
Final draft: Karel Kruger & Anton Basson (2016): Erlang-based control implementation for a holonic
manufacturing cell, International Journal of Computer Integrated Manufacturing,

DOI: 10.1080/0951192X.2016.1195923

Erlang-based Control Implementation for a Holonic

Manufacturing Cell

Karel Kruger
a
 and Anton Basson

a,
*

a Dept of Mechanical and Mechatronic Eng, Stellenbosch Univ, Stellenbosch 7600, South Africa
* Corresponding author. Tel: +27 21 808 4250; Email: ahb@sun.ac.za

Abstract

Holonic control is generally used in reconfigurable manufacturing systems since the

modularity of holonic control holds the promise of easier reconfiguration, reduction in

complexity and cost, along with increased maintainability and reliability. As an alternative to

the commonly used agent-based approach, this paper presents an Erlang-based holon internal

architecture and implementation methodology that exploits Erlang’s capabilities. The paper

shows that Erlang is well suited to the requirements of holonic and reconfigurable systems -

due to strong modularity, scalability, customizability, maintainability and robustness

characteristics.

Keywords: Erlang/OTP, Holonic manufacturing system (HMS), Reconfigurable

manufacturing system (RMS)

1 Introduction
The concept of Reconfigurable Manufacturing Systems (RMSs) is aimed at addressing the

needs of modern manufacturing, as have been shaped by aggressive global competition and

uncertainty resulting from dynamic changes in economical, technological and customer

trends (Leitao and Restivo 2006). The critical requirements for modern manufacturing

systems include (Bi et al. 2008) short lead times for the introduction of new products into the

system, the ability to produce a larger number of product variants and the ability to handle

fluctuating production volumes.

RMSs aim to switch between members of a particular family of products, by adding or

removing functional elements (hardware or software), with minimal delay and effort (

Vyatkin 2007). RMSs are also designed to be able to rapidly adjust the production capacity

and functionality in response to sudden changes, by reconfiguring hardware and control

resources (Bi et al. 2008; Bi, Wang, and Lang 2007). RMSs therefore should be characterised

by (Mehrabi, Ulsoy, and Koren 2000; ElMaraghy 2006): modularity of system components,

integratability with other technologies, convertibility to other products, diagnosibility of

system errors, customizability for specific applications and scalability of system capacity..

A popular approach for enabling control reconfiguration in RMSs is holonic control

architectures. The term holon (first introduced by Koestler in 1967) comes from the Greek

words “holos” (meaning “the whole”) and “on” (meaning “the particle”). Holons are then

“any component of a complex system that, even when contributing to the function of the

system as a whole, demonstrates autonomous, stable and self-contained behaviour or

function” (Paolucci and Sacile 2005). When this concept is applied to manufacturing or

assembly systems, a holon is an autonomous and cooperative building block for transforming,

transporting, storing or validating information of physical objects. A Holonic Manufacturing

System (HMS) is then “a holarchy (a system of holons which can cooperate to achieve a

common goal) which integrates the entire range of manufacturing activities” (Paolucci and

Sacile 2005).

The application of the holonic concept to manufacturing control systems has been a popular

field of research since the early 1990’s. Even though several experimental implementations

have been reported, predominantly based on agent based programming (such as Leitao and

Restivo [2006]]), we believe there is room for improvement in terms of reduced complexity,

greater potential for industry acceptance, better robustness/fault-tolerance and better inherent

scalability.

This paper evaluates a new alternative to agent based approaches: the implementation of

holonic control using the Erlang programming language. Erlang is a concurrent, functional

programming language which was developed for programming concurrent, scalable and

distributed systems. In Erlang, many lightweight processes can be employed to work

concurrently while distributed over many devices. Processes are strongly isolated, having no

shared memory, and can only interact through the asynchronous sending and receiving of

messages (Armstrong 2003). The Erlang programming environment is supplemented by the

Open Telecommunications Platform (OTP) - a set of robust Erlang libraries and design

principles providing middle-ware to develop Erlang systems (Anonymous s.a. [a]; Logan,

Merrit, and Carlsson 2011).

The objective of this paper is to present an Erlang-based internal architecture for holons and

an implementation methodology, targeting a reconfigurable manufacturing system. A

resource holon in the PROSA holonic control architecture (discussed in section 2.2) is used

as a prototype since it contains all the architectural elements required for the other holon

types, as well as hardware interfacing.

2 Holonic Control
This section motivates the use of the holonic control approach and gives some background

regarding reference architectures. The generic resource holon model, used for the Erlang

implementation, is also discussed.

2.1 Advantages of Holonic Control
The use of holonic control for RMSs holds many advantages: Holonic systems are resilient to

disturbances and adaptable in response to faults (Vyatkin 2007); have the ability to organise

production activities in a way that they meet the requirements of scalability, robustness and

fault-tolerance (Kotak et al. 2003); and lead to reduced system complexity, reduced software

development costs and improved maintainability and reliability (Scholz-Reiter and Freitag

2007).

2.2 Holonic Architecture
The full utilization of the above-mentioned advantages relies on the holonic system's

architecture. Several reference architectures, which specify the mapping of manufacturing

resources to holons and to structure the holarchy, have been proposed (e.g. Chirn and

McFarlane [2000]; Leitao and Restivo [2006]), but the most prominent is PROSA (Product-

Resource-Order-Staff Architecture) (Van Brussel et al. 1998).

