
Kruger, K and Basson, AH "Implementation of an Erlang-based Resource Holon for a Holonic

Manufacturing Cell", Proceedings of the International Workshop on Service Orientation in

Holonic and Multi-Agent Manufacturing (SOHOMA'14), Nancy, France, November 2014; in

Studies in Computational Intelligence Vol. 594, pp 49-58.

Implementation of an Erlang-based Resource Holon for a

Holonic Manufacturing Cell

Karel Kruger
a
 and Anton Basson

a,*

a Dept of Mechanical & Mechatronic Eng, Stellenbosch Univ, Stellenbosch 7600, South Africa
* Corresponding author. Tel: +27 21 808 4250; Fax: +27 21 866 155 206;

ahb@sun.ac.za

Abstract. The use of holonic control in reconfigurable manufacturing systems

holds great advantages, such as reduction in complexity and cost, along with in-

creased maintainability and reliability. This paper presents an implementation

of holonic control using Erlang, a functional programming language. The paper

shows how the functional components of a PROSA resource holon can be im-

plemented through Erlang processes. The subjection of a case study implemen-

tation to a reconfigurability experiment is also discussed.

Keywords: Erlang/OTPHolonic Manufacturing SystemsReconfigurable Man-

ufacturing SystemsManufacturing Execution SystemsAutomation

1 Introduction

Reconfigurable Manufacturing Systems (RMSs) are aimed at addressing the needs of

modern manufacturing, which include [1]: short lead times for the introduction of new

products into the system, the ability to produce a larger number of product variants,

and the ability to handle fluctuating production volumes and low product prices.

RMSs then aim to switch between members of a particular family of products, by

adding or removing functional elements, with minimal delay and effort [2, 3]. For

achieving this goal, RMSs should be characterized by [4, 5]: modularity of system

components, integrability with other technologies, convertibility to other products,

diagnosibility of system errors, customizability for specific applications, and scalabil-

ity of system capacity. RMSs thus have the ability to reconfigure hardware and con-

trol resources to rapidly adjust the production capacity and functionality in response

to sudden changes [1, 6].

A popular approach for enabling control reconfiguration in RMSs is the idea of ho-

lonic control. Holons are “any component of a complex system that, even when con-

tributing to the function of the system as a whole, demonstrates autonomous, stable

and self-contained behavior or function” [7]. Applied to manufacturing systems, a

holon is an autonomous and cooperative building block for transforming, transport-

ing, storing or validating information of physical objects.

Several experimental implementations of holonic control have been done using

agent-based programming (such as in [8]), often using JADE as development tool.

From our experiences with JADE, we believe there is room for improvement concern-

ing complexity, industry acceptance, robustness and scalability.

This paper describes the implementation of holonic control using Erlang. Erlang is

a functional programming language developed for programming concurrent, scalable

and distributed systems [9]. The Erlang programming environment is supplemented

by the Open Telecommunications Platform (OTP) - a set of robust Erlang libraries

and design principles providing middle-ware to develop Erlang systems [10].

Erlang has the potential to narrow the gap between academic research and industri-

al implementation. This is due to several advantages offered by the Erlang language,

such as increased productivity, reliability, maintainability and adaptability.

This paper describes an Erlang-based implementation of the control component for

a PROSA resource holon in a reconfigurable manufacturing cell, focusing on:

 The functional components of a resource holon which must be incorporated by the

Erlang implementation (section 2)

 A case study which demonstrates the Erlang-based holonic control (section 2)

 The implementation of the functional components of resource holon control

through Erlang/OTP processes (section 4)

 The reconfigurability of the resource holon in reaction to changes in the holon’s

service specification (section 5).

2 Case Study

The case study chosen for the presented Erlang-based holonic control implementa-

tion, as shown in Fig. 1, entails the testing of circuit breakers. The station utilizes a

pick-‘n-place robot to move circuit breakers from an incoming fixture to specified

tester slots, in a specified sequence. Upon completion of the testing, the robot re-

moves the circuit breakers and places them in the outgoing fixture. Breakers on the

same fixture may require testing in different tester slots, which differ in testing pa-

rameters and times.

