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Introduction

Regulation is essential for the dynamics of a physiological system. For example,
homeostasis is typically caused by negative feedback, while positive feedback may
lead to oscillations and bi-stability [Heinrich et al., 1977]. Regulation may be stud-
ied in vitro for individual enzymes [Torres et al., 1980], but because regulation is
a subtle phenomenon, it is also necessary to study regulation phenomena in vivo.

A fundamental issue is that to define the extent by which a metabolite regu-
lates other metabolic phenomena, appears to be in conflict with metabolic control
analysis [Hofmeyr, 1995]: the concentration of a metabolite is a variable and its
value is determined by the parameters. Response coefficients are defined with
respect to parameters, not with respect to a variable.

To demonstrate that the above conflict is indeed apparent, and that regulation
can be studied in vivo, we shall illustrate (i) that it is possible to define unam-
biguously the effect of one metabolite on another, (ii) that this dependence can,
at least in principle, be measured in vivo, and (iii) that this dependence provides
information on the dynamics of the physiological system.

Theory

In any metabolic system, the time-dependence of the metabolite concentrations
(X1, . . . , Xn) depends on those concentrations and on a number of parameters
(P1, . . . , Pm):

93



An in vivo assay for metabolic regulation? ‘Control’ by a metabolic variable

dX1/dt = f1(X1, . . . , Xn, P1, . . . , Pm)
dX2/dt = f2(X1, . . . , Xn, P1, . . . , Pm) (14.1)

...

dXn/dt = fn(X1, . . . , Xn, P1, . . . , Pm)

To define the regulatory effect of a metabolite (Xi) on the rest of the system
one may consider a reduced system obtained by considering all equations 14.1
except that for dXi/dt. In the reduced system Xi is considered to be a parameter
and the steady-state concentrations of the other metabolites (Xj) can be expressed
as a function of Xi, i.e., Xj(Xi). Experimentally this might be achieved by clamp-
ing the concentration of Xi by adding a large reservoir of the substance at that
concentration, such as by permeabilizing the cell membrane in a medium with Xi.
We propose that the effect of Xi on the system is defined by the response of the
reduced system to modulation of Xi, i.e., by the response coefficients [Hofmeyr,
1995]:

RXjXi =
d lnXj
d lnXi

(14.2)

Experimentally it may not always be possible to create a reduced system. It may
however be possible to vary a parameter (Pk) and to observe the steady-state con-
centration Xi(Pk) and Xj(Pk). The co-response coefficient is defined as [Hofmeyr,
1995]:

ΩXj:XiPk = d lnXj
dPk

/
d lnXi
dPk

(14.3)

In general, this co-response coefficient depends on the parameter that is varied,
but a special case arises when Pk affects only fi and does not occur in the other
equations in the equation set 14.1. In that case Xj(Pk) is a steady-state of the
reduced system at Xi = Xi(Pk) so that Xj(Pk) = Xj(Xi(Pk)). In that case the co-
response coefficient of eq. 14.3 is equal to the response coefficient of eq.14.2.

We conclude that the regulatory effect of a metabolite in a metabolic network
can be defined unambiguously by considering a reduced system, and that it can
be measured, at least in principle, by obtaining co-response coefficients in vivo.
We shall use numerical simulations to illustrate our results and to suggest appli-
cations of our definition.

Numerical example

As a basic example of a physiological system we shall consider an unbranched
pathway with three intermediates, as illustrated in Fig. 14.1 All reactions are de-
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Fig. 14.1 Example of an unbranched pathway of four reactions that convert substrate S
to product P through intermediates X, Y and Z. The reaction that produces X is elastic to
Z.

scribed by irreversible Michaelis-Menten kinetics with product inhibition. For sim-
plicity the maximal rates of the four reactions are taken equal, as are the eight
Michaelis constants. Feedback is included by scaling the rate of reaction 0 with
Zα. The elasticity α = ε0

Z quantifies the strength of the feedback. Numerical simu-
lations are carried out with the program SCAMP [Sauro, 1993]. The concentrations
of S and P are constant and the concentrations of X, Y and Z are determined from
the rate equations.