PROSA defines four holon classes: product, resource, order and staff. The first three classes

of holons can be classified as basic holons, because, respectively, they represent three

independent manufacturing concerns: product-related technological aspects (product holons),

resource aspects (resource holons) and logistical aspects (order holons).

The basic holons can interact with each other by means of knowledge exchange, as is shown

in Figure 1. The process knowledge, which is exchanged between the product and resource

holons, is the information and methods describing how a certain process can be achieved

through a certain resource. The production knowledge is the information concerning the

production of a certain product by using certain resources – this knowledge is exchanged

between the order and product holons. The order and resource holons exchange process

execution knowledge, which is the information regarding the progress of executing processes

on resources.

Figure 1. Basic Holons of PROSA (Van Brussel et al 1998).

Staff holons are considered to be special holons as they are added to the holarchy to operate

in an advisory role to basic holons. The addition of staff holons aim to reduce work load and

decision complexity for basic holons, by providing them with expert knowledge.

The holonic characteristics of PROSA contribute to the different aspects of reconfigurability

mentioned in section 1. The ability to decouple the control algorithm from the system

structure, and the logistical aspects from the technical aspects, aids integrability and

modularity. Modularity is also provided by the similarity that is shared by holons of the same

type.

2.3 Resource Holon Model
The paper uses the resource holon as case study because of the range of capabilities that is

required, such as communication, execution control and hardware interfacing. The resource

holon model used as starting point is described in this section – an adapted model for

implementation with Erlang follows in section 0.

The internal architecture of a resource holon is illustrated in Figure 2. Individual holons have

at least two basic parts (Kotak et al. 2003; Leitao and Restivo 2002): a functional component

and a communication and cooperation component. The functional component can be

represented by a purely software entity or, as in resource holons, it could be a hardware

interface represented by a software entity. The communication and cooperation component of

a holon is implemented by software.

The communication component is responsible for the inter-holon information exchange. The

decision-making component is responsible for the manufacturing control functions,

regulating the behaviour and activities of the holon. The interfacing component handles the

intra-holon interaction, providing mechanisms to access the manufacturing resources,

monitor resource data and execute commands in the resource.

Figure 2. Internal architecture of a resource holon (adapted from Leitao and Restivo

2006).

3 Advantages of using Erlang for Holonic Control Implementation
There are several inherent characteristics of Erlang which prove to be advantageous for the

implementation of holonic control. The most prominent advantages relate to fault-tolerance,

service availability and scalability.

The Erlang process model – whereby system functionality is distributed across a number of

cooperating and communicating processes – ensures that Erlang is built on an inherently

fault-isolating architecture. The processes act as abstraction boundaries, limiting the

propagation of error through the system (Armstrong 2003). This strong fault-tolerant nature

of Erlang is further supplemented by the OTP libraries for supervisory structures, which can

be utilized to detect and trap system errors and implement strategies to rectify the system

behaviour (Armstrong 2003).

Erlang allows for the updating of code without having to disturb the operation of a running

program since it has primitives which allow code to be replaced in a running system (Däcker

2000). Bug fixes and upgrades can be uploaded to a running system without disturbing the

current operation. This capability, along with the previously mentioned fault-tolerance,

enables Erlang systems to offer excellent service availability (Armstrong 2007).

Finally, Erlang provides the infrastructure for massive scalability and concurrency. The light-

weight nature of Erlang processes means that millions of processes can be supported on a

single processor (Armstrong 2007). Furthermore, since Erlang processes share no memory

and all interaction is done through message passing, processes can easily be distributed over a

network of processors (Armstrong 2003).

A comprehensive comparison of Erlang with other implementation options is beyond the

scope of this paper. However, from the authors' experience, the following comments are

offered:

Multi-agent systems (MASs) have been often been used to implement holonic control

architectures for manufacturing stations and cells. Interestingly, the advantageous

characteristics of Erlang can be directly related to what has been identified as the

shortcomings of commonly used agent based implementations. Almeida et al. (2010)

identified that two of the main issues regarding agent based implementations are that of

scalability and fault-tolerance. Due to the high resource requirements of MAS threads (when

implemented in Java or C [Vinoski 2007]), the number of threads that can run on a processor

limits scalability – this limitation is emphasized when the implementation is to be done on

resource-constrained industrial controllers. In terms of fault-tolerance, there is still work to be

done on the implementation of supervisory structures which can identify, diagnose and

recover from disturbances or errors.

When considering specifically the Java Agent DEvelopment (JADE) framework, which is

often used for holonic control implementations, JADE agent threads suffer drawbacks

concerning scalability, as mentioned above, since they Java based. Furthermore, JADE is

aimed at providing infrastructure for a wider range of implementations (i.e. beyond that of

control applications for manufacturing systems), but this infrastructure is mostly

underutilized in the type of implementations presented in this paper. In some cases, this

additional functionality adds complexity and coding overhead – a scenario where the sense of

“scalable complexity” (the idea that a system can be constructed through the inclusion of only

the functions and interfaces for the necessary functionality, and thus complexity, of the

system) of Erlang implementations could be beneficial. Lastly, it has been found that

programming MASs, even with Java programming experience, involves a significant learning

IEC 61131-3 languages are commonly used for control implementation in manufacturing.

While they work well for low level control, attempts to use these languages for

implementations of higher level control have achieved limited success. The reason for this, in

the experience of the authors, is that the features of these languages that contribute to their

reliability on the other hand restrict the flexibility and extensibility of the code that are

valuable for the implementation of the high level control of holonic systems. Examples of

these restrictions are that the programmes nominally operate in a single thread and that

dynamic instantiation of objects, variables or data containers is not possible.

