Geography Education in South Africa after a Decade of Democracy

LESLEY LE GRANGE AND PETER BEETS

ABSTRACT: In 2004 South Africa celebrated ten years of democracy. The past decade has witnessed radical changes to South Africa’s socio-politico-geographical milieu. Included in these changes is the introduction of several new education policies. Foremost among these are new national curriculum frameworks for General Education and Training (GET) and Further Education and Training (FET). In the early stages of curriculum renewal, the position of geography in the new curriculum structures seemed somewhat precarious. However, developments in the last four years place geography in a more secure position in the post-apartheid education system. In this article we describe and reflect on these recent developments and provide the reader with a picture of the changing landscape of school geography in contemporary South Africa.

Introduction

IN AN ARTICLE published in Geography, Nel and Binns (1999) describe the changing nature of school geography in the first few years of South Africa’s newly formed democracy. These authors outline how education was organised prior to the dismantling of apartheid and describe some of the changes reflected in educational policies in the years immediately following South Africa’s first democratic elections. The conclusion they draw in this article is that the position of geography in South Africa’s new curriculum structure is somewhat precarious.

Nel and Binns’s (1999) assessment of the position of school geography was accurate at the time because the subject was struggling to define its identity within the newly established learning area for General Education and Training (GET): human and social sciences, and there was uncertainty as to whether geography would be included as a separate subject in the envisaged curriculum structure for Further Education and Training (FET). However, subsequent changes in curriculum policy could place school geography in a much more secure position. In this article, we recount some of the curriculum changes that occurred in the late 1990s as well as more recent developments following the phasing-in of a new curriculum (Curriculum 2005) in 1998. More specifically, we discuss possible implications that curriculum change might have for geography education.

The first policy document on education produced by South Africa’s democratically elected government was the White Paper on Education and Training (Republic of South Africa, 1995). Emanating from this were policy processes that had broader implications for the restructuring of the education and training system and school reorganisation. Foremost among these were the establishment of a National Qualifications Framework (NQF) and a new outcomes-based education (OBE) curriculum. The NQF is the set of principles and guidelines in terms of which records of learner achievement are registered to enable national recognition of acquired skills and knowledge, thereby ensuring an integrated system that encourages life-long learning (Department of Education, 1996).

In March 1997 the National Education Ministry launched the new curriculum entitled Curriculum 2005 (C2005). It was envisaged that this curriculum would replace content-based education with outcomes-based education, and teacher-centred pedagogies with more learner-centred pedagogies. Another change was the replacement of the 42 school subjects offered to learners in South African primary schools by eight learning areas. In a sense, the learning areas combine the old subjects, ostensibly to promote a more holistic and integrated approach. Each learning area has curriculum-linked outcomes which learners should attain through engaging with learning activities.

That curriculum has undergone considerable revision since it was gradually phased in. The curriculum revision process followed a period of vociferous debate and fierce contestation as to the merits of outcomes-based education (OBE) (see, for example, Jansen and Christie, 1999). There were also other concerns such as difficulties with implementation of the new curriculum in resource-
poor contexts. For example, authors of the *Report of the Review Committee on Curriculum 2005* observed that historically disadvantaged schools did not have the resources (reference and textbooks, stationery, photocopying facilities and other technologies of teaching) to implement Curriculum 2005 effectively (Chisholm *et al.*, 2000). This finding is corroborated by empirical studies done by Jansen (1999) and Le Grange and Reddy (2000). In response to some criticisms levelled against Curriculum 2005, South Africa’s second post-apartheid Minister of Education commissioned a committee to review Curriculum 2005. The review committee made several recommendations based on its visits to schools, review of published literature on Curriculum 2005 and review of submissions made by organisations and individuals as well as further investigation (for detail, see Chisholm *et al.*, 2000). This provides the context for the discussion which follows on the concomitant impact on the status of school geography.

