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author)Researchers in reconfigurable manufacturing systems (RMSs) have 

generally used the agent-based control (ABC). Due to industry’s hesitance 

to adopt ABC, this paper evaluates the reconfigurability of a control 

system developed with industry accepted technologies, i.e. IEC 61131-3 

programming languages, a Beckhoff embedded PC and Beckhoff's 

programming software, TwinCAT. The evaluation focusses on a station 

controller that controls a reconfigurable subsystem in an RMS. The control 

system, implemented in an ADACOR-based holonic architecture, was 

evaluated by conducting reconfiguration experiments using a laboratory 

case study. This paper shows that a reconfigurable station controller can be 

implemented using IEC 61131-3 and industry accepted technologies if a 

hardware platform is used that allows multiple virtual PLCs to be run in 

individual threads. The control approach presented here can be used to 

create station control systems that offer optimised cycle times, the benefits 

of an RMS and the benefits of industry accepted technology. 
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1. Introduction  

In smaller developing countries, like South Africa, industry has an increasing 

need for manufacturing automation to remain competitive in terms of quality and 
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cost. However, the classical forms of automation are not cost effective for the low 

volumes and high variance of products that are often produced there. The 

reconfigurable manufacturing system (RMS) concept potentially provides a 

solution for this dilemma.  

Most research in RMSs has used the agent-based control (ABC) approach. 

Some researchers even state that ABC is the only way of implementing RMSs 

(Leitão 2009). RMS researchers use agents because the capabilities of agent-based 

software and their development platforms make it easier and quicker to test their 

research (Leitão and Restivo 2006). However, ABC has not found general 

acceptance in manufacturing industries (Leitão 2009). Although agent software 

has features that benefit RMSs, they also have features that are unnecessary or 

unattractive in the industrial environment (Marik 2005; Leitão 2009; Almeida et 

al. 2010). Since industry is reluctant to adopt ABC, alternatives more acceptable 

to industry for controlling RMSs, should be sought.  

One alternative to ABC that has been researched as platform for RMS 

control systems, is that based on IEC 61499 function blocks. Mulubika and 

Basson (2013), as well as Kruger and Basson (2013), have compared this 

approach to ABC. Although IEC 61499 holds promise for RMS applications, as 

recently confirmed by Valentea, Mazzolinib and Carpanzanoa (2015), there has 

been a severe lack of support for this standard by major automation controller 

vendors and the development platforms to support this approach are not mature 

enough to be attractive to industry. IEC 61499 further does not make provision for 

dynamic instantiation, which inhibits its ability to implement holonic control 

architectures, while these architectures have many advantages for RMS 

applications, as discussed in this paper. 
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Industry commonly relies on industrial controllers, such as programmable 

logic controllers (PLC), to control the machines in the production lines.  IEC 

61131-3 programming languages, often with OEM-specific customisations, are 

the industry standard for PLCs. Although these programming languages are 

widely used and accepted by the industry, researchers have apparently not used 

them to develop RMSs, presumably because they considered PLCs to be 

unsuitable for RMS controllers.  

The objective of this paper is to reconsider this position, particularly in the 

context of a station controller in an RMS: the paper evaluates the reconfigurability 

of a station control system based on industry accepted technologies, i.e. IEC 

61131-3 programming languages, a Beckhoff embedded PC and Beckhoff's 

programming software, TwinCAT. 

The next sections describe the case study used as the context for this paper 

and formulate the main requirements for the control system. Thereafter, Section 4 

describes the control approach used here and Section 5 evaluates the control 

system, followed by an overall evaluation of the approach presented in this paper, 

in comparison to ABC, and concluding remarks. 

2. Case Study  

CBI Electric: Low Voltage, a South African company, produces a wide range of 

electro-mechanical circuit breakers. The parts are mostly manufactured in 

Johannesburg, while assembly is performed in Lesotho to make use of the low 

labour rates in that country. Since circuit breakers are safety devices, each circuit 

breaker is tested as part of the assembly process. The assembly operations and 

handling operations during testing are currently done manually, but CBI is 

considering automating some of these operations (particularly testing and 

labelling). However, due to the large product variety compared to modest (by 
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international standards) production volumes, conventional automation approaches 

are infeasible.  

A reconfigurable quality assurance cell (RQA cell), aimed at CBI's needs, 

is being developed by the Mechatronics, Automation and Design Research Group 

at Stellenbosch University (Hoffman 2014). The RQA cell will do visual 

inspections, electrical testing, riveting and labelling of circuit breakers. The RQA 

cell is simultaneously being used as a case study for developing RMS controllers 

based on industry accepted technologies, so that the industry will be more likely 

to adopt the RMS concept.  

The case study for this paper is the Electronic Test Station (ETS) of the 

RQA cell. The ETS is the main testing station of the RQA cell and is responsible 

for electrical testing of all the circuit breakers that pass through the RQA cell. The 

design criteria and mechanical aspects of the ETS are described in detail by 

Hoffman (2014). 

Figure 1 shows the layout of the ETS. The assembled circuit breakers 

arrive at and depart from the ETS in fixtures on pallets carried by a conveyor. A 

six degree of freedom articulated arm robot transports the circuit breakers 

between the pallets and the test racks. Each test rack houses a number of test slots. 

A parallel conveyor added to the central conveyor line allows buffering of pallets 

so that the ETS will not have to wait for pallets. The parallel conveyor has an In 

Pallet position where the robot can pick up untested circuit breakers and an Out 

Pallet position where circuit breakers that have passed the tests are placed. To 

ensure that there will always be a pallet available to place tested circuit breakers, 

the parallel conveyor has a Buffer Pallet position between the In Pallet and the 
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Out Pallet. To achieve the required cycle time, the robot uses a gripper that is 

capable of transporting multiple circuit breakers simultaneously (two for the case 

study implementation).  

 

Figure 1. Layout of the ETS. 

3. Requirements 

Ideally, an RMS should exhibit the six core characteristics given by Koren and 

Shpitalni (2010), i.e.:  

 Customisation: flexibility limited to a part family. 

 Convertibility: designed for future functionality changes. 

 Scalability: designed for future capacity changes. 

 Modularity: system comprises distinct modules. 

 Integrability: modules have interfaces suited for rapid integration. 

 Diagnosability: designed for easy diagnostics. 