The robot utilized in the case study is a Kuka KR16 robot, fitted with two pneu-

matic grippers at the end effector (only one of the grippers is used in this implementa-

tion). A mock testing rack with four tester slots is used – the slots are fitted with a

spring-loaded clamp to hold the breakers in place during testing.

3 Holonic Control

3.1 Holonic Architecture

There are several existing reference architectures which specify the mapping of

manufacturing resources to holons and to structure the holarchy (e.g. [11], [8]). Of

these reference architectures, the most prominent is that of PROSA [12].

PROSA (Product-Resource-Order-Staff Architecture) defines four holon classes:

product, resource, order and staff. The first three classes of holons are basic holons,

which interact by means of knowledge exchange. The process knowledge, which is

exchanged between the product and resource holons, is the information describing

how a certain process can be achieved through a certain resource. The production

knowledge is the information concerning the production of a certain product by using

certain resources – this knowledge is exchanged between the order and product ho-

lons. The order and resource holons exchange process execution knowledge, which is

the information regarding the progress of executing processes on resources.

Staff holons are considered to be special holons which aid the basic holons by

providing them with expert knowledge to reduce work load and decision complexity.

Fig. 1. Circuit breaker test station.

3.2 Resource Holon Internal Architecture

A resource holon requires several capabilities, such as communication, execution

control and hardware interfacing. The resource holon model used for the implementa-

tion is described in this section.

Individual holons have at least two basic parts [13]: a functional component and a

communication and cooperation component. The functional component can be repre-

sented purely by a software entity or it could be a hardware interface represented by a

software entity. The communication and cooperation component of a holon is imple-

mented by software. This view of the internal architecture of a resource holon, as

illustrated in Fig. 2 (a), is shared by [14].

The communication component is responsible for the inter-holon interaction – i.e.

the information exchange with other holons in the system. The decision-making com-

ponent is responsible for the manufacturing control functions, and so regulates the

behavior and activities of the holon. The interfacing component provides mechanisms

to access the manufacturing resources, monitor resource data and execute commands

in the resource.

4 Erlang-based Control Implementation

4.1 Product, Order and Staff Holon Implementation

Though not the focus of this paper, product, order and staff holons are included in

the holonic control implementation. A product holon for each type of circuit breaker

is included – this holon contains the information relating to testing parameters and the

sequence. For each breaker on the incoming fixture an order holon is launched to

drive production. These holons acquire the resource services necessary to complete

the testing process. A staff holon is included to facilitate the allocation of resource

services to requesting order holons.

4.2 Resource Holon Implementation

For the presented implementation a resource holon was created for the robot and

each of the tester slots. While the implementation of the robot holon is complete, the

service of the tester slot holons are simulated by replacing their hardware components

with timer processes.

For the robot resource holon, the software components are implemented on a sepa-

rate PC which interfaces with the hardware via the robot’s dedicated controller. The

internal holon architecture, inter- and intra-holon communication and the holon func-

tional components are briefly discussed in this section.

Internal Architecture and Communication. For the Erlang/OTP implementation,

the internal architecture of a resource holon (Fig. 2(a)) is adapted to that shown in Fig.

2(b). Though the Communication and Interfacing components are present in both

models, the Decision-making component in Fig. 2(a) is split into two components,

namely the Agenda Manager and Execution components.

The communication within the Erlang implementation can be classified as either

inter- or intra-holon communication. Inter-holon communication is the interchange of

messages between the different holons in the system, while intra-holon communica-

tion refers to the messages sent between the holon’s software and hardware compo-

nents.

Messages follow the tuple format {Sender, Message}, where Sender holds the ad-

dress of the process sending the message and Message holds the payload of the mes-

sage. The payload, for messages received by a resource holon, is in the form of a rec-

ord.