Curriculum revision and school geography

When Curriculum 2005 was launched in 1997 there was concern among geographers and geography teachers that the distinctive character of geography could be lost since aspects of human geography were located in the human and social sciences learning area and physical geography was located in the natural sciences learning area (Binns, 1999). The South African geography community based its criticism of these curriculum developments on the fact that geography as a discipline comprised several fields of knowledge such as economics, conservation, hydrology, politics, demography, development studies, regional studies, spatial literacy, environmental studies, energy studies, pedology, biogeography, meteorology, climatology, geophysics, geology and astronomy (Earle and Keats, 1996; Van der Merwe, 1996), and that these fields might become lost or diluted if not integrated into a separate geography learning area (Mosidi, 1998). Since the geography community’s request to have a geography learning area was not acceded to by the national Department of Education (DoE), geography remained split, with physical geography located in the natural sciences learning area and human geography in the human and social sciences learning area. This left unaddressed the concern expressed by Pemberton that ‘attempting to solve many important geographic problems without geography’s physical component or its social component leads to unsatisfactory solutions’ (1990, p. 5).

Moreover, the position of human geography in the human and social sciences was tenuous because the first Curriculum 2005 document did not prescribe specific content. Implementation of Curriculum 2005 was based on the premise that teachers would have the competence to design learning programmes that would help learners achieve nationally defined critical and specific outcomes. Theoretically, teachers could use any relevant content in designing learning programme activities as long as they enabled learners to achieve the appropriate outcomes. In October 1997, however, broad content guidelines were provided in the form of what was termed assessment criteria, range statements and performance indicators (for details, see Department of Education, 1997). The publication of the latter document reinforced the location of physical geography within the natural sciences learning area by defining the theme *The Planet Earth and Beyond* as one of four themes of the natural sciences learning area. The scope statement of the theme *The Planet Earth and Beyond* reads as follows:

- Earth’s structure, dynamic features and components – from core to upper atmosphere – and the delicacy of the many environments associated with the Earth must be appreciated and understood at an appropriate level. A grasp of planet Earth’s place in the universe can instil a sense of wonder and stimulate the imaginations of learners. Within this theme, learning contexts should be drawn from under the Earth’s surface; on the Earth’s surface; above the Earth’s surface; and beyond the Earth (Department of Education 1997, p. NS-7).

Curriculum 2005 distinguishes between two types of outcomes: critical outcomes and specific outcomes. Critical outcomes are generic and cross-curricular, and aim to develop in learners the knowledge and skills required to function meaningfully in a democratic country. Although policy documents claim that the critical outcomes are derived from or inspired by the South African Constitution, the influence of the latter on the formulation of critical outcomes is not clearly evident. Perhaps, in a broad sense, the critical outcomes aim to develop in learners the knowledge, skills and values that are essential for developing a critical citizenry – an idea captured in the South African Constitution. As mentioned, the
Specific outcomes are curriculum-linked outcomes and therefore specific to different learning areas. The nine specific outcomes (SOs) that appear in the human and social sciences framework document are numbered as follows:

1. Demonstrate a critical understanding of how South African society has changed and developed.
2. Demonstrate a critical understanding of patterns of social development.
3. Participate actively in promoting a just, democratic and equitable society.
4. Make sound judgements about the development, utilisation and management of resources.
5. Critically understand the role of technology in social development.
6. Demonstrate an understanding of interrelationships between society and the natural environment.
7. Address social and environmental issues in order to promote development and social justice.
8. Analyse forms and processes of organisations.
9. Use a range of skills and techniques in the human and social sciences context.

(Department of Education, 1997)

Specific outcomes (SOs) 1 to 8 can be interpreted as the so-called content outcomes. SO 9, which lists skills and techniques, was intended as a service outcome for each of the eight ‘content’ outcomes (SO 1 to 8). The range statements of specific outcomes indicate the scope, depth and parameters of the achievement for each phase (Foundation Phase: Grades R to 3; Intermediate Phase: Grades 4 to 6; Senior Phase: Grades 7 to 9). They include indications of the critical areas of content, processes and context which the learner should engage with in order to reach an acceptable level of achievement of an outcome (Department of Education, 1997, p. 119). Importantly, it should be noted that range statements indicate parameters of achievement across phases and not grades. In other words, no level descriptors for grades (school years) were specified at this stage.

Few would disagree that geography could serve as the context for achieving each of the mentioned outcomes. But so could other disciplines such as history. How effectively geographical knowledge and processes could be used to achieve these outcomes would depend largely on the depth of the teacher’s knowledge and experience of teaching geography. If, for example, the teacher teaching human and social sciences has a history background then history may be foregrounded in the classroom. It is in the light of this possibility that geographers were concerned at the time that Curriculum 2005 ‘emasculates the subject by forcing it into a social education framework’ (Ballantyne, 1999). Such a concern is warranted because geography teachers in parts of the USA and Australia are struggling to regain the subject’s identity since it has been absorbed into social studies frameworks in these countries (Binns, 1999).