Assay: ‘Control’ by the concentration of Z

In Figs. 14.2A–C the steady-state values of X and Z are plotted as a function of
different parameters. In each case the value of only one parameter is varied. The
result is different for each scan, because different parameters and different reac-
tions are perturbed in each case. However, when X is plotted against Z in Fig. 14.2D
the first two scans produce identical curves. As was established in the theory sec-
tion, this is exactly the curve that would have been obtained if Z had been taken
as a parameter and scanned, and the steady-state value of X had been plotted,
because the parameters that were perturbed (i.e., Vmax and KM of reaction 3) di-
rectly affected only the time-dependence of Z. The slope of the curve reflects what
we here define as the response coefficient that determines the effect of Z on X (cf.
eq. 14.2). The positive slope of the curve indicates that the positive feedback by
Z is stronger than the negative effect of product inhibition through the chain of
pathway reactions.

The curve, in Fig. 14.2D, that is produced with the third scan does not overlay
with the other two and erroneously suggests a negative feedback. This curve
does not reflect the effect of Z on X, because here the Vmax of reaction 2 is the
modulated parameter and this parameter directly stimulates the removal of Y
as well as the production of Z. Our numerical results confirm that one can, in
principle, measure, hence define the effect of one metabolite on another, provided
that one perturbs the differential equation of the former only:
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Fig. 14.2 Steady-state values of Z (joined markers) and X (unjoined markers) as a function
of the maximal rate (panel A) and Michaelis constant (panel B) of reaction 3 and the
maximal rate of reaction 2 (panel C). In panel D, X is plotted against Z for all three cases.
The maximal rates and Michaelis constants of all other reactions and the concentrations
of S and P were set to unity. Feedback parameter: α = 0.5.

Application: Detecting a bifurcation

In Figs. 14.2A and B, the dependence of X on Z was determined by perturbing
reaction 3. By perturbing reaction 0, the dependence of Z on X can also be deter-
mined. The two curves, shown together in Fig. 14.3A, are reminiscent of so called
null-clines in a two-variable system [Segel, 1980]. In particular the intersection
of the two curves forms the steady-state of the unperturbed system, and when
the stable steady-state disappears through a saddle-node bifurcation (i.e., when
an eigenvalue of the Jacobian of the system becomes positive), the curves become
tangent to each other.

To illustrate the above point, we increased the feedback in Fig. 14.3B-D. Indeed,
the angle decreased until the curves became virtually tangent to one another in
Fig. 14.3D. It can be shown that the system does indeed approach a saddle-node
bifurcation in Fig. 14.3D. The system can not be followed beyond the bifurcation.
In fact, the curves could not be scanned completely in Fig. 14.3C and D, because
the stability of the steady states was lost. Nevertheless, our results indicate that
an approaching bifurcation may be detected by measuring the mutual dependence
of two variables.
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Fig. 14.3 Steady-state value of X as function of Z (squares) and steady-state value of Z
as a function to X (plus) with increasing positive feedback. Feedback parameter: α = 0.5
(A), 0.8 (B), 1.0 (C) or 1.1 (D). Other parameters as in Fig. 14.2.

Discussion

In this paper, we have studied the possibility to measure metabolic regulation in
vivo. We illustrated that it is both possible and relevant to determine the extent
by which a metabolite regulates other metabolic phenomena. First, we illustrated
that the effect of one metabolite on the steady-state concentration of another can
be defined unambiguously, and that this can be measured by perturbing a reac-
tion. The result is independent of the type of perturbation that is used, provided
that the kinetics of only one variable are perturbed. In practice, this condition is
not so restrictive. For example one may add a dummy reaction that removes or in-
activates a metabolite, for as long as the products of this dummy reaction do not
affect any other process. The approach can also be applied to metabolites that
are cycled between two forms, such as NAD(H) or signal transduction proteins.
Due to moiety conservation the two forms are described by a single variable and a
parameter that perturbs their interconversion. This satisfies the above condition.

Secondly, we illustrated that the aforementioned effects do indeed provide in-
formation on the dynamics of the physiological system. In particular, the curves
that define the mutual dependence of two variables become tangent when the sys-
tem approaches a saddle-node bifurcation. In addition they provide insight into
the homeostatic regulation of the system [cf. Hofmeyr, 1995].

97



An in vivo assay for metabolic regulation? ‘Control’ by a metabolic variable

In an earlier study Sauro proposed to partition the control of a flux into regu-
latory effects of different metabolites [Sauro, 1990]. Our results differ in that they
describe the total of direct (e.g., feedback) and indirect (e.g., product inhibition
in a chain) regulatory effects of an internal variable, rather than to differentiate
between them and set the total to an arbitrary 100%. Our results also demonstrate
that although one can only study a physiological system in a mechanistic sense
by entering it, and that although this changes the properties of the physiological
system, it is nevertheless possible to obtain properties of the unperturbed system
in this way. In this sense it shows the way into the living cell.
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