 In addition to the inter-holon communication, Fig. 2 (b) also shows intra-holon

communication in terms of requests, results and execution information. As the Com-

munication component receives messages from other holons requesting a service,

request messages are formulated and forwarded to the Agenda Manager component.

The Agenda Manager processes the request and responds to the Communication com-

ponent, which in turn formulates and sends a reply to the requesting holon. The Agen-

da Manager can also send a message to the Execution component to activate execu-

tion. The Execution component parses the message to extract the execution infor-

mation which is passed on to the hardware. The hardware, and subsequently the Exe-

cution component, gives feedback in the form of result messages.

 (a) (b)

Fig. 2. (a) A generic (adapted from [14]) and (b) the adapted resource holon model.

Holon Functional Components. The resource holon model of Fig. 2 (b) has four

components: Communication, Agenda Manager, Execution and Interfacing.

The Communication component of the resource holon is responsible for maintain-

ing the inter-holon communication interface. It receives request messages from other

holons in the system, evaluates the message type and content and forwards the mes-

sage to the appropriate holon component. The holon component then returns a result

message, which the Communication component then sends to the requesting holon.

The component is implemented as a single Erlang process running a receive-

evaluate loop. This recursive process receives messages from other holons and, by

means of pattern matching, identifies relevant messages and then forwards the neces-

sary information to the appropriate holon component. The Communication compo-

nent's process also receives intra-holon messages – by the same means the messages

are forwarded to the corresponding holon.

The Agenda Manager component manages the service of the resource holon. The

component manages a list of service bookings by order holons and triggers the Execu-

tion component, with the necessary execution information, according to the agenda.

The Agenda Manager component is implemented through two processes - a re-

ceive-evaluate loop, for receiving messages, and a generic finite state machine (FSM)

behavior (using the OTP gen_fsm library). Through pattern-matching, received mes-

sages are related to events which cause state transitions in the FSM.

The Execution component of the holon drives the hardware actions which consti-

tute the service(s) of the resource holon. It activates a sequence execution of hardware

functions, with the necessary execution information.

The Execution component is also implemented using a receive-evaluate loop, for

receiving messages, and a generic FSM behavior. The required sequence of hardware

actions is formulated into this FSM. With each execution state, the necessary activa-

tion and information messages are sent to the hardware via the Interfacing compo-

nent. The process receives feedback regarding the execution status from the hardware

– these messages are then used as events to trigger the transitions between the states.

When execution is completed, the execution result is forwarded to the Agenda Man-

ager and Communication components and ultimately replied to the order holon.

Fig. 3 (a) shows the execution state diagram for the pick-‘n-place robot holon. This

example shows three states: “ready”, “picking” and “placing” – each representing an

execution state of the robot. The FSM switches between states in accordance with

received messages from the Agenda Manager and the hardware.

The Interfacing component maintains the communication interface between the Er-

lang control processes and the program on the robot controller. This component iso-

lates the hardware-specific communication structures from the Execution logic.

This component is implemented using a receive-evaluate loop for receiving mes-

sages and a process for TCP communication. For TCP communication, the process

utilizes communication functions from the OTP gen_tcp and XML functions from the

XMErL libraries [15].

INIT

READY

PICKING

PLACING

Received
“ready” from

hardware

Received “placing
done” from
hardware

Received “start”
from Agenda

Manager

Received
“picking done”
from hardware

INIT

READY

PICKING

PLACING

Received
“ready” from

hardware

Received “placing
done” from
hardware

Transition with
event

Received “start”
from Agenda

Manager

Received
“picking done”
from hardware

Event

STATEState

SCANNING

Received
“scanning

done” from
hardware

(a) (b)
Fig. 3. Execution state diagrams (a) before and (b) after adding the scanning function.