The case study discussed above has additional requirements for the ETS and the 
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RQA cell, which affect both the hardware and software of the ETS (Hoffman 

2014). The following additional design requirements apply to the control system 

of the ETS:  

 The ETS has to allow manual override of the control system. In such a 

situation the test racks have to be accessible to humans to continue 

production.  

 The ETS has to keep the cycle time as low as possible. Therefore the 

control system has to be capable of using the robot to move multiple 

circuit breakers simultaneously. 

 The ETS has to fulfil the role of an operational holon (described in Section 

4.2) from the perspective of the cell, in accordance with the ADACOR 

control architecture (Leitão and Restivo 2006). The ETS has to 

communicate with the cell controller using TCP/IP and XML formatted 

strings. 

 Lastly, the ETS has to keep track of the test results of the individual circuit 

breakers and report the results to the RQA cell controller. 

4. Control System Development 

A control system was created to adhere to the requirements in Section 3. The 

control hardware and holonic architecture are discussed first, followed by 

communication between the holons. Thereafter the individual holons of the 

control system are described in detail.   

4.1. Control Hardware 

To maximize the potential of industry adoption, the control system was created in 

an IEC 61131-3 standard programming language (structured text) to run on a 

Beckhoff CX5020 embedded PC with the TwinCAT PLC runtime. The embedded 

PC extends the capabilities of IEC 61131-3, allowing multiple virtual PLCs to run 

in separate threads on one embedded PC. This effectively makes a holonic control 



7 

 

implementation possible. The virtual PLCs have conventional digital and 

analogue inputs and outputs like normal PLCs, but can also have inputs and 

outputs linked to each other, thus creating shared memory which can take the 

form of data tables.   

4.2. Control Architecture 

The manufacturing cell that contains the ETS, as well as the ETS itself, uses a 

holonic control architecture. Holonic control was chosen because it has similar 

characteristics to RMSs and holonic control architectures are often used to create 

RMSs  (Tönshoff and Winkler 1996; Heikkilä, Jarviluoma and Juntunen 1997; 

Van Brussel et al. 1998; Brückner et al. 1998; Liu et al. 2000; Chirn and 

McFarlane 2000; Monch et al. 2003).  

Departing from the concept of a holon introduced by Koestler (1967),  Van 

Brussel et al. (1998) defined holons to be self-contained wholes to their 

subordinated parts and, simultaneously, dependent parts when viewed from the 

inverse direction. Bell, Rahimifard and Toh (1999) give a thorough review of 

holonic manufacturing systems. Holonic control architectures are advantageous 

for RMSs since they divide the control into independent software modules with 

relatively simple interfaces, through which the holons communicate and 

collaborate. Further, the parts of the controller that interacts with hardware (called 

operational holons in the reference architecture described below) are intuitively 

mapped to hardware modules and, therefore, when the hardware changes, the 

corresponding changes in the control system can be done with relative ease. 

The ETS in itself can also be considered to be an RMS since it too can be 

reconfigured. Therefore, the control system of the ETS must be amenable to 

reconfiguration, which leads to the decision to use a holonic control approach for 

the ETS itself. The holonic control system for the ETS is based on the ADACOR 

(Leitão and Restivo 2006) control architecture. PROSA (Van Brussel et al. 1998) 

was also considered, but ADACOR was chosen because it includes explicit 

provision for optimisation, which is required to minimise the cycle time of the 

ETS.  Figure 2 shows the control architecture of the ETS, as well as the 

communication structure in the ETS. The dashed lines in Figure 2 indicate the 

distinct controllers used to host the various holons. In accordance with ADACOR, 

the holons and their respective roles are (Leitão and Restivo 2006): 
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 The product holons each represents a product type, containing all the 

information required to produce the product. 

 The operational holons each represent a physical resource that can be used 

to produce products. In the ETS controller, the robot holon and tester 

holons  are operational holons. 

 The task holons each represent an order for producing a product. A task 

holon obtains the information required to produce the product from the 

relevant product holon. Thereafter, the task holon employs the services of 

the relevant operational holons, in the appropriate sequence, to perform the 

steps required to produce the product. The implementation of the task 

holons in the ETS, in the form of a task holon manager shown in Figure 2, 

departs somewhat from classical ADACOR, as described in Section 4.5. 

 The supervisor holon's role is to optimise the production plans by guiding 

the interaction between the operational and task holons. 

IEC 61131-3 languages do not make provision for running multiple 

software threads, but the holonic approach entails that holons can run 

independently from one another. Therefore, an extension to IEC 61131-3 offered 

by the Beckhoff embedded PC architecture was used: each type of holon was 

assigned to a virtual PLC, thereby allowing the holons to run in separate threads 

on the embedded PC. A library was created of all the functions that the holons 

have in common, thus simplifying the creation of new holons and modify existing 

holons. The main differences between the holons are in their main programs and 
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holon specific functions. The holons' implementations are discussed in the 

following subsections.  

As mentioned in Section 3, the cell controller views the ETS as an 

operational holon and will communicate with the ETS’s controller using TCP/IP 

and XML formatted strings, naturally using one address and port. This means that 

one holon in the ETS has to handle all outside communication. Since the 

communication with the cell controller will require high-level information and 

will affect the whole ETS, the outside communication function was assigned to 

the supervisor holon.  

Each test rack in the ETS is managed by its own PLC (as shown in Figure 

2) and is viewed as an operational holon in the ETC control architecture. This 

results in a high level split as defined by Hoffman et al. (2013). An alternative 

would have been to locate the test racks' operational holons on the embedded PC, 

but this option was  rejected because the high level split approach has the 

following advantages in terms of reconfigurability: 

 Integrability: The ETS’s controller only has to communicate with a test 

rack's PLC and not with the individual tests slots. This interface will stay 

the same even if the test racks change. 

 Modularity: The PLC, the test rack and the test slots connected to it form a 

distinct module. 

 Diagnosability: The PLC manages the test racks connected to it and is 

capable of fault finding the test racks if necessary. 
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Figure 2. Control architecture of the ETS. 

A complete test rack can be reconfigured and tested outside of the ETS, to aid 

reconfigurability, and to allow the test racks to be used without the task or 

supervisor holon when the station is in manual override mode.  

