Mathematics - HG - Nov 2001 National Paper 1 [Grade 12 Mathematics - HG]

Ref: M1/1/01 Total pages: 18 Time: 3 hours Marks: 200

This question paper consists of a cover page, 18 pages and a formula sheet. **INSTRUCTIONS TO CANDIDATES**

Read the following instructions carefully before answering the questions:

- 1. This paper consists of **11** questions. Answer **ALL** the questions.
- 2. Clearly show **ALL** the calculations, diagrams, graphs, etc. you have used in determining the answers.
- 3. An approved calculator (non-programmable and/or non-graphical) may be used, unless stated otherwise.
- 4. If necessary, answers should be rounded off to **TWO** decimal places unless stated otherwise.
- 5. Graph paper is **NOT** required in this question paper.
- 6. Number the answers **EXACTLY** as the questions are numbered.
- 7. It is in your own interest to write legibly and to present the work neatly.
- 8. An information sheet containing formulae is provided.
- 9. Diagrams provided in this question paper are not necessarily drawn to scale.

QUESTION 1

Determi 1.1	ne ALL real solutions of each of the following: $27^{x} \ge 9^{x-2} = 1$	(4)
1.2	$16x^4 + 1 = 0$	(2)
1.3	$\sqrt{5-x} - x = 1$	(6)
1.4	$2 x - 5 \ge 7$	(4)
1.5	$2.2^{x} - 8.2^{-x} = 15$	(6)
1.6	$3^{x} . 5^{x+1} = 20$	(4)
1.7	$\frac{x-2}{2} \ge 1$	(6)
	<u>x</u> - <u>x</u>	[32]

- **QUESTION 2** Prove that the roots of $a^2x^2 + abx + b^2 = 0$ are non-real for all real values of *a* 2.1 (3) and *b*, *a* and $b \neq 0$.
- 2.2 If *m* and *n* are integers such that m < n < 0, state whether each of the following is TRUE or FALSE. Write down 'true' or 'false' next to the applicable question number and in each case justify the answer:
- 2.2.1 *m*-*n* < -*n* (2)
- $m^2 < n^2$ 2.2.2 (2)
- $mn > n^2$ 2.2.3

(2) [9]

[23]

QUESTION 3

In the sketch, the graphs of the functions given by $f(x) = x^2 - 2x - 3$ and *h*, an absolute value function, are represented. Answer the following questions with the aid of the sketch: For which values of r is f increasing?

For which values of x is f increasing:	
What is the maximum value of $-x^2 + 2x + 3?$	
For which value(s) of p will $x^2 - 2x - 3 = p$ have:	
Equal roots	
<u>No real roots</u>	
For which value(s) of c will the roots of	
$x^2 - 2x + c = 0$ have the same sign?	
Determine b if $h(x) = x + b$	
For which values of x is $h(x) > f(x)$?	

3.1

QUESTION 4

Carlo manufactures eight-sided wall clocks, all the sides being of equal length. To create the face of the clock, he cuts the corners from a square sheet of glass of sides 16 cm.

Calculate:

4.1	The length of a side of the clock	(8)
4.2	The area of the face of the clock	(3)

```
[11]
```

QUESTION 5

- 5.1 In the sketch, the following functions are represented:
- f, with equation $y = x^3$
- g, the reflection of f in the line y = x.
- \vec{h} , the reflection of g in the x-axis.

5.1.1 Determine the defining equations of g and h in the form.

(4)
5.1.2 Determine, with the aid of the sketch, the value(s) of x for which:
(a)
$$3^{x} > 0$$
(1)

(b)
$$\log_{\frac{1}{3}} x \le 0$$
 (2)

$$(\log_3 x)^2 - 2 \ge \log_3 x \tag{8}$$

[15]

QUESTION 6

- 6.1 Given: $f(x) = ax^3 5x^2 + bx + 6$ f(x) is exactly divisible by x - 2 and leaves a remainder of -3 when divided by 2x(6)-1. Determine the values of a and b.
- 6.2 Given: $f(x) = x^n + y^n$ For which value(s) of *n* is (x + y) a factor of *f*? (4)

[10]

(4)

QUESTION 7

7.1 Calculate

$$\sum_{k=2}^{\infty} 8\left(\frac{1}{2}\right)^{k+2}$$

- 7.2 In a geometric sequence, the third term is 5m + 1, the fifth term m + 1, and the (7) seventh term m 2. If all the terms are positive, calculate the value of m.
- 7.3 A man was injured in an accident. He receives a disability grant of R4 800 in the first year. This grant increases by a fixed amount each year.
- 7.3.1 What is the annual increase if, over 20 years, he would have received R143 500 (4) altogether?
- 7.3.2 His initial annual expenditure is R2 600 and increases at a rate of R400 per year. (6) In which year will his expenses exceed his income?

[21]

QUESTION 8

- 8.1 Calculate the derivative of *f* from first principles, if. $f(x) = x - x^2$ (5)
- 8.2 dy

Determine
$$dx$$
 if:
8.2.1 $y = (x^3 - 1)^2$ (3)
8.2.2 $y = \frac{x^3 + \sqrt{x^3}}{x}$ (4)

- 8.3 Given: $f(x) = -x^3 + 6x^2 9x + 4$
- 8.3. 1 Draw a neat sketch graph of f, showing the coordinates of the intercepts with the (17) axes, as well as the coordinates of the turning points. (Show all your calculations.)
- 8.3.2 Determine the equation of the tangent to the curve of f at the point (2; 2). (5) [34]

QUESTION 9

9.1 The graph of $x^3 + y^2 = 8$, not drawn to scale, is represented alongside for the interval 0

 $\leq x \leq 2$ P(x; y) is any point on the graph.