Object orientated programming (OOP) languages offer features between MASs and IEC

61131-3 languages, and can therefore also be considered for developing holonic control

systems (Graefe and Basson 2013). C# and JAVA appears to have a wide user base in the

software world, but their popularity in manufacturing control is uncertain. The authors'

research group have found C# to be a productive tool to develop holonic control systems,

utilising the classical OOP features. C# has the advantage above JAVA that drivers for I/O

devices are more readily available for C#. However, the resource implications of multiple

threads in C# are similar to that for JAVA. Also, neither of these languages include the

"built-in" fault-tolerance and fault-management of Erlang.

4 Erlang-based Resource Holon
The internal holon architecture, inter- and intra-holon communication and the holon

functional components are discussed in this section. Furthermore, a general implementation

methodology is described and an implementation case study for the Erlang-based resource

holon is presented.

4.1 Internal Architecture
For the Erlang/OTP implementation, the internal architecture described in section 2.3 has

been adapted to that shown in Figure 3. Though the Communication and Interfacing

components are present in both models, the Decision-making component in Figure 2 is split

into two components, namely the Agenda Manager and Execution components.

The division of the Decision-making component into the Agenda Manager and Execution

components (discussed in sections 4.2.2.2 and 4.2.2.3) is motivated by two factors: Firstly,

for a separation of functionality. By separating the functionality of handling service bookings

and that directly concerning execution, reconfigurability is improved – the way in which

bookings are handled and how a process must be executed can be changed independently and

with minimal effect on the other component. Secondly, for software reusability: while the

execution control may differ from holon to holon, the way in which their services are

managed is similar. The Agenda Manager component can thus be used as a generic inclusion

for every service-rendering holon in the system.

Figure 3. Resource holon model for the Erlang/OTP implementation.

4.2 Implementation Methodology
This section presents a general implementation methodology for a holonic control system

with Erlang/OTP processes. A generic approach to facilitating communication and

implementing the holon functional components is described.

4.2.1 Facilitating Communication

4.2.1.1 Inter- and Intra-Holon Communication

In holonic systems, communication between system entities can be classified as either inter-

or intra-holon communication. Inter-holon communication refers to communication between

different holons in the system, while intra-holon communication occurs between the internal

components of a holon.

A typical example of inter-holon communication is the request of a resource holon service by

an order holon – the order holon sends a request to the resource holon to which the resource

holon replies with a request result. These request and result messages are shown in Figure 3

as interchanged by the Holarchy and the resource holon’s Communication component. In

addition to the inter-holon communication, Figure 3 also shows intra-holon communication -

indicated as the exchange of requests, results and execution information between the

functional components of the resource holon.

4.2.1.2 Messaging in Erlang

The Erlang process model dictates that information can only be shared amongst processes

through messages. Messages are sent using the message operator “!” in the following format:

Receiver ! Message. Receiver is a variable
1
 that stores the process ID or registered name

of the receiving process and the received message is stored in the Message variable.

Messages can be received by using the receive statement with pattern matching, usually

implemented in a loop (shown in section 4.3.1).

For increased traceability, the format by which messages are sent can be implemented as

Receiver ! {Sender,Message}. In this case, the message payload is placed within a tuple

together with the process ID or registered name of the process sending the message. This

format offers more options on the receiving side, as pattern matching can then be performed

on both the type and content of the message, and from where the message originated.

To further facilitate communication, an ontology can be incorporated in the implementation.

The ontology definition can be done in a one or many separate header files, and included in

the necessary modules. Using records, an Erlang data type similar to structs in C, sets of

information can be defined and used in creating messages and matching messages to patterns.

Records allow for data fields to be accessed by name instead of order, and multiple records

can be nested to accommodate complex sets of information. An example of a record used to

define service messages is shown in section 4.3.1.

4.2.1.3 Communication in Functional Components

Taking advantage of the light-weight nature of processes, leading to cheap and easily-

managed concurrency, each functional component of the resource holon will be implemented

as one or more Erlang processes. For the components to cooperate, information must be

exchanged by means of messages. For this reason, each functional component must employ a

process which handles this communication.

A simple way to facilitate the communication is to spawn a concurrent process running a

receive-evaluate loop. The process calls a recursive function which implements a receive

statement, followed by a set of patterns which will be matched against incoming messages.

Upon successfully matching to a pattern, some action can be taken (usually the sending of

another message). After each matching case, the function calls itself, resulting in a continuous

loop.

The communication process described above separates the communication functionality,

within a functional component, from the execution logic. This separation increases the

reconfigurability and maintainability of the implementation, as changes can be made to one

process without influencing the functionality of the other.

1
 Variables in Erlang start with a capital letter.

4.2.2 Implementing the Holon Functional Components

4.2.2.1 Communication Component

The Communication component of the resource holon is responsible for maintaining the

communication interface with the rest of the holarchy – i.e. all messages to and from other

holons are handled by this component.

This component can be implemented using only the communication process discussed in

section 4.2.1.3. This process then allows for concurrency in the communication and execution

functionality of the holon – i.e. the Communication component can operate uninterrupted and

independent of the other functional components.