The location of each test slot, relative to the test rack's origin, is stored in a 

.csv file on the test rack's PLC. These locations are used by the supervisor holon 

to determine which test slots to use. When a test slot is changed during 

reconfiguration, the operator has to update the .csv file on the PLC. Further, when 

a test rack is moved or a new test rack is introduced, the origin of the test rack will 
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have to be matched with that of the workspace that the robot designates to the test 

rack. After doing this, all the locations of the test slots can be used by the robot.  

4.3. Inter-holon Communication 

Two approaches were used for inter-holon communication: exchanging messages 

and IO linking. Message exchange is the conventional means in holonic 

architectures, but since holons are per definition independent, exchanging 

message will incur latencies: if holon A sends a request for information to holon 

B, A may have to wait until B has responded to the message, without knowing 

how long B will take to do so. The ETS controller uses IO linking to avoid these 

latencies in routine inter-holon communication where the responding holon 

merely has to send information immediately at its disposal (and make no 

decisions). The IO linking approach uses data tables, where a data table is an 

output of one holon and an input of another holon.  

The remainder of this section will first describe the IO linking 

implementations, i.e. the "Work in Progress Table" and the "Parity and Priority 

Table", followed by the message exchange implementation. All the holons use the 

message based approach for inter-holon communication, whereas the IO linking is 

only used by the task holon manager and the supervisor holon. 

4.3.1. Work in Progress Table 

Since IEC 61131-3 does not allow the dynamic creation of object instances, nor 

dynamic allocation of memory, a different approach was used to implement task 

holons, as described in Section 4.5. In this approach, each row in the Work in 

Progress Table (WIP table) contains the data of a task holon. The size of the table 

is determined by a variable and can be changed when the controller is in 

programming mode. Only the task holon manager can make changes to the WIP 

table.  

Each task holon data set in the WIP table, in addition to other information, 

contains a "command string" data field and an "active command" data field. The 

command string is an ASCII string variable built by concatenating short strings 

that represent the process steps required to test the circuit breaker. Since in IEC 
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61131-3 the maximum string length is 255 characters, the individual process steps 

must be encoded in short strings.  In the case study, the command string 

comprised a series of characters (e.g. BCZ), where each character (e.g. B) 

describes a process step that the task holon has to perform. When the task holon 

starts to execute a command, the first (remaining) character in the command 

string, which represents the particular process step, is removed from the command 

string data field and written in the active command data field. When that process 

step is completed, its character is erased from the active command data field and 

the task holon remains dormant until the supervisor holon has assigned a priority 

(in the Parity and Priority Table) to that task holon. The supervisor holon reads 

the active command fields in the WIP table and will only assign priorities to task 

holons that have no entries in those fields.  

4.3.2. Parity and Priority Table 

The parity and priority table (PPT) determines the order in which the task holons 

are executed, as well as the groups in which they are to work. Grouping of task 

holons is used to allow the robot to move multiple circuit breakers 

simultaneously, thereby reducing the cycle time. In addition, the PPT also 

indicates the optimal positions for the respective task holons to move their circuit 

breakers to. The grouping of task holons and the methods used to determine the 

priority of the circuit breakers are described by Hoffman (2014). The PPT is an 

output of the supervisor holon and is linked as an input to the task holon manager. 

The task holon manager uses the priority numbers in the PPT to determine the 

order in which the task holons are to be executed.  

4.3.3. Message Exchanges 

In the message based approach, the holons communicate with each other by 

sending XML formatted strings via TCP/IP sockets. An alternative would have 

been to use OPC for message exchanges (i.e. using IO linking through an OPC 

server), but XML formatted strings via TCP/IP was chosen because it simplified 

the implementation of a FIFO buffer for each holon. XML formatting was also 
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chosen because of its wide acceptance in industry and because the cell controller 

uses it. Care has to be taken when using this formatting with IEC 61131-3 as the 

maximum string length is 255 characters. The tags of the XML structure therefore 

have to be kept short and the sending of unnecessary information should be 

avoided. 

When a holon starts up, it reads a file that contains the IP addresses, ports 

and device ID’s of all the other devices it needs to connect to. This information is 

then stored internally in a device list table that is created when configuring the 

holon. The holon then starts its multi-client server and attempts to open sockets to 

all the devices in the device list. The holon attempts to open the sockets every 2 

seconds and will create timeout errors if any connection cannot be established in 

20 seconds. This means that each holon has a server part and a client part, which 

act like an inbox and an outbox, respectively. The server replies to any client that 

sends messages to it with the same message as confirmation of receiving the 

message. The communication functions have timeouts and error logging buffers to 

improve the robustness and assist in debugging. 

As illustrated in Figure 3, each holon has one inbox FIFO buffer that 

accumulates all the incoming messages received via the holon’s multi-client 

server. Further, an outbox FIFO buffer is created for every device in the holon's 

device list, with each outbox FIFO representing a client connection to a different 

holon’s multi-client server. Figure 3 shows the links between the outbox FIFOs 

and inbox FIFOs of the various holons. The inbox and outbox FIFOs are checked 

at the beginning of every program cycle. For example: 

 When a part of holon A's control program wants to send a message to 

holon B, that part adds the message to holon A's outbox FIFO for B. 
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 At the next start of holon A's program cycle, it checks all its outbox FIFOs 

and will send the message to holon B, with holon A as a client connected 

to holon B's multi-client server socket. 

 At the next start of holon B's program cycle, it checks its inbox FIFO and, 

finding Holon A's message there, reads the message and reacts 

accordingly. 

Unique IDs are used to relate a response to a previously sent request, 

which is essential because several task holons may send similar requests to the 

same holon, while all task holon communication is handled by the task holon 

manager.  

 

Figure 3. Message exchange architecture. 

4.4. Supervisor Holon 

The supervisor holon serves as a gateway between the internal holons of the ETS 

and the cell controller (Figure 2). If a holon in the ETS needs to send a message to 
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the cell controller, the message is sent via the supervisor holon since the cell 

controller views the ETS as one of the cell controller's operational holons. 

The supervisor holon is also responsible for optimising the performance of 

the ETS: the supervisor holon uses information from the WIP table (Section 4.3.1) 

and workspaces table (described below) to maintain the PPT (Section 4.3.2), 

indicating which circuit breakers to move together, the order in which they should 

be moved, as well as where they should be moved to. Details are given by 

Hoffman (2014).  