In addition to the OTP functionality used in the holon implementation described

above, more tools offered by Erlang/OTP are available for enhancing the implementa-

tion. Two tools which can be very useful are the Supervisor and Logging modules.

For this implementation, a Supervisor process for all the discussed components is

included. The Supervisor process launches and shuts down the processes in a speci-

fied order and restarts the components if they fail. Erlang/OTP includes an er-

ror_logger module [16] which is used to output error, warning and information re-

ports to the terminal or to file. The format of these reports can be customized accord-

ing to the needs of the application.

5 Reconfiguration Experiment

A reconfiguration experiment was performed on the case study implementation to

demonstrate the reconfigurability of the Erlang-based resource holon. The experiment

entailed a change to the service that is provided by the robot holon – more specifical-

ly, the service was adjusted to include a scanning operation. The pick-‘n-place robot

must then, prior to placing, bring the circuit breaker to the vicinity of a scanner.

The added scanning function is only intended for diagnostic purposes and does not

entail a change to the product information. The scanning function must be included in

the Execution component of the robot holon. This means that an additional state must

be added to the FSM. The state diagrams of the FSM before and after the addition of

the scanning function are shown in Fig. 3.

The following code snippet shows the code for the FSM prior to the addition of the

scanning operation:

1) init(_) -> {ok,ready,[]}.

2) %STATE: ready

3) ready(Msg=#service{message_type=start,info=#coords{}},_) ->

4) robot_pi ! {robot_exec,

5) #service{message_type=start, info=Msg#coords.pick_coords}},

6) {next_state,picking,[Msg#service.info]}.

7) %STATE: picking

8) picking(Msg=#service{message_type=done,result=true},

9) Coords) ->

10) robot_pi ! {robot_exec,

11) #service{message_type=start, in-

fo=Coords#coords.place_coords}},

12) {next_state,placing,[]}.

13) %STATE: placing

14) placing(Msg=#service{message_type=done,result=true}, _) ->

15) robot_am ! {robot_exec,

Msg#service{message_type=done,result=true}},

16) {next_state,ready,[]}.

The states are defined as function heads (e.g. lines 3, 8 and 14) – the functions take

two input arguments: a transition event and the state data. When the transition event

occurs (e.g. a message is received), actions are performed and the new state is speci-

fied. Here the actions involve sending messages to other processes using the “!” op-

erator (e.g. lines 4, 10 and 15). The new state to transition to is specified by

{next_state, StateName, StateData}, as is shown in lines 6, 12 and 16.

The following code snippet shows the inserted code for the additional scanning opera-

tion:

7) %STATE: picking

8) picking(Msg=#service{message_type=done,result=true},

Coords) ->

9) robot_pi ! {robot_exec,

 #service{message_type=start, info=?ScanCoords}},

10) {next_state,scanning,[Coords]}.

11) %STATE: scanning

12) scanning(Msg=#service{message_type=done,result=true},

Coords) ->

13) robot_pi ! {robot_exec,#service{message_type=start, in-

fo=Coords#coords.place_coords},

14) {next_state,placing,Coords}.

15) %STATE: placing

16) placing(Msg=#service{message_type=done,result=true}, _) -> …

The inserted code shows the definition of the new scanning state and, in lines 10 and

14, updates the transitions from and to the picking and placing states. The fixed coor-

dinates of the scanner are defined in the module as the macro ?ScanCoords. The

code shown above is added to the Execution FSM module and can, through hot code-

loading, replace the old FSM code while the holon is operating.

6 Conclusion

RMSs commonly employ holonic control architectures to enable the rapid recon-

figuration of hardware and control resources to adjust production capacity and func-

tionality. This paper shows that Erlang/OTP is an attractive solution for implementing

holonic control and presents an implementation of a resource holon as example.