4.2.2.2 Agenda Manager Component

The agenda, in the context of this paper, refers to a list of service commitments (bookings)

made by a resource holon to requesting order holons. The construction and management of

such a list provides opportunity for the implementation of strategies to improve the

performance of holonic systems by planning ahead through forecasting and tentatively

committing future availability of resources. Two possible strategies that can be implemented

are delegate multi-agent systems (D-MAS) (Holvoet and Valckenaers 2006) and a facilitating

supervisor as found in ADACOR (Leitao and Restivo 2006). With D-MAS, holons delegate

the responsibility of populating and consulting the agendas of resource holons to a swarm of

light-weight agents. In ADACOR, a supervisor holon facilitates the booking of resource

services by task holons, according to forecasts and optimized plans based on the inspection of

agendas. Since the implementation of the mentioned strategies predominantly influence the

order (or task) holons, the presented Agenda Manager component for resource holons will

function similarly for both strategies.

The Agenda Manager component is responsible for managing the service provided by the

resource holon. The component manages a list of service bookings by order holons and

triggers the Execution component, with the necessary execution information, according to the

agenda.

The Agenda Manager component requires two functions – one to receive and evaluate

messages from the other holon components, and one to manage the resource’s service

bookings and execution. For handling the messages, a process running a receive-evaluate

loop similar to that of the Communication component can be used. The messages are passed

on to the process which manages the service.

The logic for the service management could be implemented in different ways. The logic can

be implemented in a normal Erlang process or OTP behaviours can be used. OTP provides

two useful behaviours – a generic server (gen_server) and a generic finite state machine

(gen_fsm). The logic can thus be implemented in any of the mentioned ways, with the

selection based on the approach which best matches the requirements of the service

management model. A general summary of the gen_fsm behaviour library is provided in

Appendix A.1.

4.2.2.3 Execution Component

The Execution component of the holon is responsible for driving the hardware actions related

to the service of the resource holon. This component activates the execution of hardware

functions, with the necessary execution information and in a specified sequence, to perform

the service of the holon.

The Execution component is implemented similarly to the Agenda Manager component, i.e. a

receive-evaluate loop process, for receiving messages, and a process for managing the service

execution. The service execution can again be done in different ways, but using the finite

state machine (FSM) behaviour is an attractive solution as the execution of resource holon

services can usually be easily modelled as FSMs.

When using the FSM approach, the required sequence of execution actions is formulated into

the gen_fsm behaviour. With each execution state, the necessary activation and information

messages are sent to the hardware via the Interfacing component. The process receives

feedback regarding the execution status from the hardware, which trigger the transitions

between the states. When execution is completed, the execution result is replied to the

Agenda Manager component, from where it is forwarded to the Communication component

and ultimately replied to the order holon.

4.2.2.4 Interfacing Component

The Interfacing component maintains the communication interface between the Erlang

control programs and the hardware. This component isolates the hardware specific

communication structures from the execution logic.

The Interfacing component can be done in two ways, i.e. using OTP functions or using ports

(or linked-in port drivers). When using the first approach, the component is implemented by a

receive-evaluate loop process and a process implementing the OTP libraries for interfacing,

such as gen_tcp or gen_udp (for TCP/IP or UDP communication). With the linked-in port

driver approach, a program can be developed in another language (C, Java, etc.) and be

wrapped with Erlang. The program can then be used as if it is just a pure Erlang module. This

allows for the creation of communication structures which are not incorporated in OTP (such

as Profibus or CANbus) or the use of a device specific driver or application programming

interface (API). The use of ports and other Erlang/OTP integration tools is discussed in detail

by Logan, Merrit, and Carlsson (2011).

Erlang also supports the use of eXtensible Markup Language (XML), which is frequently

used with TCP/IP communication. Two popular libraries for XML functionality are XMErL

(Anonymous s.a. [b]) and ErlSom (De Jong 2007). These libraries can be used, in conjunction

with gen_tcp, to build and parse XML strings and files for use in socket communication.

4.2.3 Applicability to other PROSA holons

The presented methodology can be extended to the other PROSA holons. As all holons (and

holon functional components) communicate through an exchange of messages, the

communication process presented in section 4.2.1.3 can be applied. The process can be

adapted for each specific holon component, according to the messages that may be received.

The gen_server and gen_fsm OTP behaviours are equally useful in representing the logic of

the other holon types. These behaviours are especially applicable to the functionality of the

order holon where service bookings must be managed along with task executions.

4.3 Case Study
As a case study, a resource holon for a pick-‘n-place robot was implemented using

Erlang/OTP. This section describes the implementation of the functional components.

4.3.1 Communication Component

The Communication component is implemented as a single receive-evaluate loop process.

Messages are received and forwarded according to a successful pattern match. To facilitate

the communication, a record was created for service-related messages. This record is

constructed as follows:

#service{message_type, service_type, reply_to, conversation_ID, requester_pid,
provider_pid, result, info}

 message_type - specification of service message, e.g. request, cancel, start.

 service_type - service specification, e.g. pick-‘n-place, inspect, transport.

 reply_to – holon process ID to which reply must be sent (for inter-holon communication)

 conversation_ID - unique reference to the sequence of messages

 requester_pid – process ID of the requesting process linked to the service message

 provider_pid – process ID of the providing process linked to the service message

 result - Boolean result of action linked to service message

 info - information linked to the service message

The following code snippet shows the working of the receive-evaluate process of the

Communication component (in this example named robot_comm), as pattern matching is

used to distinguish between an intra-holon message (from the Agenda Manager component)

and an inter-holon message (from another holon):

rec_messages() ->
receive

%message from agenda_manager in reply to service request
 {agenda_manager_fsm, Message=#service{}} ->

%extract the corresponding process ID
Pid = Message#service.reply_to,

 %send response to holon
Pid ! {robot_comm, Message},
%loop again

 rec_messages();

 %SERVICE message from other holon requesting a service
 {From, Message=#service{}} ->
 %forward message to agenda_manager

agenda_manager_fsm ! {robot_comm, Message},
%loop again

 rec_messages()
 end.