To minimise the ETS cycle time, which is dominated by the robot's 

movement times, the supervisor holon uses the workspaces table. A workspace is 

assigned to each operational holon with a physical interface where the robot can 

pick and place circuit breakers. The origin of each workspace is saved internally 

in the robot controller when the workspace is calibrated using the robot during 

ETS reconfiguration. During program start-up, the supervisor holon obtains the 

origin of each workspace from the robot holon, as well as the position of each slot 

in the workspace, relative to its origin, from the holon that contains the 

workspace. This information only changes during reconfiguration, which can only 

be done offline since the robot calibration has to be done by an operator. 

The supervisor holon updates the other information in its workspaces table 

(except for the positions) once per second by sending requests to all the holons 

that contain workspaces. The information includes, e.g. whether a slot is open, has 

been booked or is occupied. If the slot has been booked or is occupied, the 

identity of the corresponding circuit breaker is also obtained.  
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At the start of each program cycle, the supervisor holon services the Inbox 

and Outbox FIFO buffers (as described in Section 4.3.3), including the messages 

to and from the cell controller. The supervisor holon then updates the workspaces 

table. When the task holon manager has indicated to the supervisor holon that it is 

waiting for an updated PPT, the supervisor holon starts its optimisation procedure: 

the supervisor holon first groups new task holons that have not been grouped yet. 

The supervisor holon then cycles through the workspaces looking for the group of 

circuit breakers that are in the best positions to be moved from. When the 

supervisor holon has found a group, the supervisor holon finds the best position to 

move the group of circuit breakers to. The supervisor holon then assigns a priority 

to each of the circuit breakers' task holons in the PPT. Once the supervisor holon 

has cycled through all the workspaces, it indicates to the task holon manager that 

the PPT has been updated, which triggers the task holon manager to activate the 

designated task holons. 

4.5. Task Holon Manager 

In accordance with the ADACOR architecture, the task holons drive production, 

while the supervisor holon optimises operations by assigning priorities to the task 

holons. In the ETS, each circuit breaker has its own task holon that ensures that all 

the necessary production steps are carried out for that circuit breaker. However, 

the ETS also requires the grouping of task holons since, to increase the throughput 

of the ETS, the gripper on the robot was designed to transport multiple circuit 

breakers at the same time. The supervisor holon determines the grouping of the 

circuit breakers that can be moved together. This grouping requires that the task 

holons of the grouped circuit breakers also must be grouped together, and that the 

grouped circuit breakers move only when all the holons in the group have the 

appropriate status.  

IEC 61131-3 does not allow instances of task holons to be created 

dynamically, as is usually done in ADACOR. An approach that was considered, 
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but not implemented, is to create a sufficiently large number of task holon 

instances at start-up (e.g. as many as there are entries in the WIP table) and to let 

the supervisor holon activate task holon instances as needed. As fully fledged 

holons, these instances would each have their own messaging service, IP address 

and port. These task holons would use variables similar to the entries in the WIP 

table. In this approach, however, it would be complex to arrange for groups of 

circuit breakers (each with its own task holon) to be moved together. This 

approach would also result in increased communication overhead between the 

task holons and the supervisor holon. 

The approach taken in the ETS controller to fulfil the role of all the task 

holons, is to use only one holon, the task holon manager, with a WIP table in 

which each row contains the data associated with a task holon, as mentioned in 

Section 4.3.1. This approach works well in the ETS, since the task holons all have 

the same decision making logic and only one task holon can initiate production 

steps (by sending messages) at a given time, to maintain the optimised order given 

in the PPT, as determined by the supervisor holon.  

The task holon manager program cycles through three consecutive phases, 

like any other holon, i.e. a communications phase, an information processing 

phase where the information in the WIP table related to the task holons is updated, 

and a decision making phase where the task holons' work is performed. The 

communication phase is described in Section 4.3.3 and the other phases are 

described in the following paragraphs: 

Three types of messages are pertinent to the information processing phase: 
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 If the message is from the cell controller (via the supervisor holon) 

requiring the creation of a new task holon, the task holon manager sends a 

message (on behalf of the task holon) to the product holon, requesting the 

product information required to test the circuit breaker that the new task 

holon represents. The task holon manager adds all the information related 

to the new task holon to the WIP table, thereby effectively creating a new 

task holon. 

 If the message is from the supervisor holon indicating that the PPT has 

been updated, the task holon manager will execute the decision making 

phase in the particular program cycle.  

 If the message type is a "reply to a request" sent by one of the operational 

holons, the relevant task holon's information in the WIP table is updated 

accordingly.  

The decision making phase is executed in the particular programme cycle only if 

the supervisor holon has indicating that the PPT has been updated. In this phase, 

the task holons are activated by the task holon manager, in the order indicated by 

the PPT, by loading the relevant data from the WIP table and performing actions 

dictated by the logic stated in the decision making part. The messages that the 

active task holon wants to send are added to the relevant outbox and will be sent 

at the start of the next program cycle. The task holon manager will go through the 

PPT once, activating all the task holons indicated by the PPT. The task holon 

manager will then wait until the supervisor holon indicates that the PPT has been 

updated before activating the task holons again. 

Although the task holons are not separate software modules, the other 

holons in the ETS (except the supervisor holon) are not aware of this and 

communicate with the task holons in the same way as they would have if the task 

holons where separate modules. Each task holon's row in the WIP table has a 

unique message ID field that identifies the last message that the task holon sent to 
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another holon. A message replying to a request by a task holon would include this 

message ID, thus allowing the task holon manager to associate the reply with the 

appropriate holon.  

4.6. Robot and Gripper Holon 

4.6.1. Robot Functionality 

The robot holon provides the task holon manager and the supervisor holon with 

access to the services offered by the robot. The robot holon converts the messages 

to and from the robot between the inter-holon message strings and the proprietary 

format of the robot, which was a Kuka KR 16 in the case study. In the case study, 

the robot holon communicated with the Kuka controller over a Profibus interface 

between the Beckhoff embedded controller and the robot controller. 

The throughput rate of the ETS is largely determined by the robot and the 

number of test slots. The distance the robot has to travel between the In Pallet and 

Out Pallet is small, similar to the distances that the robot has to move between test 

slots. On the other hand, the distance between the pallets and the test racks is large 

in comparison and, in order to reduce cycle times, this distance should ideally 

always be covered with circuit breakers in the robot’s gripper. The optimal 

movement cycle for the robot is therefore: move to the In Pallet, pick up a group 

of circuit breakers from adjacent positions on the In Pallet, move to a test rack, 

place the group of circuit breakers in adjacent test slots, move to a different 

position on a test rack, pick up circuit breakers that have completed their testing 

from the adjacent test slots, move to the Out Pallet, and place the circuit breakers 

in adjacent slots in the Out Pallet. 