However, not all geography teachers share the view that the subject’s position in Curriculum 2005 became tenuous. For example, Van Harmelen (1999) argues that Curriculum 2005 provided opportunities to radically rethink the nature of geography education in South Africa. She argues that Curriculum 2005 provided opportunities to break away from textbook-based behaviourist approaches to geography education, which had dominated school geography in South Africa up to that point. She further points out that Curriculum 2005 opened up opportunities for introducing social constructivist approaches to geography education. Van Harmelen (1999) also makes a valid point that Curriculum 2005 was never intended to provide learners with specialist knowledge, but explicitly aimed at a general education that was compulsory for all South African learners. Specialist knowledge was intended for the Further Education and Training band.

What we have described is the state of affairs up to 1999 when South Africa’s second post-apartheid Minister of Education was appointed. As mentioned, the first major decision the Minister made was to appoint a committee to review Curriculum 2005. An outcome of the recommendations made by the review committee was a Revised National Curriculum Statement (RNCS) for the GET band (Department of Education, 2002a). The review process provided another opportunity for geographers and geography teachers to forward submissions so as to strengthen the position of school geography. The review of Curriculum 2005 also provided significant insights that formed the development of a National Curriculum Statement for the FET band. Against this background we next discuss further developments in South African geography education with specific reference to changes that have occurred within the GET and FET bands.
Based on the review of Curriculum 2005, a final Revised National Curriculum Statement (RNCS) was published in 2002. In short, OBE remained the foundation of the RNCS, the critical outcomes remained unaltered, but the specific outcomes were replaced by fewer curriculum-linked outcomes called learning outcomes, and some of the sophisticated design features had been simplified or removed (see Table 1). Table 1 does not provide details concerning all of the design features of C2005 and the RNCS, but does provide evidence that the design features have been simplified.

Furthermore, in the RNCS policy document, content foci are explicitly defined for each grade and progression of knowledge and skill development across grades are also indicated (Department of Education, 2002b). Parts of physical geography remain located within the natural sciences learning area as defined by the scope statement of the theme *The Planet Earth and Beyond* (see earlier reference to this). However, geography gained a distinctive identity in the social sciences learning area. In the social sciences learning area of the RNCS, geography has its own learning outcomes and knowledge foci and so does history. The three geography learning outcomes are as follows:

- **Learning Outcome 1: Geographical enquiry** – The learner will be able to use enquiry skills to investigate geographical and environmental concepts and processes.
- **Learning Outcome 2: Knowledge and understanding** – The learner will be able to demonstrate geographical and environmental knowledge and understanding.
- **Learning Outcome 3: Exploring issues** – The learner will be able to make informed decisions about social and environmental issues and problems.

(Department of Education, 2002b)

As mentioned, for each grade in the General Education and Training Band a knowledge focus is defined to serve as the context for achieving the learning outcomes. The knowledge focus for grade 4, for example, is represented in Table 2:

Table 1

Similarities and differences between C2005 and the RNCS

<table>
<thead>
<tr>
<th>C2005</th>
<th>RNCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical outcomes</td>
<td>Critical outcomes</td>
</tr>
<tr>
<td>Specific outcomes</td>
<td>Learning area statements</td>
</tr>
<tr>
<td></td>
<td>(define the learning and its definitive features)</td>
</tr>
<tr>
<td>Assessment criteria</td>
<td>Dropped</td>
</tr>
<tr>
<td>(indicate, in broad terms, the observable processes and products of learning)</td>
<td></td>
</tr>
<tr>
<td>Range statements</td>
<td>Dropped</td>
</tr>
<tr>
<td>Performance indicators</td>
<td>Dropped</td>
</tr>
<tr>
<td>(provide details of the content and processes that learners should master)</td>
<td></td>
</tr>
<tr>
<td>Expected levels of performance</td>
<td>Learning outcomes with accompanying assessment standard</td>
</tr>
<tr>
<td>Phase organisers</td>
<td>Dropped</td>
</tr>
<tr>
<td>Programme organisers</td>
<td>Dropped</td>
</tr>
</tbody>
</table>

Adapted from: Chisholm *et al.*, 2000.

