ABSTRACT

Polymer-drug conjugation has recently received significant attention in the polymer community. This interest is largely sparked by the developments in site-specific conjugation and the ability to target unique surface-structures within the body, by exploiting target-directing ligands. Many previous studies focused on increasing the drugs half-life, through poly(ethylene glycol) (PEG) conjugation, PEGylation. This study makes use of polyvinylpyrrolidone (PVP), as an alternative to PEG, because it has been shown to provide a longer plasma half-life and favourable tissue distribution. It has previously been described that xanthate-based Reversible Addition-Fragmentation Chain Transfer (RAFT) agents, with triazole-based leaving groups, yield well-controlled PVP. This allows the introduction of multiple functionalities via Huisgen click-chemistry. It is also well known that xanthate end-groups can be manipulated, post-polymerization, into various functionalities. Thus, bi-functional PVP can suitably be tailored for both the introduction of polypeptides, as well as target-directing ligands. Nano-vehicles, capable of target-specific delivery of therapeutic polypeptides, can be induced via self-assembly. The most recent developments in this work will be discussed.

Acknowledgement: This study was funded by the National Research Foundation of South Africa

References
3Willcock, H.; O'Reilly, R. K. Polymer Chemistry 2010, 1, 149.