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Introduction

Modelling and analysis of pathways is usually done with simple representative
structures, such as linear sequences, short branched sequences or cycles. Yet
the advent of complete genome sequences is focussing attention on the full phe-
notype of cells, and for metabolism this implies the total metabolic network ex-
pressed by the cell. For example, whether a knockout mutation will cause a serious
metabolic defect can only be predicted in the context of the whole network, and
the surprising fact is that essential enzymes prove to be a minority [1,2]. It is
therefore reasonable to ask what are the structural characteristics of real metabo-
lic networks, so that we can build realistic models of them.

In this context, the structure of a network means its connectivity, as encoded
in a stoichiometry matrix derived from a list of the balanced equations of all the
reactions that can occur in a cell under specified conditions. Thus kinetic con-
siderations (including regulatory interactions) are excluded. However, defining
the characteristics of a network structure is not straightforward. In general, a
network could be regular, with every metabolite linked by m reactions to its im-
mediate neighbours to give a lattice structure, but clearly, metabolism is not like
that. At the other extreme, a network could be random, in terms of which metabo-
lites are connected by a reaction. The general properties of random graphs can be
predicted. The only clearly–defined alternative to regular and random networks
is the ‘small world’ network [3], which combines the ‘local’ clustering of connec-
tions characteristic of regular networks with occasional ‘long range’ connections
between clusters such as can be expected to occur in random networks.
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By defining measures that distinguished between these three types of network,
Watts & Strogatz [3] showed that several biological, technological and social net-
works were of the ‘small world’ type. Here we take the central metabolic network
of Escherischia coli, as a relatively complete and well–studied representative of a
typical metabolism, and determine its type according to these measures, since this
has implications for the network’s dynamics and genesis.

Methods

We assembled a list of 317 stoichiometric equations involving 287 substrates that
represent the central routes of energy metabolism and small-molecule building
block synthesis in E. coli [4–8] under aerobic growth with glucose as sole carbon
source and O2 as electron acceptor.

From these reaction equations, a stoichiometric matrix [9] was automatically
generated from the reaction list using Sauro’s software package INDIGO
(http://members.tripod.co.uk/sauro/biotech.htm). From this matrix a substrate
graph was derived, with glucose and inorganic materials regarded as external.

The substrate graph GS = (VS, ES) is defined by a vertex set VS consisting of all
chemical compounds (metabolites) that occur in the network. Two metabolites are
regarded as adjacent if they occur (either as substrates or products) in the same
chemical reaction. Note that this graph indicates the existence of a possible direct
influence of one metabolite on the concentration or rate of reaction of another.
There is not a one to one correspondence between edges and reactions, nor is the
graph directed so as to indicate substrate–product relationships.

In this graph, the degree k of a vertex is the number of other vertices to which
it is adjacent. Two vertices v0, vi are connected if there exists a path, i.e., a
sequence of adjacent vertices v0, v1, . . .vi−1, vi from v0 to vi. The metabolic net-
work, because of mass conservation and because all the carbon of the biomass
can be derived from a single source, must be a connected graph, i.e., all vertex
pairs are connected. The path length l is defined as the number of edges in the
shortest path between v0 and vi. The mean path length from a vertex is the aver-
age of the path lengths to all other vertices, and is also known as the importance
number. The vertex with the lowest importance number is arguably the ‘centre’ of
the graph, and is the justification for Erdos being the centre of the graph of math-
ematical collaborations on publications, and for Kevin Bacon being until recently
the centre of a film star database. The characteristic path length L of a graph is
the path length between two vertices, averaged over all pairs of vertices.

Another important quantity [3] is the clustering coefficient C(v) of a vertex
v , which measures the ‘cliquishness’ of the neighborhood of v , i.e., what fraction
of the vertices adjacent to v are also adjacent to each other. In extension, the
clustering coefficient C of the graph is defined as the average of C(v) over all v .

The properties of the substrate graph were compared with those of a random
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graph with the same number of vertices n and mean degree k [10,11]. In connected
sparse random graphs with n nodes and average degree k (k� n), the probability
p of two vertices being connected is given by p = k/(n − 1). Expressions can
be derived for the distribution of vertex degree, the clustering coefficient and
characteristic path length of such graphs. Among all connected graphs with the
same number of vertices and edges, random graphs are among the most rapidly
traversed.

Graph analysis software was written in C++ using the LEDA library of data
types [12].

Results

Because of the ubiquity of coenzymes such as ATP, ADP and NAD, etc, we report
here on the results where they are omitted from the substrate graph of central
energy and biosynthetic metabolism of Escherichia coli, leaving 275 metabolites.
The substrate graph is sparse with the average degree of each metabolite only
4.76, small compared to the maximal possible degree k = n − 1. Variation in
connectivity in the substrate graph is greater, with a standard deviation in degree
(σk) of 4.79 compared with an average of 2.12 for corresponding random graphs.
This implies that some vertices in substrate graphs have many more, and others
many fewer neighbors than vertices for a random graph. Indeed, a histogram of
degree vs. frequency, or a rank distribution of metabolites, where the metabolite
with the highest connectivity was assigned rank 1 is consistent with a power-law
(not shown). Given this large dispersion, k–regular random graphs (used in mod-
elling neural and genetic networks) would be particularly poor statistical models
of metabolic networks.