Table 2

Knowledge focus for grade 4

<table>
<thead>
<tr>
<th>Settlement features:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• types of buildings;</td>
</tr>
<tr>
<td>• roads;</td>
</tr>
<tr>
<td>• types of facilities;</td>
</tr>
<tr>
<td>• business;</td>
</tr>
<tr>
<td>• industries;</td>
</tr>
<tr>
<td>• classification (urban, rural);</td>
</tr>
<tr>
<td>• functions of settlement;</td>
</tr>
<tr>
<td>• range of settlement sizes (village, town, city).</td>
</tr>
</tbody>
</table>

Resources and services within a settlement (e.g. land, water, sewerage, waste services, education, medical services, green/open spaces), and difficulties faced by those without access to resources and services.

Food production in South Africa:

- subsistence and commercial farming;
- main crops grown and animals reared (including fish harvesting) in South Africa;
- location and processes.

Access to food and water:

- consequences of lack of access to food and proper nutrition;
- ways of accessing food and water in different contexts, past and present;
- wise use and management of these resources.

Mapwork:

- map, symbols and key, plan views, grid systems and referencing, directions (8 points of the compass), physical and political features on large-scale maps;
- the map of South Africa showing provinces;
- a basic map of the world (including continents and oceans);
- concepts of continents, oceans, countries, provinces, capital cities and boundaries.

Source: Department of Education, 2002b, p. 49.
Furthermore, progression across grades is made possible through assessment standards that have been defined for each learning outcome. Table 3 illustrates progression across three grades in the Intermediate Phase for Learning Outcome 2 (Knowledge and understanding).

<table>
<thead>
<tr>
<th>Concept/Theme</th>
<th>Grade 4 Assessment standards</th>
<th>Grade 5 Assessment standards</th>
<th>Grade 6 Assessment standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>People and places</td>
<td>We know this when the learner: describes the features of the local settlement</td>
<td>We know this when the learner: identifies and describes major physical features of South Africa</td>
<td>We know this when the learner: explains why more people live in some places and not others</td>
</tr>
<tr>
<td>People and resources</td>
<td>describes the importance of access to resources and services</td>
<td>identifies links between natural resources and economic activities</td>
<td>identifies how access to different kinds of resources influences development</td>
</tr>
<tr>
<td>People and the environment</td>
<td>describes how basic human needs were met in the past and present</td>
<td>describes ways in which the physical environment influences human activity and vice versa</td>
<td>describes some ways in which society has changed the environment</td>
</tr>
</tbody>
</table>

The value of the acquired ‘geographical’ skills, knowledge and understanding lies in their application to situations, and to challenges and issues in the worlds that learners encounter. In the teaching and learning processes to enable learners to attain Learning Outcome 3 (Exploring Issues), learners are expected to make informed decisions about social and environmental issues and problems by:

- identifying the issue;
- understanding the factors affecting the issue, and
- making choices or decisions or providing alternatives.

It is only when learners start becoming aware of physical and/or human factors influencing problems and issues that they are in a position to develop appropriate values and attitudes that might ensure a sustainable future for all humankind.

Geography in Further Education and Training (FET)

As was the case with the GET in the late 1990s, South African FET is currently undergoing a process of transformation aimed at freeing it from the legacies of apartheid education. The FET process has greatly benefited from experiences gained during the revision of the GET. Geography is one of 29 subjects that will be offered in the FET band. These 29 subjects are derived from six learning fields: languages, arts and culture; human and social studies and languages; physical, mathematical, computer, life and agricultural sciences; business, commerce, management and service studies; and manufacturing, engineering.
and technology (Department of Education, 2003a, p. 12). Geography is located within the human and social studies learning field and can be offered as a core or elective subject. Three outcomes for geography have been identified based on three competences stipulated by the South African Qualification Authority (SAQA): practical competence, foundational competence and reflexive competence. According to the Authority:

- **Practical competence** is the demonstrated ability to perform a set of tasks in an authentic context. A range of actions or possibilities is considered, and decisions are made about which actions to follow.

- **Foundational competence** is the demonstrated understanding of what the learner is doing and why. This underpins the practical competence and therefore the actions taken.

- **Reflexive competence** is the demonstrated ability to integrate performance with understanding, so as to show that the learner is able to adapt to changed circumstances appropriately and responsibly, and to explain the reason for an action. (SAQA, 2001, p. 21).