The implementation example uses a pick-‘n-place robot as resource holon. The

robot picks up circuit breakers from a fixture, places them in testers and ultimately

removes them again. The paper describes the implementation of the functional holon

components as Erlang processes, with specific use of the OTP generic finite state

machine library. The reconfigurability of the holon is demonstrated through an exper-

iment where an additional operation is added to the pick-‘n-place process. The exper-

iment shows that reconfiguration is easy, as the FSM code offers good encapsulation

of functionality and state transitions are clearly defined and easily changed. The re-

configuration could also have been done during holon operation.

Future work will entail the expansion of the Erlang/OTP implementation to the ex-

ecution control system for an entire manufacturing cell, in which all of the PROSA

holons will be incorporated.

References

1. Bi, Z.M., Lang, S.Y.T., Shen, W. and Wang, L., 2008. Reconfigurable Manufacturing Sys-

tems: The State of the Art. International Journal of Production Research. Vol. 46, No. 4:

967 - 992

2. Martinsen, K., Haga, E., Dransfeld, S. and Watterwald, L.E., 2007. Robust, Flexible and

Fast Reconfigurable Assembly System for Automotive Air-brake Couplings. Intelligent

Computation in Manufacturing Engineering. Vol. 6

3. Vyatkin, V., 2007. IEC 61499 Function Blocks for Embedded and Distributed Control

Systems Design. North Carolina: Instrumentation, Systems and Automation Society, ISA

4. Mehrabi, M.G., Ulsoy, A.G., Koren, Y., 2000. Reconfigurable Manufacturing Systems:

Key to Future Manufacturing. Journal of Intelligent Manufacturing. Vol. 13: 135 - 146

5. ElMaraghy, H., 2006. Flexible and Reconfigurable Manufacturing System Paradigms. In-

ternational Journal of Flexible Manufacturing System. Vol. 17:61-276

6. Bi, Z.M., Wang, L. and Lang, S.Y.T., 2007. Current Status of Reconfigurable Assembly

Systems. International Journal of Manufacturing Research, Inderscience. Vol. 2, No. 3:

303 - 328

7. Paolucci, M. and Sacile, R., 2005. Agent-Based Manufacturing and Control Systems. Lon-

don: CRC Press

8. Leitao, P. and Restivo, F.J., 2006. ADACOR: A Holonic Architecture for Agile and Adap-

tive Manufacturing Control. Computers in Industry. Vol. 57, No. 2: 121-130

9. Armstrong, J., 2003. Making Reliable Distributed Systems in the Presence of Software Er-

rors. Doctor’s Dissertation. Royal Institute of Technology, Stockholm, Sweden

10. Get Started with OTP. [S.a.]. [Online]. Available: http://www.erlang.org (18 July 2013)

11. Chirn, J.L. and McFarlane, D., 2000. A Holonic Component-based Approach to

Reconfigurable Manufacturing Control Architecture. Proceedings of the International

Workshop on Industrial Applications of Holonic and Multi-Agent Systems. pp. 219–223.

12. Van Brussel, H., Wyns, J., Valckenaers, P., Bongaerts, L. and Peeters, P., 1998. Reference

Architecture For Holonic Manufacturing Systems: PROSA. Computers in Industry. Vol.

37: 255 – 274

13. Kotak, D., Wu, S., Fleetwood, M. and Tamoto, H., 2003. Agent-Based Holonic Design and

Operations Environment for Distributed Manufacturing. Computers in Industry. Vol. 52:

95–108

14. Leitao, P. and Restivo, F.J., 2002. A Holonic Control Approach for Distributed Manufac-

turing. Knowledge and Technology Integration in Production and Services: Balancing

Knowledge and Technology in Product and Service Life Cycle. pp. 263–270. Kluwer Aca-

demic Publishers.

15. XMErL Reference manual. [S.a.]. [Online]. Available:

http://www.erlang.org/doc/apps/xmerl (28 March 2014)

16. Erlang Kernel Reference Manual. [S.a.]. [Online]. Available:

http://www.erlang.org/doc/apps/kernel (28 March 2014)