When the robot holon receives a request from a task holon to move a 

circuit breaker, the information is added to the MoveInfo table. This information 
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includes the pick position, place position, unique message ID and parity (used to 

indicate group membership). The robot holon waits for the requests of all the 

circuit breakers that are grouped together (as described in Section 4.5), and then 

adds the relevant information to one of two buffers:  if the request is to move a 

circuit breaker from the In Pallet, the move command is added to the InPalletFIFO 

buffer, and correspondingly moves to the Out Pallet are added to the 

OutPalletFIFO buffer. When a circuit breaker has failed its test, it is also entered 

into the OutPalletFIFO and a scrap flag is set high. The circuit breaker will then 

be picked up as normal, but the robot will dump the scrap circuit breaker in a 

scrap shoot on the way to the Out Pallet. If the scrapped circuit breaker was part 

of a group, the robot will place the remaining good circuit breakers in the Out 

Pallet and leave the scrapped circuit breaker's position empty. The ETS control 

system will not try to fill this slot, since the robot would have to move with only 

one circuit breaker in the gripper to fill the slot and this would be detrimental to 

the cycle time.  

The unique message IDs of the task holons' request are saved in the 

MoveInfo table and used when sending messages back to the task holons 

indicating that the move commands have been completed. 

4.6.2. Gripper Functionality 

The control of the gripper was integrated into the robot holon because any 

reconfiguration of the gripper would require that changes be made to the robot 

holon too. All positioning actions of the robot use the tool centre point as a frame 

of reference. This is done to keep the robot from crashing into its workspaces and 

general safety concerns related to robots. By hardcoding the tool centre point into 

the robot and robot holon, the robot would avoid collisions when invalid move 
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commands have been issued or a software limit has been reached. These safety 

features are integrated into the robot’s controller.  

The decision making part related to moving circuit breakers is the robot 

holon's responsibility, while there is no decision making role for a gripper holon. 

The gripper holon would only contain data entries that indicate the locations of 

the gripper’s jaws, how many circuit breakers the gripper can pick up at once, as 

well a few inputs and outputs. Therefore the gripper holon can be easily integrated 

into the robot holon. By integrating the gripper holon into the robot holon, 

changes made to the gripper would automatically be made to the robot holon.  

The only other holon that communicates with the gripper is the supervisor 

holon. The supervisor holon only needs to know how many circuit breakers the 

gripper can pick up at a time and where the positions of the jaws of the grippers 

are. This information is used by the supervisor holon to group the circuit breakers. 

By integrating the gripper’s functionality into the robot, any possible delays 

caused by inter-holon communication between the robot and gripper are 

eliminated. Even though this delay may seem small when compared to the time it 

takes the robot to move, these small delays can quickly add up since the gripper is 

actuated six times to move two circuit breakers through the ETS.   

An alternative to the abovementioned approach is that the robot holon has 

an internal holarchy, which can include several grippers, managed by the robot 

holon. If a gripper changer was introduced to the ETS to allow the robot to change 

grippers autonomously, separate gripper holons would have several advantages 

over the approach discussed above. To allow grippers to be dynamically added or 

changed, the tool centre point would be set to the point where the grippers are 
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connected to the robot. The robot would then rely on the gripper holon to keep the 

gripper from crashing into objects. 

The cost of human effort (Hoffman et al. 2013) of a skilled operator to 

change parameters should be traded off against the development cost of 

sophisticated control software required to enable autonomous changing of the 

grippers. The optimal approach depends on the level and frequency of 

reconfigurations. In the ETS implementation, preference was given to lower initial 

development costs and the use of skilled operators. 

4.7. Product Holon 

The ETS has its own product holon that stores all product information need to test 

the circuit breakers. The ETS’s product holon regularly communicates with the 

cell controller and stores a local copy of all information relevant to the ETS. The 

information is stored in a .csv file on external or internal storage of the embedded 

PC. This file can easily be edited using Microsoft Excel to allow the ETS to 

continue work even when the cell controller fails or a manual override of the 

system is activated.  

An alternative approach that was considered, but not selected, was to 

remove the product holons from the ETS. The ETS's task holons would then 

communicate with the cell controller’s product holons. This would ensure that the 

task holons receive the most recently updated information at the cost of higher 

network traffic to and from the cell controller’s product holons. This approach 

would, however, reduce the robustness of the ETS, because the ETS will be 

unable to continue work when the cell controller fails or a manual override of the 

system is activated. 
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4.8. Tester Holon 

Each tester holon manages a test rack, with all the test slots contained in the test 

rack, keeping track of all the relevant information using a data table. In the ETS, 

the tester holon sends the test settings to the test slots and receives the test results 

from the test slots. The tester holon therefore enables holonic communication 

between the task holons and test slots.  

5. Assessments 

A number of assessments were performed to evaluate the ETS control 

system with respect to the requirements of the ETS and the characteristics of an 

RMS given in Section 3. Some assessments were done by performing the 

associated operations and are called "experiments" in this section. Table 1 shows 

which RMS characteristics were tested in each assessment. The first assessment 

did not require any physical changes to the ETS, in contrast to assessment 2. 

Assessment 3 considered the failure of a part of the ETS, while assessment 4 

considered aspects more specific to the case study. 

Since the test slots were still under development at the time of the 

assessments, the test racks' functionality was simulated by the tester holons for all 

the experiments. The physical interfaces of the test slots were represented by a 

mock-up test rack with four test slots. A gripper with 2 positions was used for the 

testing. The cell controller of the RQA cell was also under development at the 

time of testing and therefore a simulated cell controller was used in the 

assessment, i.e. a PC that sent and received XML formatted strings via TCP/IP, as 

the intended cell controller would have. The simulated cell controller did not, 

however, implement product holons and therefore the ETS used its own product 

holons for all product information. The ETS control system's manual override 
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capabilities could not be assessed, because the test racks are still under 

development and manual override would require a human-machine-interface 

(HMI) connected to the each test rack's controller. 

Figure 4 shows the laboratory setup of the ETS that was used in the 

assessment. 