The three learning outcomes (LOs) for geography that embody the above-mentioned competences are the following:

- **Learning Outcome 1: Geographical skills and techniques (practical competence)** – The learner is able to demonstrate a range of geographical skills and techniques.

- **Learning Outcome 2: Knowledge and understanding (foundational competence)** – The learner is able to demonstrate knowledge and understanding of processes and spatial patterns dealing with interactions between humans, and between humans and the environment in space and time.

- **Learning Outcome 3: Application (reflexive competence)** – The learner is able to apply geographical skills and knowledge to environmental issues and challenges, recognise values and attitudes, and demonstrate the ability to recommend solutions and strategies.

Assessment standards have been developed for each of the learning outcomes in a similar manner to that of the GET. These assessment standards are to be attained within defined content and contexts as illustrated in Table 4.

It is evident from Table 4 that geography teaching and learning in the FET band aims to integrate the physical and human worlds by studying spatial processes and patterns, and aid learners in understanding human-environment interactions (LO2) through the use and application of geographical skills and techniques (LO1). Furthermore, geography learners are expected to apply competences (developed in LO1 and LO2) to issues and challenges on local, national, continental and global scales (LO3). 1

As in the case of the GET band, assessment standards geared towards the attainment of each learning outcome for each grade have been formulated. An attempt was made by the policy authors to show progression in the assessment standards across the FET band from one grade to the next. 2 Evidence of progression is provided in at least two ways in the NCS for geography. Firstly, increase in complexity, demands and abstraction within geographical information (Butt, 2000, p. 70) is reflected in the assessment of higher order cognitive abilities as the learner progresses across grades. For example, in grade 10 learners are

Table 4

<table>
<thead>
<tr>
<th>Section</th>
<th>Grade 10</th>
<th>Grade 11</th>
<th>Grade 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Global scale</td>
<td>Continental scale</td>
<td>National scale</td>
</tr>
<tr>
<td></td>
<td>Context: The world and Africa</td>
<td>Context: Africa and the world</td>
<td>Context: SA and the world</td>
</tr>
<tr>
<td>B</td>
<td>Geographical skills and techniques</td>
<td>Geographical skills and techniques</td>
<td>Geographical skills and techniques</td>
</tr>
<tr>
<td>C</td>
<td>Atmosphere: weather and climate</td>
<td>The significance of water masses</td>
<td>Climate and weather</td>
</tr>
<tr>
<td></td>
<td>The structure and changing landforms of the Earth</td>
<td>Ecosystems (biotic and abiotic components)</td>
<td>Fluvial processes and landforms</td>
</tr>
<tr>
<td>D</td>
<td>People and places: population</td>
<td>Development and sustainability</td>
<td>People and places: rural and urban settlement</td>
</tr>
<tr>
<td>E</td>
<td>People and their organisations</td>
<td>People and their needs</td>
<td>People and their needs</td>
</tr>
<tr>
<td></td>
<td>– resource use and management</td>
<td>– economic activities</td>
<td>– resource use and management</td>
</tr>
<tr>
<td></td>
<td>– energy use and management</td>
<td>– water as a critical resource</td>
<td>– energy use and management</td>
</tr>
</tbody>
</table>

Adapted from: Department of Education, 2003, pp. 25-32.
required to ‘identify similarities’, in grade 11 to ‘compare and contrast’, and in grade 12 to ‘account for the similarities and differences in processes and spatial patterns between places and between regions’ (Department of Education, 2003b, pp. 20-21). Secondly, progression is also enabled by the inclusion of ‘different places, processes, patterns, activities’ (Butt, 2000, p. 70) in the NCS for geography by focusing on global, continental and local scales. However, Beets and Le Grange (2005, p. 196) caution that secured progression is only possible if teachers are supported in translating the assessment standards into classroom activities and in using them to track and support progression, and if teachers gain practical expertise in assessing what valid evidence is and how to plot this on the continuum of progression.

