CHONDROITIN SULFATE-B-POLY(LACTIC ACID) BLOCK COPOLYMERS: SYNTHESIS AND SELF-ASSEMBLED

<u>André R. Fajardo</u>^{1,2*}, Adley F. Rubira¹, Edvani C. Muniz¹, Redouane Borsali² and Sami Halila²

 ¹Grupo de Materiais Poliméricos e Compósitos (GMPC), Chemistry Department, Maringá State University, Av. Colombo, 5790, 87020-900, Maringá, Paraná, Brazil. (*) drefajardo@hotmail.com
²Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS), affiliated with Université Joseph Fourier and member of the Institut de Chimie Moléculaire de Grenoble, BP 53, F-38041 Grenoble Cedex 9, France.

ABSTRACT

An original amphiphilic block copolymer based on the biopolymer chondroitin sulfate (CS) and poly(lactic acid) (PLA) was synthesized by a suitable synthesis route and "click" chemistry approach.¹ At first, CS was end-functionalized with alkyne groups by a reductive amination reaction with a propargyl derived.² In a second step, PLA was end-functionalized with azide groups. The structural characterization of the functionalized polymers (CS-alkyne and PLA-N₃), was performed by ¹H and ¹³C NMR and FTIR spectroscopic techniques. The block copolymer (CS-b-PLA) was synthesized by Cu(I) catalyzed in a "click" reaction and its structural characterization was performed by ¹H and DOSY ¹H NMR and FTIR. The CMC value found by fluorescence measurements for the CS-b-PLA block copolymers was 0,048 mg/ml. The size distribution and morphology presented by the CS-b-PLA in aqueous medium was investigated by DLS analysis and microcopy techniques (SEM-FEG and TEM). From these techniques, it was found that the copolymer systems form micelles with core-shell assembly (see Fig. 1).³ This original amphiphilic block copolymers could to form interesting well-defined and stable micelles in aqueous media. The core-shell structure that forms the micelles is very attractive for several biomedical and pharmacological applications; such as in drug delivery systems. This is encouraged by the cell viability assays data, which showed that both copolymers did not exhibit cytotoxic effect on healthy cells.

Fig. 1: TEM images recorded for the CS-*b*-PLA systems and the size distribution ([copolymer] = 0.1 mg/ml).

Acknowledgement:

ARF thanks CAPES for his Ph.D. Sandwich fellowship (Process number 8575-11-8) and ARF, AFR and ECM would like to thank CNPq for the financial support.

References:

¹Arigela, R. K.; Mandadapu, A.K.; Sharma, S.K.; Kumar, B.; Kundu, B. *Org. Let.* **2012**, 14, 1804. ²Guerry, A.; Bernard J.; Samain E.; Fleury E.; Cotaz S.; Halila S. *Bioconjugate Chem.* **2013**, 24, 544. ³Schärtl, W. *Light scattering from polymer solutions and nanoparticles dispersions.* Springer, **2007**.