4.3.2 Agenda Manager Component

Two processes are used to implement the Agenda Manager component – one for handling

communication and one for managing the holon service. The communication is handled by a

process similar to that described for the Communication component. To manage the service, a

process using the OTP behaviour for a generic finite state machine was chosen.

The state diagram used in the Agenda Manager FSM is shown in Figure 4. The states of the

FSM each constitute two elements: execution status and a list of bookings (combined as a

tuple in Figure 4). The execution status reflects whether the holon hardware is currently in

operation (“busy”) or idle (“free”), while the booking list keeps record of commitments made

to requesting holons. The state transitions are driven by messages received from either the

Execution or Communication components.

Code snippets from the Agenda Manager FSM are shown below. The code shows how events

(which in these cases are the arrival of messages) are handled according to the specific state

and how state transitions are specified. The presented code implements the states, events and

transitions highlighted in Figure 4. The handling of two different messages is shown when

the Agenda Manager FSM is in the “free” state – the messages are of types “booking request”

and “start”, received from order holons. The code also shows the handling of a “done”

message from the Execution component of the robot holon, in the “busy” state.

%STATE: free_booked --> resource is idle, but is booked
free_booked(Message=#service{message_type=booking_req},[Job_list]) ->
 %add request to bookings list
 NewJob_list=lists:append(Job_list, [Message#service.requester_pid]),
 %reply request result to Order holon via robot_comm
 robot_comm ! {agenda_manager_fsm,Message#service{result=true}},
 %specify the next state and state information

{next_state, free_booked, [NewJob_list]};

%STATE: free_booked --> resource is idle, but is booked
free_booked(Message=#service{message_type=start},[Job_list]) ->
 %forward "start" message to resource_exec
 robot_exec ! {agenda_manager_fsm,Message},
 %specify the next state and state information
 {next_state,busy_booked,[Message#service.requester_pid,

lists:delete(Message#service.requester_pid, Job_list)]}.

%STATE: busy_booked --> resource is busy and is booked
busy_booked(Message=#service{message_type=done},[CurrJob,Job_list]) ->
 %forward result message to Order holon via robot_comm

robot_comm ! {agenda_manager_fsm,Message},
%specify the next state and state information
{next_state,free_booked,[Job_list]}.

INIT

{FREE,[n = 0]}

{FREE,[n > 0]}

{BUSY,[n = 0]}

{BUSY,[n > 0]}

Received
“ready” from

Exec FSM

Received
“booking
request”

Received “start”
from last

booked client

Received
“start” from

booked client

Received “done”
from Exec FSM

Received
“booking
request”

Received
“booking cancel”
from last booked

client

Received
“booking cancel”
from last booked

client

Received
“done” from

Exec FSM

Event

{EXEC STATUS,[BOOKING LIST]}

Transition with event

State

Received
“booking

request/cancel”

Received
“booking
request/
cancel”

Figure 4. State diagram of the Agenda Manager FSM.

4.3.3 Execution Component

The Execution component is implemented similar to the Agenda Manager component – one

process for handling communication and a gen_fsm process for managing the execution.

Figure 5 shows a simple example of an execution state diagram for the pick-‘n-place robot

holon. This example shows three states: “ready”, “picking” and “placing” – each representing

an execution state of the robot. The FSM switches between states in accordance with received

messages from the Agenda Manager and the hardware.

INIT

READY

PICKING

PLACING

Received
“ready” from

hardware

Received “placing
done” from
hardware

Event

STATE

Transition
with event

Received “start”
from Agenda

Manager

State

Received
“picking done”
from hardware

Figure 5. Example state diagram of the Execution FSM.

The implementation of the state diagram of Figure 5 using the gen_fsm OTP behaviour is

shown by the following code snippet:

%STATE: ready --> ready to perform operation
ready(Message=#service{message_type=start},_) ->

%send picking coordinates to interfacing component
 robot_pi ! {robot_exec, Message#service.info.coords.pick_coords},
 %specify the next state and state information
 {next_state, picking, Message}.

%STATE: picking --> executing picking operation
picking(picking_done, Message) ->
 %send placing coordinates to interfacing component

robot_pi ! {robot_exec, Message#service.info.coords.place_coords },
 %specify the next state and state information

{next_state, placing, {CurrJob, Message}}.

%STATE: placing --> executing placing operation
placing(placing_done, Message) ->
 %send result to agenda manager component
 agenda_manager ! {robot_exec, Message=#service{result=true}},
 %specify the next state and state information
 {next_state, ready, []}.