Learners should not only recognise the spatial and temporal dimensions of issues and challenges, but also the values and attitudes that influence them as stated in the policy document:

> This encourages learners to develop critical perspectives to explain why problems exist. In attempting to offer solutions to these kinds of issues, geographers apply principles such as those embodied in the concepts of sustainable development, sustainability, democracy, and social and environmental justice to offer appropriate solutions or strategies and to develop meaningful perspectives. In this way, Geography prepares learners to be active participants, informed citizens and responsible decision-makers. Learners will also be encouraged to recognise and appreciate values, attitudes and Indigenous Knowledge held by individuals and groups, examine the consequences of their actions and make informed, logical decisions (Department of Education, 2003, p. 11).

These policy ideals are laudable, but depend on the extent to which teachers and learners are able to make meaning of terms such as sustainable development, democracy, social and environmental justice – all social constructions that are contested. It is not only teachers’ knowledge and understanding of these concepts that are important, but their ability to create learning opportunities, preferably in the local environment, which will foster this type of learning.

How might policy change influence geography education?

Since the RNCS for GET is in its initial stages of implementation and the NCS for FET will be implemented for the first time in 2006, in this section we mainly focus on possible implications that policy changes might have for geography education. We will, however, briefly discuss some perspectives on the implementation of geography in the GET band based on interviews conducted with geography curriculum advisers in the Western Cape Province (one of nine provinces in South Africa).

General education and training

The following is a summary of perceptions on curriculum transformation and its impact on primary school geography expressed by five curriculum advisers that we interviewed:

- The RNCS has brought greater clarity concerning process skills (geographic skills and techniques) because the types of process skills and the level of achievement of these are now specifically stipulated for each grade. Curriculum advisers report that the emphasis on process skills appears to be changing teachers’ practices, from traditional approaches that involve the transmission of geographical information to approaches that support learners’ skill development and knowledge production.

- Unlike the previous curriculum which witnessed the teaching of geographical information in abstract ways, the knowledge foci of the new curriculum emphasises themes that relate to the real life experiences of the majority of South African learners.

- The assessment standards provide national benchmarks of what learners should be able to demonstrate in different grades providing a common standard for all schools and therefore contributing to the elimination of some of the huge disparities in the quality of education received by learners in different South African schools.

- Curriculum change has had a positive effect on teachers’ professional development because they are in a sense ‘forced’ to reflect on their own practices and to work collaboratively with colleagues.

- The most important concern expressed by curriculum advisers is that physical geography and human geography have been split and are housed in two separate learning areas, natural sciences and social sciences learning areas, respectively. Curriculum advisers indicate that the learning of geography is fragmented and that learners are experiencing geography as a subject dealing with either social or physical problems, and not gaining a sense of interactions that occur between the social and biophysical dimensions.
The latter concern also has implications for teachers’ identities which are partly determined by the subject/discipline that they claim to have expertise in. Asking teachers who have taught natural sciences for many years now to teach physical geography as well, an area in which they may not have any expertise, is a daunting challenge. In some instances geography teachers are now required to teach two learning areas, that is, the geography components of both the natural sciences and social sciences learning areas, making the organisation of curriculum and staffing at schools more complex. The views of the curriculum advisers are based on their observations of some of the effects that the RNCS have had on school geography. More comprehensive studies should, however, be conducted to test these perceptions.

Further education and training
Geography’s placement in the human and social studies learning field and the rules of combination for subject choices outlined in the FET National Curriculum Statement (grades 10-12) could impact negatively on the number of learners who take geography at high school (Department of Education, 2003a). Rules of combination for the FET comprise a fundamental component (two languages), a core component (two subjects selected from one learning field), and an elective component (one subject from any learning field). As has already been mentioned, schools could offer geography as either a core or an elective subject, but much depends on how individual schools decide to organise their curriculum offerings. Because geography is located in only one learning field, the possibility of it being offered as a core subject is reduced. It will have to compete against four other learning fields from which the two subjects forming the core component might be selected.

Furthermore, a trend is emerging whereby some schools are already offering tourism (a subject introduced in the year 2000) as a subject instead of geography. This trend is understandable in the South African context given the high unemployment rate and the fact that tourism is a growing industry which offers employment opportunities. All these factors (at school level), after implementation of the FET in the next few years (phased in from 2006), could impact on the number of students entering higher education with geography as a school leaving subject. Although, there is uncertainty as to the number of learners who will enter higher education with geography as a school subject over the next few years, those that do enter university with geography as a school subject would have had exposure to geographical information systems (GIS), would have developed knowledge and skills in relation to contemporary issues such as sustainable development, and increased knowledge of the African continent – aspects which do not form part of geography syllabi currently offered in high schools in South Africa.