 

Figure 4. Laboratory set-up of ETS. 

5.1. Change within a Product Family 

This experiment tested the customizability of the ETS, and in particular the 

control system’s ability to accommodate new products that are within the current 

product family. The product family was taken to be circuit breakers with a similar 

enough geometry so that all its members can be handled in a given physical 

configuration of the ETS. The experiment entailed adding the test settings, 

product code and command string of the new product to the ETS’s product holon. 

Normally these parameters for the new product would be added to the cell 

controller’s product holon and the information would then be synchronised with 

the ETS’s product holon, but as pointed out above, the cell controller was still 
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under development and therefore the ETS's product holon was changed directly. 

None of the ETS's other holons were affected. 

The changes to the product holon were done in a few minutes and required 

changing the csv data file of the product holon. The changes therefore required 

specific knowledge of the ETS controller and, if suitable instructions are 

available, can be completed by a trained operator that need only have basic 

computer literacy. The new settings had to be tested and a ramp-up phase was 

required. Since there were no changes to the physical configuration of the ETS, 

the ramp-up phase only required testing a control sample of the new circuit 

breaker (e.g. 100) and this was completed in 10 minutes. 

5.2. Change in Physical Configuration 

Physical changes to the ETS may be related to convertibility (such as introducing 

a new product family or a new technology) and scalability (such as relieving 

throughput bottlenecks). These changes can be completed efficiently if the ETS 

has good modularity and integrability. This section considers different aspects that 

may be encountered during physical reconfiguration. The combination of aspects 

required in a particular case will be determined by the extent and nature of the 

reconfiguration.  

5.2.1. Change in Origin 

This experiment entailed changing the position of a test rack and the In Pallet. The 

origins of the test racks and pallets are stored in the robot’s controller. During 

reconfiguration only the robot's workspace information need be updated by 

operators, since the supervisor holon updates its internal workspaces table by 

polling the devices with workspace information, as described in Section 4.4, 

without the need for operator intervention.  

To change the origin of a workspace, or create a new workspace, an 

operator has to use a built-in calibration procedure of the robot. This procedure 

requires an operator to move the tool centre point of the gripper to 3 points on the 

new workspace, i.e. the origin, a point on the X axis of the workspace and a point 
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on the XY plane of the workspace. From these 3 points the robot controller 

calculates the origin and local coordinate system of the workspace. The 

calibration is done by using the pendant of the robot’s controller.  

In the experiment, the origins were changed successfully in 30 minutes 

and required an operator trained to calibrate the robot, typically a person with a 

technical qualification. After the origins were changed, a ramp-up phase was 

required to ensure that the robot could pick and place circuit breakers successfully 

in the changed workspaces. During the ramp-up phase the ETS tests circuit 

breakers as it normally would, with the exception that the robot moves at a greatly 

reduced speed while a skilled operator monitors the robot’s movement. The 

pendant of the robot is used by the operator to control the speed of the robot and 

stop the robot if a possible crash is detected by the operator. This ramp-up phase 

takes approximately 10 minutes and should be repeated whenever an origin is 

changed or a new workspace is created. 

The experiment proved the ability of the ETS to accommodate changes in 

the origin of workspaces, as well as the introduction of new workspaces.  

5.2.2. Change in Test Slots or Test Racks 

If a new product is introduced with dimensions incompatible with the test racks 

installed in the ETS, the slots would have to be changed or a new test rack would 

have to be introduced.  

An experiment was conducted to test the ability (convertibility) of the 

ETS’s control system to accommodate a change in the test slots: two test slots on 

the mock-up test rack where moved 10 mm in the negative Y-direction of the test 

rack’s local coordinate system. The test slots were moved the same distance to 
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avoid requiring a change in the gripper (which is considered in Section 5.2.5). 

After the test slots' new positions were measured accurately, the workspace 

information was saved in the tester holon using the test rack’s HMI. This 

reconfiguration was completed in approximately 30 minutes, but the time would 

depend on the number of slots that have moved. A ramp-up phase similar to the 

one described in Section 5.2.1 was required after the changes were made to ensure 

that the robot can pick and place circuit breakers in the test slots without crashing. 

The above experiment was concluded successfully with the ETS testing 

50 circuit breakers. The control system of the ETS adapted to the changes and 

used the changed test slots successfully.  

Another experiment was conducted by adding a new operational holon in 

the form of a new test rack. To accommodate the new test rack, the device list of 

all the holons had to be updated with the address and port of the new test rack. 

Since all the holons on the ETS's embedded PC use the same device list data file, 

the new test rack was added to the device list in a few minutes. If suitable 

instructions are available, the update of the device list can be completed by a 

trained operator that need only have basic computer literacy. Additionally, the 

robot’s controller also has to be updated with the new workspace and origin of the 

new test rack, as described in Section 5.2.1. The time and skill required to 

physically install the test rack was not taken into account as it depends on the 

design and weight of the test rack. Since only one mock-up test rack was built, the 

second test rack was added virtually in the experiment and the ETS was tested in a 

dry run mode. The dry run means that virtual circuit breakers were used and the 
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sensors in the gripper were modified to always detect a circuit breaker when the 

grippers are in the closed position.  

The assessment was completed successfully with the ETS using two test 

racks and operating in a dry run mode. A total of 100 circuit breakers were tested 

successfully during this assessment. 

5.2.3. Adding a New Subsystem 

This assessment considered adding a completely new operational holon, in the 

form of a weighing station. The addition of a weighing station would test the 

integrability, modularity and convertibility of the control system. The weighing 

station would require changes in several holons: the supervisor holon, the product 

holon, the robot holon (new FIFO buffer and possibly new robot commands) and 

the task holon (new commands associated with the new process step). In addition 

to the changes in the holons, the robot’s controller would also have to be updated 

with the origin of the weighing station. These changes can be expected to take 

several hours to complete and require a technician familiar with the architecture of 

the controller. The ramp-up phase will also be required after the changes have 

been made to ensure the ETS is functioning correctly. 

