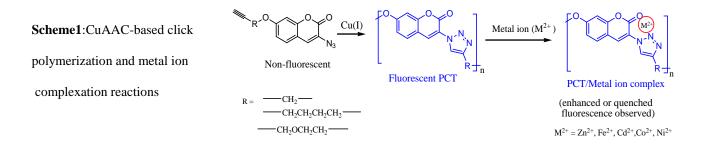
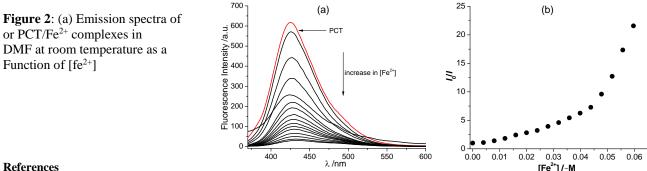
FLUORESCENT POLY(COUMARIN TRIAZOLE)S WITH METAL ANION CHEMOSENSINT CAPABILITY


Okerio Jaspher^a, Neliswa Mama^a, Bert Klumperman^b, Reuben Pfukwa^b

^a Department of Chemistry, Nelson Mandela Metropolitan University, P.O Box 77000, Port Elizabeth, 6031, South Africa. E-mail: s211278769@live.nmmu.ac.za


^b Department of Chemistry and Polymer science, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa.

ABSTRACT

Coumarin derivatives are widely used as signalling units in chemosensors due to their interesting properties, such as high emission yields, excellent photostability and an extended spectral range.¹ Their incorporation into polymers (either in the main chain or as pendant group) affords fluorescent polymers with applications in photometry and biomaterials.^{1, 2, 3} In this work, new fluorescent polymer systems (PCTs) based on the 'coumarin-triazole' functionalities are presented. They are prepared via click chemistry based CuAAC A-B step growth polymerization from non-fluorescent coumarin monomer (Scheme 1). The sensitivity of the poly(coumarin-triazole) (PCT) systems to transition metals such as Zn²⁺, Cd²⁺, Fe²⁺, Ni²⁺ and Co²⁺ was explored using fluorescence spectroscopy. The PCTs displayed strong chelation-enhanced fluorescence effect (CHEF) for Zn²⁺ and Cd^{2+} , and a weak chelation-enhanced quenching effect (CHEQ) for Ni²⁺ and Co²⁺.

Remarkably, the chelation with Fe^{2+} completely guenched the PCT emission as shown in Figure 1. This PCT therefore are potentially applicable as a "turn-off" chemosensors for the detection of Fe²⁺, a biologically and environmentally relevant metal ion. The emission intensity of PCT– Fe^{2+} system as a function of Fe^{2+} concentration is shown in Figure 1.

References

¹Kovafç, B.; Novak, I. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2002, 58,1483-1488 ²Kowalczyk, T.; Lin, Z.; Voorhis, T. V. The Journal of Physical Chemistry A,2010, 114, 10427-10434 ³Trenor, S. R.; Shultz, A. R.; Love, B. J.; Long, T. E. Chem. Rev., 2004, 104, 3059-3078