoglobin-bound 2,3-DPG may be derived from eq. 13.8. It
depends on the oxygen concentration and the concentration of free 2,3-DPG.

The enzymes of the 2,3-DPG bypass, diphosphoglycerate mutase and diphos-
phoglycerate phosphatase, determine the total 2,3-DPG concentration in human
erythrocytes. Both enzymatic activities depend on the free 2,3-DPG concentration
[5]:

d
dt
[23DPG] = vDPGM − vDPGP (13.9)
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Here, vDPGM and vDPGP are the rates of diphosphoglycerate mutase and diphospho-
glycerate phosphatase.

Diphosphoglycerate-mutase and diphosphoglycerate-phosphatase reactions are
described by eqs. 13.10 and 13.11:

vDPGM = WDPGM [13DPG]
K111 +K112[13DPG]+ K113[23DPG]

(13.10)

vDPGP = WDPGP
[23DPG]

[23DPG]+K121(1+ ([2PG]+ [3PG])/K122)
(13.11)

Here, WDPGM = 4300 mM/h, K111 = 0.04 mM, K112 = 0.013, K113 = 2, WDPGP =
0.52 mM/h, K121 = 0.02 mM, K122 = 0.006 mM; [13DPG], [3PG], and [2PG] are the
concentrations of 1,3-diphosphoglycerate, 3-phosphoglycerate, and 2-phospho-
glycerate (variables of the model as described in [5]).

Results and discussion

Hemoglobin in human erythrocytes is present in two forms, T and R. The affinity
of T hemoglobin for oxygen is low, and that of the R form is high. With decreasing
q, T hemoglobin concentration rises and that of R hemoglobin drops.

As the affinities for 2,3-DPG of T and R hemoglobins are high and low, re-
spectively, a decrease in q causes T hemoglobin and hemoglobin-bound 2,3-DPG
concentrations to rise.

In the model, the steady-state concentration of free 2,3-DPG does not change
with decreasing q. As q decreases, the free 2,3-DPG concentration first falls and
then returns to its initial value. (This fall is accounted for by the increase in the
T hemoglobin concentration). With decreasing free 2,3-DPG concentration, vDPGM

surpasses vDPGP and causes the total 2,3-DPG concentration to rise and the free
2,3-DPG concentration to return to the initial level.

Fig. 13.1 demonstrates the dependence of the total and hemoglobin-bound 2,3-
DPG concentrations on the blood oxygen concentration q. Note that the relation-
ship between the partial oxygen pressure in the atmosphere and average oxygen
concentration in the blood exhibits inter-individual variation. Correspondingly,
at the same partial oxygen pressure in the atmosphere, 2,3-DPG varies greatly in
different individuals.

The normal oxygen concentration in arteries qart is equal to 93 Torr at the
sea level [8]. Therefore, for the mixed blood, we assumed q to be about 70 Torr.
According to the model, in the steady-state, [23DPG] = 2.5 mM, [23DPGasHb] =
2.53 mM, and [23DPGsum] = 5.03 mM.

At the altitude of 4.5 km, oxygen pressure in atmosphere decreases from
160 to 90 Torr. Therefore, the oxygen concentration in arteries would decrease
from 93 to 47 Torr [8]. Using the model, we estimated [23DPGsum] at 5.91 mM,
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Fig. 13.1 Total 2,3-DPG (solid line) and hemoglobin-bound 2,3-DPG (dotted line) plotted
versus q (blood oxygen concentration)

[23DPG] mM at 2.5 mM, and [23DPGasHb] at 3.41 mM for q = 30 Torr, correspond-
ing to the altitude of 4.5 km.

Total 2,3-DPG continues to increase during 2 days after climbing in both exper-
iments and the model. The model predicts an 18% increase in the total 2,3-DPG.
The experimentally observed value was 20% [1].

Using the model, we assessed the contribution of 2,3 DPG to the adaptation
of the organism to hypoxia. At a height of 5 km, qart = 47 Torr and qvein =
25 Torr. We calculated the amount of blood-transported oxygen for two cases:
(i) [23DPGsum] = 5.03mM; (ii) [23DPGsum] = 5.91mM.

According to the model, the rise in the 2,3 DPG concentration from 5.03 to 5.91
increases the oxygen transport by 7%. Obviously, elevated 2,3-DPG can improve
oxygen transport in hypoxia.
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