5.2.4. Change in Pallet 

An experiment was conducted to examine the effects that changes of the pallet 

would have on the ETS. The In Pallet was moved to a new position on the 

conveyor and the pallet was rotated 90 degrees clockwise. Due to rotating the 

pallet, the robot has to approach the pallet from a new direction to pick the circuit 

breakers up successfully, thereby simulating the introduction of a new pallet type 

with the same distance between circuit breakers as in the previous pallet. The 

workspace and origin of the In Pallet was changed in the robot controller as 

described in Section 5.2.1. After the ramp-up phase was completed, the ETS 

tested 50 circuit breakers to confirm it was working as intended. The experiment 

was conducted successfully and the ETS tested the 50 circuit breakers using the 

changed In Pallet workspace.  

An additional assessment was done to examine what changes are 

necessary in the ETS when the distance between circuit breakers on the pallet 

changes. To accommodate a change in pitch, the mechanical end stops that control 

the pitch of the grippers (Hoffman 2014), have to be changed by a trained 
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operator. The skill level is determined by the need for precise adjustments. The 

new pitch of the gripper has to be saved in the supervisor holon, since the pitch of 

the gripper is used to pair circuit breakers. The changes to the supervisor holon 

can be done in 15 minutes and, with suitable instructions, can be performed by a 

trained operator on an HMI. 

Further, a ramp-up phase is required to ensure the robot can pick and place 

the circuit breakers correctly. This ramp-up phase is similar to the one described 

in Section 5.2.1. 

5.2.5. Change in Gripper 

An assessment was performed of the effects on the ETS of a change in the number 

of circuit breakers simultaneously picked up by the gripper. This assessed an 

aspect of the scalability of the system. Only the supervisor holon and the robot 

controller have to be updated to accommodate the change in the number of 

gripping positions: the robot controller has to be updated with the new tool centre 

point, while the gripper pitch and number of gripping positions variables have to 

be updated in the supervisor holon. If the new gripper has been used before or is 

very similar to a previously used one, the changes in the hardware and software 

can be done in approximately 15 minutes by a trained operator. However, if the 

gripper has not been used before or has changed significantly, the new gripper 

would require thorough testing during the ramp-up phase which can take more 

than an hour. The ramp-up phase of this configuration will probably require a 

technician. 

5.2.6. Summary of Reconfiguration Times 

Table 2 summarises the controller reconfiguration times and required skill levels. 

The time required to reconfigure the hardware is not included. 

5.3. Robustness 

To test the disturbance handling capabilities of the ETS, the following 

experiments were conducted: An experiment was conducted to test how the 

control system reacts to a circuit breaker failing the electrical test and another 

experiment tested how the control system reacts to a test slot failing. For the first 
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experiment, one of the testers was programmed to fail all the circuit breakers that 

it tests. This was done to test whether the ETS scraps the correct circuit breaker. 

In the second experiment, the tester holon responsible for one of the test racks 

simulated the failing of a test slot: during the periodic update of the supervisor 

holon's workspaces table (Section 4.4), the tester holon would report the status of 

the failed test rack as "unavailable". 

Both the experiments were successfully completed and both experiments 

tested 100 circuit breakers. The first experiment scrapped the correct circuit 

breaker every time the robot picked up a circuit breaker that had to be scrapped. 

During the second experiment the control system did not make use of the faulty 

tester and placed the circuit breakers correctly. These experiments prove the 

ETS’s ability to successfully handle some disturbances. 

5.4. Cycle Time 

To test the effect of the robot on the cycle time of the ETS, 16 test slots in two test 

racks were required so that the availability of test slots would not limit the cycle 

time. The mock-up test rack and a virtual test rack was therefore used in this 

experiment, with the virtual test rack added to the left (Figure 4) of the mock-up 

test rack. No circuit breakers were used during the test, because of the use of the 

virtual test rack. The robot was run at 100% speed and the time the robot takes to 

place circuit breakers on the Out Pallet was recorded. Video footage was used to 

determine the time taken by the robot to complete commands that were sent to it. 

These results were averaged and used to determine the cycle time. Two 

experiments were conducted, each testing 200 circuit breakers. 

For the first experiment, the robot holon sent one command at a time to the 

robot controller. This means, e.g., that to pick a circuit breaker up from the In 

Pallet, the robot holon would first send a move command to the robot controller to 

move the robot to the In Pallet. Once the robot has finished the command, the 

robot holon would send a command to pick the circuit breaker up. The robot stops 

after each command which results in a small pause between commands. This 
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affects cycle time adversely. The individual commands can be seen in Table 3 

with the time each command takes to complete. 

The first experiment was conducted successfully with the ETS testing 200 

circuit breakers. The average cycle time was 9.6 seconds with 2 circuit breakers 

leaving the ETS in each cycle. This results in a cycle time of 4.8 seconds per 

circuit breaker, or 12.5 circuit breakers per minute. 

For the second experiment, the robot holon sent combined commands to 

the robot controller. This was done to make use of the advance run feature of the 

robot controller, which allows the robot to move through several points without 

stopping. A move-and-place command and a move-and-pick command were 

created in the robot holon and robot controller to make use of the advance run 

feature. If the robot has to pick a circuit breaker up from the In Pallet, the robot 

holon only sends the move-and-pick command. The robot then moves to the In 

Pallet and picks up the circuit breaker without stopping in-between. The combined 

commands can be seen in Table 4 with the time each command takes to complete. 

The second experiment was conducted successfully with the ETS testing 

200 circuit breakers. The average cycle time was 7.5 seconds per cycle for the 200 

circuit breakers tested, with two circuit breakers leaving the cell in each cycle. 

This results in a cycle time of 3.75 seconds per circuit breaker or 16 circuit 

breakers per minute. 

The results show that the combined commands significantly reduced the 

cycle time of the ETS when the robot is a determining factor. The results also 

show that the movement between the test racks and the pallets account for a large 
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portion of the cycle time. This time can be reduced by using a faster robot and by 

moving the test racks closer to the conveyor.  

6. Overall Control Evaluation 

The preceding section evaluates the ETS control system's abilities in terms of 

RMS characteristics and the station's throughput. This section considers the 

advantages and disadvantages of the ETS control system, as presented in this 

paper, in the context of a station controller and in comparison with agent-based 

control (ABC), which is the conventional approach for RMS controllers.  

The ETS control system runs on a Beckhoff embedded PC, which is 

widely accepted in industrial environments. ABC can also use industrial hardware 

such as industrial PCs, but industrial PCs cost significantly more than embedded 

PCs. ABC also does not offer the same level of robust interfacing with IO and 

provides poor control of latency in the control loop. 