13 key metabolites of particularly high connectivity are listed in Table 12.1,
of which the top five are glutamate, coenzyme A, 2–oxoglutarate, pyruvate, and
glutamine. This list overlaps with sets of key metabolic intermediates of E.coli
selected on other criteria by other authors in metabolite balancing studies, where
they represent the common biosynthetic source of all cell materials. (e.g., Varma
and Palsson [13] and Ingraham et al. [14] used a set of 12 biosynthetic precursors.
Holmes [15] chose a smaller subset of 8 key precursors from which all cell biomass
could be produced.)

The architecture of the C. elegans nervous system, the power grid of the west-
ern United States, the structure of some sociological networks and the world wide
web, like the E. coli graph, are all small-world graphs, formally characterized by
Watts [10] and Barabási and Albert [16]. Small-world graphs were first illustrated
[17] with friendship networks in sociology (‘six degrees of separation’). Friendship
networks are sparse (each of the individuals in the United States is connected to
at most 1000 ‘friends’), and highly clustered (one’s friends tend to be friends of
each other). Even though most of the few connections per individual are tied up in

81



Structural properties of metabolic networks

Table 12.1 Thirteen key metabolites of E. coli metabolism. Metabolites with connec-
tivity significantly higher than the mean metabolite degree are shown. For comparison,
the thirteen metabolites with the shortest mean path lengths (importance number) are
shown.

Rank by degree Connectivity Rank by mean path
length

Importance
number

glutamate 51 glutamate 2.46
pyruvate 29 pyruvate 2.59
CoA 29 CoA 2.69
2–oxoglutarate 27 glutamine 2.77
glutamine 22 acetyl CoA 2.86
aspartate 20 oxoisovalerate 2.88
acetyl CoA 17 aspartate 2.91
phosphoribosyl pyroP 16 2–oxoglutarate 2.99
tetrahydrofolate 15 phosphoribosyl pyroP 3.10
succinate 14 anthranilate 3.10
3–phosphoglycerate 13 chorismate 3.13
serine 13 valine 3.14
oxoisovalerate 12 3–phosphoglycerate 3.15

local interactions within "cliques" of individuals, every individual in the U.S. may
be linked to every other by a short chain of acquaintances.

The more formal definition of a small-world graph is that it is sparse but much
more highly clustered than an equally sparse random graph (C � Crandom), with
a characteristic path length L that is close to the theoretically possible minimum
(which is well approximated by a random graph [10]). The reason why a graph
can have small L despite being highly clustered is that the few nodes connecting
distant clusters suffice to lower L [10]. Hence ‘small-worldness’ is a global prop-
erty not apparent from the local graph properties. The substrate graph illustrates
this property particularly well. Its characteristic path length (L = 3.88) is only 3%
(approximately 0.1 steps) above that of an equally sparse random graph, but it is
28 times more clustered (C = 0.48).

What might be the functional or phylogenetic significance of the observed pat-
tern: the power law distribution of connectivity, and the small-world nature of
the metabolic graph? It is possible that there is no such significance, because the
laws of chemistry might almost completely constrain network structure. However,
recent analysis of the tricarboxylic acid (TCA) cycle showed that there are several
chemically possible solutions to the tasks it performs, of which the solution re-
alized in cells is the one that involves the fewest chemical transformations [18].
This at least suggests that chemistry does allow flexibility in the design of a meta-
bolic net, so the observed architecture may reflect both evolutionary history and
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evolutionary optimization.
Could the observed network structure be an indicator of the evolutionary his-

tory of metabolism? Barabási and Albert [16] have recently proposed a mathemat-
ical model that generates small-world graphs with power-law degree distributions:
large graphs are made from small graphs by adding nodes and edges, with new
links formed preferentially at nodes that already have many links. Consequently
vertices with many connections are vertices that have been added early in the
history of the graph. Cast in terms of metabolism, if early in the evolution of
life metabolic networks have increased in size by adding new metabolites, then
the most highly connected metabolites should also be the phylogenetically oldest.
Now many of the most highly connected metabolites in Table 12.1 have a proposed
early evolutionary origin. Glycolysis and the TCA cycle are perhaps the most
ancient metabolic pathways, and various of their intermediates (2–oxoglutarate,
succinate, pyruvate, 3-phosphoglycerate) occur in Table 12.1. Early proteins are
thought to have been made of many fewer amino acids than extant proteins, and
the highly connected amino acids glutamine, glutamate, aspartate, and serine are
thought to be those used earliest [19–24]. The potential relation between evolu-
tionary history and connectivity of metabolites corroborates a postulate put forth
and defended forcefully by Morowitz [19], namely that intermediary metabolism
recapitulates the evolution of biochemistry. Our highly connected metabolites
pyruvate, 2–oxoglutarate, acetyl CoA and oxaloacetate are identified by Morowitz
[25] as belonging to the original core metabolism, and glutamate, glutamine and
aspartate are the links from this core into the next earliest subset of compounds,
the first amino acids.

A small-world network might also optimize metabolic function. Metabolic net-
works are subject to perturbations, and every component in the network could be
affected by such perturbations, because they are all connected. The importance
of minimizing the transition time betwen metabolic states has been recognized
and discussed by other authors [26,27]. Any response to a perturbation and tran-
sition to a new metabolic state requires that information about the perturbation
has spread through the network. Watts and Strogatz [3] studied how fast pertur-
bations spread through small-world networks. Significantly, they found that the
time required for spreading of a perturbation in a small-world network is close to
the theoretically possible minimum for any graph with the same number of nodes
and vertices. Thus small-worldness may allow a metabolism to react rapidly to
perturbations.

Whether or not there is special significance to the small-world character of
metabolic networks, what is certain is that models of small idealised sections of
metabolism can never be fully representative of the global properties of metabo-
lism.
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