4.3.4 Interfacing Component

For the case study implementation, the control software of the resource holon interfaced with

the controller of the robot through TCP/IP communication. The XMErL library is used to

build and parse XML strings. The following code snippet shows how the gen_tcp OTP

library (briefly summarized in Appendix A.2) is used to communicate to the robot controller:

socket_client(Info) ->
 %connect to TCP server

{ok,Socket} = socket_connect(),
%build XML string

 XML_string = build_XML(Info),
%send string

 ok = gen_tcp:send(Socket, XML_string),
 %receive result of operation
 {ok,XML_data} = do_receive(Socket,[]),
 %close socket connection
 ok = gen_tcp:close(Socket),
 %extract result from string
 {XML_doc,_} = xmerl_scan:string(XML_data,[{encoding,latin1}]),
 Msg = extract_content('RESULT',[XML_doc]),
 Message=list_to_atom(Msg),
 Message.

socket_connect() ->
 %connect to socket

case gen_tcp:connect(?address, ?port, [list,{packet,0},{active,false}]) of
 %success – return socket reference

 {ok, Socket} -> {ok, Socket};
 %failure – try again

_ -> timer:sleep(1000),
 socket_connect()
end.

4.3.5 Typical operation scenario

To illustrate the sequence of functionality of the presented Erlang based robot holon, the

operations involved in a typical scenario will be explained. The scenario entails the receiving

of a start message from some order holon, i.e. a request from an order holon for the robot

holon to start a previously booked service. This scenario was selected as it involves functions

from all of the robot holon components.

For the explanation of the of the scenario it is necessary to describe the state of the holon

FSM components. Assume that the Agenda Manager FSM is in the “free_booked” state – i.e.

the robot holon is currently idle, but its service has been booked for use in the near future by

order holons. The Execution FSM is in the initial “ready” state, awaiting a start message from

the Agenda Manager to execute a pick-‘n-place service.

When the physical part associated with the order holon is in the position for the pick-‘n-place

service (which was previously booked by the order holon) to be executed, the order holon

will request the execution to be started by sending a start message to the Communication

component of the robot holon. As is presented in section 4.3.1, the Communication

component continuously awaits the arrival of a message through the receive function. When

the order holon sends the start message, the message is received by the Communication

components and is compared against the defined message patterns. The start message will

match the following pattern:

%SERVICE message from other holon requesting a service
{From, Message=#service{}} ->
 %forward message to agenda_manager

agenda_manager_fsm ! {robot_comm, Message},
%loop again

 rec_messages()

Upon matching the pattern, the Communication component will forward the message to the

Agenda Manager FSM component. The Agenda Manager FSM is in the “free_booked” state,

thus the start message forwarded from the Communication component will be compared to

the defined state transition patterns. The message will match the event specified by the

following transition pattern:

%STATE: free_booked --> resource is idle, but is booked
free_booked(Message=#service{message_type=start},[Job_list]) ->
 %forward "start" message to resource_exec
 robot_exec ! {agenda_manager_fsm,Message},
 %specify the next state and state information
 {next_state,busy_booked,[Message#service.requester_pid,

lists:delete(Message#service.requester_pid, Job_list)]}.

The Agenda Manager FSM will trigger execution of the service by forwarding the message to

the Execution component, then transition to the next state “busy_booked”. The internal state

data of the FSM is also changed – the process ID of the order holon is removed from the list

of received bookings and rather stored as an additional variable CurrJob (indicating the PID

of the order holon involved in the current service execution) in the state data tuple.

The Execution component receives the start message as an event in the “ready” state (as

shown in the code snippet of section 4.3.3) and proceeds to execute the pickup action of the

pick-‘n-place service by sending a message – containing the pickup coordinates as stored in

the info field of the message from the order holon – to the Interface component. The

Execution FSM then transitions to the “placing” state.

The Interface component extracts the coordinate information from the message received from

the Execution component, builds an XML string and sends it to the physical robot controller

using the gen_tcp library functions. As the robot completes the pickup action, an XML

message is sent to the Interface component where the message is parsed and sent to the

Execution component as the Erlang atom picking_done.

The interaction between the Execution and Interfacing components continue as described

above until all the actions of the service have been completed – in this scenario, when the

Interfacing component sends the atom placing_done to the Execution component. Before

the Execution component then transitions back to the “ready” state (awaiting a start message

for the next service execution), it sends a done message to the Agenda Manager FSM.

The Agenda Manager FSM will receive the done message from the Execution component in

the “busy_booked” state. With the done message event, the done message is forwarded to the

Communication component (which will use the associated PID field of the message to

forward the message to the correct Order holon), before transitioning to the “free_booked”

state.

4.4 Additional Erlang/OTP functionality
In addition to the OTP functionality used in the holon implementation described above, two

further tools offered by Erlang/OTP can be very useful, i.e. the Supervisor and Logging

modules.

Through the Supervisor module, Erlang allows the implementation of supervision trees, in the

form of a process structuring model in terms of workers and supervisors. Worker processes

do the computational work, while supervisor processes monitor worker processes. This

hierarchical structure allows for the development of fault-tolerant programs, since supervisor

processes can start and stop worker processes, and restart them if they should fail

(Anonymous s.a. [a]).

As fault-tolerance is an important requirement for the modern manufacturing environment,

supervision trees can be very advantageous. For the implementation of a resource holon, all

the components discussed in the previous sections will be worker processes and can be

supervised by a supervisor process. Upon starting, the supervisor process launches the

processes in a specified order. The order to which they are terminated during shut down is

also specified. A restart strategy can be specified for the supervisor process, i.e. the way in

which processes are restarted in event of a process failing. Three options are available

(Anonymous s.a. [a]):

 “one-for-one” – only the process that fails is restarted.

