Overview

- Background
- Data collection approaches
- Study details and results
- Examination of the model
- Conclusions
Background

- Australia has over 900,000ha of eucalypt plantations, predominantly of *Eucalyptus globulus* (blue gum) established since 1990.

- There are few published harvester productivity models and *no general harvester productivity models* for these plantations

Why develop a general productivity model?

- Single harvester studies can be strongly influenced by factors such as operator performance

- General harvester productivity models use a large pool of data to even out the influence of these factors
How will the model be used?

- Decision Support Systems (e.g. ALPACA)
- Direct use of the model

Who will use the model?

- Researchers
- Forest growers
- Harvesting contractors
ALPACA

- ALPACA = Australian Logging Productivity And Cost Appraisal model
- Initially based largely on results of non-Australian production studies
- Current study is part of the effort to populate ALPACA with Australian production studies

Data collection – potential approaches

- Time and motion studies
- Automated data collection
- Time and piece counts
Data collection – Time and Motion

- Can produce detailed results.
- But, can be costly, time consuming and limited in scope.

Data collection – automated

- Potentially a good way to collect data for a general harvester productivity model, but:
 - Most harvesters in the study could not collect StanForD data.
Data collection – Time and piece counts

- Can collect a large number of harvester productivity estimates in a short period of time
- Relatively low cost
- Data can be collected opportunistically
- *But:* lower precision than T&M study results

Study details and results
Study sites

- Sites were flat or gently sloping with trees of good form and little undergrowth or obstructions
- Plantation age was generally about 10 years
- Trees were clearfelled for pulplogs (~5m logs)

Operators

- 24 operators studied
- Majority of operators had 5 years or more experience
Harvesters

- 21 harvester base/head combinations studied
- Majority:
 - Medium-sized (100-180kW) excavator-based machines (mainly Cat/Volvo)
 - Equipped with small Waratah heads (HTH616, HTH618, HTH620)

Study data collection – Time and piece counts

- Time and piece counts were mostly of 1-2 hours duration (46 T&P counts in total)
- Mean tree volume estimated from plots of 20-30 trees ahead of the harvester
- Productivity estimated by:

 \[\text{Productivity} = \text{tree count} \times \text{mean tree vol}(\text{m}^3) \times \text{Duration of count (hours)} \]
Data collection – What about the ‘Hawthorne effect’?

• ‘Hawthorne effect’ = change in the performance of a person being observed
• Mitigated in current study by:
 – Longer observation periods (>1.5 hrs where possible)
 – Observation from behind the harvester

General harvester productivity model

Productivity = $55.36458 \times \text{TreeVol}^{0.725383}$

Mean bias = -0.03
RMSE = 3.0
$R^2_{corr} = 0.79$

• Relationship close to linear
Examination of the model

- How does it compare with published models?
- What is the upper limit of the model?
- Was there any effect of:
 - Season?
 - Operator experience?

Comparison with published studies

- Very few comparable published studies
- Mostly at low end of mean tree volumes
- Generally agree with the model from this study
Upper limit of model?

- Few Australian *E. globulus* plantations with mean tree volume >0.5m3
- *But!* Recent observations suggest curve does not continue on the same trajectory for larger mean tree sizes

Visser et al.’s ‘Sweet spot’

- Harvesters in study operating well within their capabilities
- Suggests harvesters were chosen to deal with the largest trees they may encounter rather than the majority

Effect of season

- Study sites had pronounced seasonal rainfall differences ("Mediterranean climate")
- Eucalypt debarking appears to be considerably easier when trees are not water-stressed

Source: www.deere.com

Effect of season

- Results of a harvester productivity study when 50mm of rain fell between measuring two plots after a dry period
 - Significant reduction in processing time after rain, particularly for larger trees, due to easier debarking

![Graph showing productivity before and after rain](image-url)
Effect of season

- Each T&P count point was allocated to ‘Wet’ or ‘Dry’ based on rainfall prior to the measurement date
- Some effect was noted but more data needs to be collected

![Graph showing effect of season](image)

Effect of operator experience

- Operator experience is known to be a factor in harvester productivity

![Graph showing effect of operator experience](image)
Effect of operator experience

- Operator experience was divided into <=3 years and >3 years
- No clear effect, however most operators had >3 years experience

Conclusions

- Time and piece counts can be used to develop a general harvester productivity model
- Operator experience had no effect on the model
- Possible seasonal effect on productivity
- More data is required to:
 - Check for seasonal effects
 - Revise model for larger mean tree sizes
Acknowledgements

• The authors acknowledge the assistance of the many plantation managers, harvesting contractors and harvester operators without whom this work would not have been possible.