Concluding reflections
Outcomes-based education (OBE) is in operation in many countries in Europe, Australasia, North America and Asia. Malcolm (1998, p. 21), however, points out that even though OBE has the same basic form in these countries, differences arise because of choices made in different settings to accommodate different cultures and different national histories. For example, in Australia, outcomes are drawn from the traditional curriculum whereas in South Africa the focus of the OBE curriculum is on equity and transformation. The reason for the South African decision was that the new curriculum was intended to serve as a catalyst for the transformation of society from the strictures of apartheid policies to one in which its members can enjoy full-citizenship. South Africa’s choice to implement transformational OBE rather than traditional OBE involves a shift away from a discipline-based knowledge structure to integrated learning areas, presumably to address the country’s socio-politico-economic needs (for a detailed discussion see Wilmot, 2005, p. 70). It was within this context that the distinctive character of geography as a school subject became threatened. However, the revision of Curriculum 2005 and the adoption of the RCNS saw a return to disciplinary influences on school learning areas and geography’s distinctive identity reaffirmed. Nevertheless, principles of transformation still underpin both the RNCS for GET and the NCS for FET. For example, the principles on which the NCS for FET is based are the following: social transformation; outcomes-based education; high knowledge and high skills; integration and applied competence; progression; articulation and portability; human rights, inclusivity; environmental and social justice; valuing indigenous knowledge systems; credibility, quality and efficiency. To date no guidelines have been provided to show how these principles are to be integrated in learning programmes.
The revision of Curriculum 2005 was based on concerns expressed by academics, teachers and civil society through parent bodies, non-governmental organisations (NGOs), and other concerned bodies. Reporting on this process, Chisholm writes:

> Following consultations with unions, public hearings in 2001, presentations within the main organs of government, and further refinement in the light of these public processes, the Revised National Curriculum Statement ... as the ‘streamlined’ C2005 was named, became official policy in April 2002 (2005, p. 193).

The deliberations between civil society and government that resulted in a new policy outcome (the RNCS) are a sign of a healthy, growing democracy. In the revision process, the voices of geographers have not gone unnoticed. Therefore, unlike the position in 1999 (see Ballantyne, 1999; Binns, 1999; Nel and Binns, 1999; Van Harmelen, 1999) it can reasonably be concluded that the position of geography in the new GET and FET bands is more firmly established (at least at the level of policy). However, school geography in South Africa is faced with several challenges, some of which we now shall briefly reflect upon.

Curriculum 2005, in a sense, placed too great an emphasis on the outputs (the intended outcomes that learners should attain) without giving sufficient attention to the input (curriculum) and the context for achieving learning outcomes. Furthermore, Curriculum 2005 provided very little guidance on how progression of skills and knowledge would be effected to achieve the defined outcomes. The RNCS provides a better balance between curriculum inputs and outcomes through the introduction of assessment standards (which enables progression in learning across grades) and a knowledge focus for each school grade. Such a balance was absent in the initial Curriculum 2005 framework because the range statements provided only parameters for achievement of outcomes across phases and not grades. However, there is a danger that teachers, particularly those who have been schooled in textbook-based behaviourist approaches to geography education, might find security in the content defined in the RCNS and not take up the challenge of transforming classroom practices through implementing more social constructivist approaches to geography education. The challenge of rethinking geography education that Van Harmelen (1999) so cogently alerts us to may be lost. However, much of what will happen depends on the quality of teacher education (both pre-service and in-service) offered in the next few years and the challenge presented to geography teachers in South Africa.

We go along with Van Harmelen (1999) that the purpose of Curriculum 2005 (and we argue the RNCS as well) is to provide a general education to all school learners during the ten years of compulsory education offered by the government. This band of education is therefore not primarily concerned with learners’ developing specialised skills within recognised disciplines. Therefore, a second challenge for geography teachers is how to create a balance in the learning programmes they design between the interests of the geography discipline; and how geography might serve as a vehicle to enable learners to develop the knowledge and skills needed to function effectively as citizens in a democratic country.