 “one-for-all” – if a worker process fails, all of the supervised processes are terminated

and restarted.

 “rest-for-one” – if a worker process fails, it and the subsequent processes (in the start

order) are terminated and restarted.

A supervisor process can thus be a very useful addition to the holon implementation. At the

very least, it provides a neat and simple way to start and stop all the holon processes. With

the selection of an appropriate restart strategy, a supervisor process can add great robustness

to the holon implementation.

Logging modules offer useful functionality related to diagnosibility, an important

requirement for reconfigurable systems. In terms of software diagnosibility, logging is an

important tool. Erlang/OTP includes an error_logger module (Anonymous s.a. [c]) which can

be used to output error, warning and information reports to the terminal or to file. The format

of these reports can be customized according to the needs of the application. The

error_logger module can be used by all holon processes to log events, errors and general

process information to file, e.g. received and sent message information, state transitions and

process failures. This information can be helpful for debugging or problem identification, or

just for monitoring.

5 Conclusion
Reconfigurable manufacturing systems (RMSs) are intended for situations characterised by

short product life cycles, large product variety and fluctuating product demand, since RMSs

have the ability to reconfigure hardware and control resources to rapidly adjust the

production capacity and functionality. RMSs commonly employ holonic control

architectures, because they share many characteristics.

This paper motivates why the functional programming language Erlang and the Erlang-based

OTP (Open Telecom Platform) present an attractive solution for implementing holonic

control. It is shown that the requirements for which Erlang was developed are highly relevant

to holonic and reconfigurable control. The paper then presents an implementation

methodology and case study using Erlang/OTP.

The presented case study for the Erlang/OTP implementation focusses on the resource holon,

as defined by PROSA (Product-Resource-Order-Staff Architecture). A generic model for a

resource holon to suit an Erlang implementation is presented, with four functional holon

components, i.e. communication, agenda manager, execution and interfacing. The

implementation of these components, using Erlang/OTP processes, is described.

Future work will entail the expansion of the Erlang/OTP implementation to the control

system for an entire manufacturing cell, in which all of the PROSA holons will be

incorporated. The Erlang/OTP manufacturing cell will then be subjected to a series of

experiments – the results of which will be used to perform a quantitative and qualitative

comparison with an equivalent MAS implementation.

6 References
Almeida, F.L., Terra, B.M., Dias, P.A., and Gonçales, G.M., 2010. Adoption Issues of Multi-

Agent Systems in Manufacturing Industry. Fifth International Multi-conference on

Computing in the Global Information Technology. pp. 238-244.

Anonymous, s.a. (a) Get Started with OTP. [Online]. Available: http://www.erlang.org (18

July 2013).

Anonymous, s.a. (b). XMErL Reference manual.. [Online]. Available:

http://www.erlang.org/doc/apps/xmerl (28 March 2014).

Anonymous s.a. (c). Erlang Kernel Reference Manual. [S.a.]. [Online]. Available:

http://www.erlang.org/doc/apps/kernel (28 March 2014).

Anonymous s.a. (d). Erlang/OTP System Documentation. [S.a.]. [Online]. Available:

http://www.erlang.org/doc/pdf/otp-system-documentation.pdf (28 March 2014).

Armstrong, J., 2003. Making Reliable Distributed Systems in the Presence of Software

Errors. Doctor’s Dissertation. Royal Institute of Technology, Stockholm, Sweden.

Armstrong, J., 2007. Programming Erlang: Software for a Concurrent World. Raleigh, North

Carolina: The Pragmatic Bookshelf.

Bi, Z.M., Wang, L., and Lang, S.Y.T., 2007. Current Status of Reconfigurable Assembly

Systems. International Journal of Manufacturing Research, Inderscience. Vol. 2, No. 3: 303 -

328.

Bi, Z.M., Lang, S.Y.T., Shen, W., and Wang, L., 2008. Reconfigurable Manufacturing

Systems: The State of the Art. International Journal of Production Research. Vol. 46, No. 4:

967 - 992.

Chirn, J.L. and McFarlane, D., 2000. A Holonic Component-based Approach to

Reconfigurable Manufacturing Control Architecture. Proceedings of the International

Workshop on Industrial Applications of Holonic and Multi-Agent Systems. pp. 219–223.

Däcker, B., 2000. Concurrent Functional Programming for Telecommunications: A Case

Study of Technology Introduction. Master’s Thesis. Royal Institute of Technology,

Stockholm, Sweden.

De Jong, W., 2007. Erlsom. [Online]. Available: http://erlsom.sourceforge.net (28 March

2014).

ElMaraghy, H., 2006. Flexible and Reconfigurable Manufacturing System Paradigms.

International Journal of Flexible Manufacturing System. Vol. 17: 61-276.

Graefe, R. and Basson, A.H., 2013. Control of Reconfigurable Manufacturing Systems using

Object-Oriented Programming, Proceedings of the 5th International Conference on

Changeable, Agile, Reconfigurable and Virtual Production (CARV2013). pp. 231-236.

Hebert, F., 2014. Learn Some Erlang For Great Good. No Starch Press.

Holvoet, T. and Valckenaers, P., 2006. Exploiting the Environment for Coordinating Agent

Intentions. AAMAS Conference. Hakodate, Japan (8–12 May).

Leitao, P. and Restivo, F.J., 2006. ADACOR: A Holonic Architecture for Agile and Adaptive

Manufacturing Control. Computers in Industry. Vol. 57, No. 2: 121-130.