The reconfiguration times and effort given in the previous section are 

mostly determined by the holonic control architecture. Therefore, the times and 

effort required should be similar for ABC and the approach presented here. 

However, the skill levels required are quite different, as discussed in the following 

paragraph.  

The ETS control system was created using IEC 61131-3 programming 

languages and the TwinCAT programming software provided by Beckhoff. The 

IEC 61131-3 languages are the industrial control standard and are used in most 

PLCs, with the result that most automation maintenance crews are familiar with 

the languages. The maintenance crews would only need training on how the 

control system works to be able to make changes to the software. In contrast, 

ABC relies on JAVA or other object-orientated programming languages and uses 
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non-OEM development environments to develop the code. The level of 

programming expertise required for ABC exceeds the abilities of most 

maintenance crews, thus placing ABC at a disadvantage compared to Beckhoff 

TwinCAT. However, some proprietary features of TwinCAT were used that might 

not be available from other OEMs and may not be known to maintenance crews 

that have not used these features. These features include the ability to run multiple 

virtual PLCs on one controller and the linking of variables between different 

virtual PLCs. Further research should investigate how the developed control 

system can be applied to industrial controllers of other OEM’s.  

In the context of station control, it is important that the control system has 

the ability to simply and robustly interface with hardware (such as actuators and 

sensors), in "real-time ", i.e. with short and precisely known latencies. This ability 

is provided to the ETS control system by the industrial controller (embedded PC), 

the IEC 61131-3 programming language implemented in Beckhoff TwinCAT and 

the IO cards connected to the industrial controller. Access to industrial 

communication bus standards, e.g. Profibus, is readily and robustly available in 

the industrial controller. In contrast, ABC relies on additional custom software 

layers to access IO and is not capable of real-time interfacing with hardware. 

These additional software layers also add complexity to an ABC system. 

Due to limitations of IEC 61131-3, holons cannot be instantiated 

dynamically. This forces the ETS control system to instantiate all holons when the 

program starts. Although the lack of dynamic instances can be viewed as a 

disadvantage in comparison to ABC where holons can be instantiated 
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dynamically, it can be argued that the requirements and design of the ETS 

removes the advantages of dynamic instances, as described in Section 4.5. 

The ADACOR control approach was used in the ETS control system 

because it uses a supervisor holon that optimises the sequencing of the task 

holons, as described in Sections 4.4 and 4.5. The developed control system relies 

on the supervisor holon to group and optimise the task holons, and therefore the 

control system becomes dependant on the supervisor holon. All communication 

with the cell controller also passes through the supervisor holon. This means that 

if the supervisor holon encounters an error and fails, the control system would 

also fail. In such a situation the ETS could be switched over to manual override 

and operators could continue testing the circuit breakers. Although the control 

system can be changed to run without the supervisor holon, the cycle time would 

be significantly worse than the cycle time during a manual override. 

7. Conclusions 

Due to industry’s reluctance to accept the RMS concept, this research was aimed 

at developing a control system that the industry will be willing to accept, in the 

context of station controllers. Special care was therefore taken to use control 

hardware and software platforms that have already gained the industry’s 

acceptance.  

The Mechatronics Automation and Design Research Group of 

Stellenbosch University is developing a reconfigurable quality assurance (RQA) 

cell for a circuit breaker producer. This cell is also being used for various research 

projects in the research group. The case study for this paper is the electronic test 

station (ETS) of the RQA cell.  
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The focus of this paper is to evaluate the suitability of a Beckhoff 

embedded controller and Beckhoff’s TwinCAT software for a controller of a 

station in an RMS, i.e. the ETS of the RQA cell. To maximise the possibility of 

the industry accepting the developed control system, only IEC 61131-3 

programmes were used for the controller.  

The ETS was designed to be reconfigurable internally, incorporating the 

characteristics of an RMS. A holonic control approach, based on the ADACOR 

architecture, was therefore used and each holon, with the exception of the task 

holons, runs in its own thread on the embedded controller. The requirements of 

the ETS created particular challenges for the control system since task holons had 

to be grouped and their circuit breakers moved together. The control system uses a 

supervisor holon to determine which task holons to group, to determine the best 

positions to move the circuit breakers to and to optimise the order in which the 

circuit breakers are moved. A task holon manager manages all the task holons in 

the system, ensuring that the task holons move together once grouped. The 

functionality of all the task holons were incorporated into the task holon manager 

using a data table. The task holon manager can successfully provide the 

functionality of all of the task holons because only one task holon can be active at 

any given time to maintain the optimal sequence determined by the supervisor 

holon. This allows the control system to function without the ability to instantiate 

holons dynamically.  

When comparing the IEC 61131-3 approach presented in this paper to the 

agent-based control (ABC) approach, the following was observed: The IEC 
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61131-3 approach benefits from the availability of reliable and widely accepted 

controllers, with robust and simple to integrate IO. Maintenance crews are likely 

to be familiar with much of the IEC 61131-3 implementation, while experience 

with ABC is rare, even amongst engineers. However, the lack of dynamic 

instantiation in IEC 61131-3 languages inhibits the application of classical holonic 

control architectures. This indicates, therefore, that the IEC 61131-3 based 

implementations will be better suited to lower control levels, where hardware 

interfacing is important and control reconfigurations are likely to be directly 

related to hardware reconfiguration. On higher control levels, where the 

implementation of complex logic, which is more difficult in IEC 61131-3 

languages, is more important and where reconfiguration is more likely to be done 

by engineers, ABC's advantages will be more important and its disadvantages less 

important. 

This paper shows that a control system for an RMS can be created, in the 

context of station control, using IEC 61131-3 and industry accepted technologies. 

The most significant extension to IEC 61131-3 required for the approach 

described in this paper is that the controller's hardware platform must allow 

multiple virtual PLCs to be run in individual threads. It was also useful in the case 

presented in this paper, that the virtual PLCs could exchange data through shared 

IOs. The control approach presented here can be used to create station based 

control systems that offer optimised cycle times and the benefits of an RMS in 

combination with benefits of industry accepted technology.  
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Further research should be done to investigate how the developed control 

system can be implemented on industrial controllers of other OEMs. Companies 

often have a preferred choice of OEM for the industrial controllers they use in 

their factories. If the control system can be successfully implemented on other 

OEM’s industrial controllers, the industry would be even more likely to adopt the 

control approach. 
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