Nel and Binns (1999) point out that the traditional senior South African geography syllabus is dominated by the thinking of western academic geography, and has a strong ‘eurocentric’ focus, reflecting the traditional values of ‘White’ South Africa. As mentioned, one of the principles of the NCS for the FET is the valuing of indigenous knowledge. The principle of valuing indigenous knowledge is captured in the document as follows:

> Indigenous knowledge systems in the South African context refer to a body of knowledge embedded in African philosophical thinking and social practices that have evolved over thousands of years... It acknowledges the rich history and heritage of this country as important contributors to nurturing the values contained in the Constitution (Department of Education, 2003b, p. 4).

The valuing of indigenous knowledge is important in the South African context since indigenous knowledge systems reside among the majority of South Africa’s people. Geography teachers are therefore challenged to integrate elements of indigenous knowledge into the learning programmes they design. We do not believe that all western knowledge should be viewed as bad and all indigenous knowledge as good, but rather that knowledge spaces should be created where western epistemologies and indigenous ways of knowing can co-exist and be equitably compared. The creation of new knowledge spaces (third spaces) in which both western epistemologies and African indigenous knowledge can coexist could be central to the production of geographical knowledge in (South) Africa.

As (South) African geographers/geography teachers we can draw inspiration from examples...
elsewhere, where such new knowledge spaces have been created. For example, in Australia, Aborigines in the Northern Territory have for many years through their own performative modes mapped their country by identifying every tree and every significant feature of their territory. Today some Aborigines are doing the same using the latest in satellites, remote sensing and GIS. By representing their local knowledge on digital maps they are able to make their ways of knowing visible in western terms – ‘a new knowledge space which will have transformative effects for all Australians’ (Turnbull, 1997, p. 560). Closer to home, in South Africa, San (‘bushmen’) trackers are being equipped with digital devices to record animal sightings, a local example of traditional African ways of knowing, working together with sophisticated western knowledge (Le Grange, 2001). The valuing of indigenous knowledge and the introduction of the latest technologies such as GIS in the new curriculum framework, open up new spaces for the transformation of pedagogy in classrooms.

In a report, following a comprehensive investigation on the state of the discipline of geography in South Africa, Fairhurst et al. (2003) point out that emerging trends in the discipline reflect recent socio-political change and the contemporary emphasis on applied geography. The emphasis on applied geography is also reflected in both the RNCS for GET and the NCS for FET documents where greater emphasis is placed on the development of process skills and their application in real life contexts. Challenges related to socio-political change include the integration of social justice principles, and indigenous knowledge systems. These recent trends reflected in new curriculum statements provide challenges for the design and delivery of geography learning programmes, particularly with regard to how tensions between western and indigenous knowledge, basic and applied knowledge will be handled. We reiterate that much depends on how pre- and in-service teacher education tackles these challenges and how textbook writers interpret these challenges. The space is there to overcome the binaries between western/indigenous, basic/applied knowledge. However, the creation of these new spaces for knowledge production and exchange is directly dependent on the actions of agents involved in knowledge production and exchange processes. Transformation of geography education in South Africa (at all levels) requires the recognition and identification of what Turnbull (1997) terms third or interstitial spaces. The new curriculum provides the legal enablement for exploring such potentially transformative spaces.

Finally, we conclude that school geography at both the GET and FET levels has undergone changes over the past decade as a consequence of political transformation in the country. The new curriculum frameworks have introduced changes in approaches to teaching which place greater emphasis on constructivist approaches to learning as well as the learning of process skills. Despite concerns about the split between physical and human geography in the RNCS, school geography can help to develop citizens who are able to contribute to a sustainable democracy in South Africa. The survival of school geography is dependent on the actions of teachers, academics and all citizens whose lives have been enriched by exposure to geography at school level. As Walford and Haggett write, ‘it is difficult to be a dull geographer – or ought to be, if only we let the subject-matter speak freely enough through us’ (1995, p. 10).

Notes
1. The focus on the continent of Africa is a response to a call for Africa’s rebirth (African Renaissance) and for South Africans to understand and solve their own problems.
2. The policy documents outlining the National Curriculum Statement for geography in FET Schools can be found online (http://education.pw.gov.za).
3. In the FET, tourism is a subject located within the business, commerce, management and service studies.
4. National Curriculum Statement will be replaced by National Senior Certificate when the new FET curriculum is implemented in 2006.

Acknowledgements
We thank the two anonymous reviewers for offering helpful comments on an earlier version of the article. Dr Elaine Ridge is thanked for assisting with language editing.

References