Kotak, D., Wu, S., Fleetwood, M., and Tamoto, H., 2003. Agent-Based Holonic Design and

Operations Environment for Distributed Manufacturing. Computers in Industry. Vol. 52: 95–

108.

Leitao, P. and Restivo, F.J., 2002. A Holonic Control Approach for Distributed

Manufacturing. Knowledge and Technology Integration in Production and Services:

Balancing Knowledge and Technology in Product and Service Life Cycle. pp. 263–270.

Kluwer Academic Publishers.

Logan, M., Merrit, E., and Carlsson, R., 2011. Erlang and OTP in Action. Stamford:

Manning Publications Co.

Mehrabi, M.G., Ulsoy, A.G., Koren, Y., 2000. Reconfigurable Manufacturing Systems: Key

to Future Manufacturing. Journal of Intelligent Manufacturing. Vol. 13: 135-146.

Paolucci, M. and Sacile, R., 2005. Agent-Based Manufacturing and Control Systems.

London: CRC Press.

Scholz-Reiter, B. and Freitag, M., 2007. Autonomous Processes in Assembly Systems.

Annals of the CIRP. Vol. 56: 712–730.

Van Brussel, H., Wyns, J., Valckenaers, P., Bongaerts, L., and Peeters, P., 1998. Reference

Architecture for Holonic Manufacturing Systems: PROSA. Computers in Industry. Vol. 37:

255–274.

Vinoski, S., 2007. Concurrency with Erlang. IEEE Internet Computing. Vol. 11, No. 5: 90-

93.

Vyatkin, V., 2007. IEC 61499 Function Blocks for Embedded and Distributed Control

Systems Design. North Carolina: Instrumentation, Systems and Automation Society, ISA.

Appendix A: OTP Libraries
This appendix provides a summary of the functionality and programmatic implementation of

the OTP libraries mentioned in this paper. The presented work made use of two OTP

libraries, namely the generic finite state machine (gen_fsm) behaviour and generic

Transmission Control Protocol (gen_tcp) libraries. The description of the gen_fsm library is

adapted from Anonymous s.a. [d] and, for the gen_tcp library, from Anonymous s.a. [c] and

Hebert (2014).

A.1 Generic finite state machine behaviour library
A finite state machine can be described as a set of relations between states, events and

actions. These relations can be expressed in the following form:

State x Event → Action(s), NextState

This expression states that when the FSM is in some State and some Event occurs, some

Action(s) will be performed and the FSM will transition to NextState. Using the Erlang

gen_fsm behaviour, these state transitions can be implemented by:

StateName(Event, StateData) ->
%code for actions here
{next_state, NextStateName, NewStateData}.

The name of the state the FSM is in when Event occurs is programmed as StateName.

StateData represents internal information regarding the current state. When Event occurs,

specific actions that must be performed can be programmed. After all the required actions are

completed, the statement ends with a description of the state transition that follows. The

transition description is represented as a tuple with three elements: the first element is the

atom next_state, designating the transition description; the second element specifies the

name of the state to which the FSM will transition to and the last element specifies the

internal information associated with the next state.

The following code starts a gen_fsm behaviour in a new process:

gen_fsm:start_link({local, FsmName}, ModuleName, InitData, Options)

The variables have the following meaning:

 FsmName – the name by which the FSM process will be registered.

 ModuleName – the name of the module where the callback functions of the FSM (i.e.

the functions defining the state transitions) are located.

 InitData – information passed to the FSM during initialization.

 Options – a list of possible options for the gen_fsm process – e.g. timeouts,

debugging functions, etc.

When the gen_fsm behaviour is started, it enters the initialization function of the FSM,

programmed as:

init(InitData) ->
%code for initialization actions here
{ok, InitialStateName, StateData}.

The function performs the necessary initialization functions and concludes with the definition

of the initial state of the FSM. The FSM will consequently transition to InitialStateName

with the accompanying StateData.

With the FSM now occupying a specific state, it can receive notifications regarding the

occurrence of events. Processes can notify a specific gen_fsm process of an event using the

following function:

gen_fsm:send_event(FsmName, Event)

This function constructs a message of the Event and sends it to the gen_fsm process. The

event is handled in the current state of the FSM and will result in some corresponding state

transition, as was discussed earlier in this section.

A.2 Generic Transmission Control Protocol library
The gen_tcp library included in OTP provides functions to communicate with sockets using

Transmission Control protocol (TCP). Functions are included for both server and client

implementations – the simplest forms of which are briefly presented in this section.

An Erlang process can act as a server for a designated TCP port, using:

{ok, Socket} = gen_tcp:listen(Port, Options)

 Port – the port number for the socket.

 Options – a list of socket configuration options.

 Socket – data type representing the TCP socket.

As the function name suggests, the server process will listen for incoming connection

requests at the specified port. When such a request is received, the connection can be

accepted:

gen_tcp:accept(Socket)

Also, a process can connect to a TCP socket as a client – this functionality is provided

through the function:

gen_tcp:connect(Address, Port, Options)

 Address – the IP address or host name for the socket.

When the connection is accepted by the corresponding server process, TCP communication

over the connected socket can be achieved. Both the server and client processes use the same

functions for the sending and receiving of messages over the socket:

gen_tcp:send(Socket, DataPacket)

 DataPacket – information to be sent over socket.

gen_tcp:recv(Socket, Length)

 Length – the number of bytes to read from the socket.