QUESTION 10

An entrepreneur manufactures two types of furniture pieces: chairs and tables. The costs are R250 per chair and R200 per table. He sells each chair for R300 and each table for R400. He makes x chairs and y tables each month, so that the points (x ; y) he only in the shaded (feasible) region below.

10.1	Write down the inequalities which describe the feasible region.	(6)
10.2	Determine the coordinates of P and T.	(6)
10.3	Determine the minimum total cost.	(3)
10.4	Determine the maximum profit.	(3)
10.5	If the production cost for a table increases to R500, what would the minimum	(2)
		[20]

QUESTION 11

Black and white dots are packed as shown in the arrangements below:

				• 0 0	0	0
			$\bullet \circ \circ \circ$	$\bullet \bullet \circ$	0	0
		$\bullet \circ \circ$	$\bullet \bullet \circ \circ$		0	Q
	• •	$\bullet \bullet \circ$	$\bullet \bullet \bullet \circ$		٠	0
Arra	ngement 1	Arrangement 2	Arrangement 3	Arrangen	nent 4	ļ
11.1 If T_n is the total number of dots in the <i>n</i> th arrangement, determine:						
11.1.1	T ₅				(1)	
11.1.2	T ₁₀				(2)	
11.1.3	T _n				(3)	
11.2	Use the answ the first <i>n</i> natu	er in QUESTION 11.1 1ral numbers.	<u>3</u> to write down a formula	for the sum of	(2)	
			r	FOTAL:	[8] 200	

Mathematics Formula Sheet (HG and SG)

Wiskunde Formuleblad (HG en SG) NATIONAL DEPARTMENT OF EDUCATION SENIOR CERTIFICATE EXAMINATION

Mathematics - HG - Nov 2001 National Paper 1 Memorandum [Grade 12 Mathematics - HG]

- 16x4 + 1 = 01.1 $27^{x} \times 9^{2x} = 1$ 1.2 $\therefore x4 = -1/16$ $3^{3x}3^{2x-4} = 3^0$ No solution in R $\therefore 3x + 2x - 4 = 0$ $\therefore x = 4/5$ 1.3 $\sqrt{5-x}-x=1$ 1.4 $2(x-5) \ge 7$ $(x-5) \ge 3,5$ $\sqrt{5-x} = x + 1$
 - $\therefore 5-x = (x+1)^2$ If $x-5 \ge 0$, OR as x-5 < 0 $\therefore x^2 + 3x - 4 = 0$ $x \ge 5$ x < 5 (+4)(x-1) = 0then $x - 5 \ge 3,5$ then $-(x - 5) \ge 3,5$ x = -1 OF x = 1∴ *x* ≥ 8,5 $\therefore -x \ge -1,5$ ∴ *x* ≤ 1,5 Check both answers using first

eq. Solution: x = 1[x = -4 is not a solution]

Solution : $x \le 1,5$ OR $x \ge 8,5$

1.5 $2.2^{*} - 8.2^{*} = 15$ [Multiply by 2^{*}]

$$\therefore 2.2^{2x} - 8 - 15.2^{x} = 0$$

$$\therefore 2a^{2} - 15a - 8 = 0$$

$$(2a + 1)(a - 8) = 0$$

$$\therefore a = -\frac{1}{2} \text{ or } a = 8$$

$$\therefore 2^{x} = -\frac{1}{2} \text{ or } 2^{x} = 8$$

onm. -2^{3}

$$\therefore x = 3$$

1.6 $3^{*}.5^{*-1} = 20$ $3^{*}.5^{*}.5 = 20$ $\therefore 15^* = 4$ [Now take logs] xlog 15-log 4 $\therefore = (\log 4) / (\log 15)$ = 0.51

1.7	If $3 - x > 0$	OR	If $3 - x < 0$	
	<i>x</i> <3		<i>x</i> > 3	
	then $x-2 \ge 3-x$		then $x-2 \leq 3-x$	
	$2x \ge 5$		$2x \le 5$	
	$\therefore x \ge 2,5$		$\therefore x \leq 2,5$	

no solution

Solution : $2,5 \le x < 3$

2.1 $a^2x^2 = abx + b^2 = 0$ = $a^2b^2 - 4a^2 - 4a^2b^2$ = $-3a^2b^2$ a² en b² is positive and multiplied by -3. Thus) < 0 ∴ Roots non-real. 2.2.1 TRUE [Add n to both sides]

2.2.2	FALSE [* m * n *]	
-------	-------------------	--

number.

2.2.3 TRUE [Divide by n; negative]

the X-axis will be 4.

Solution: $0 < c \le 1$

Turning point of f: (1; -4)

The maximum of the mirror image of f in

If c = 0, the roots will be 0 and a positive

If c = 1, the graph touches the X-axis.

Move the graph upwards slowly.

- 3.1.1 turning point: x = -b/2a = -(-2)/2 = 3.1.21 f increasing for x > 1
- 3.1.3 (a) 3.1.4 Move the graph upwards 4 units. The yintercept is then 1. $\therefore p = -4$ (b) p < -4[Hint: Check by taking p to LHS.]

3.1.5 b = -3

3.1.6 $0 \le x \le 3$

 $\therefore x = -4 \quad OF \quad x = 2$ en y = 21 y --3[replace]

Points of intersection: (-4;21) en (2;-3)

4.1 Let AB = AD = x then BC = 16 - 2xand BD = $\sqrt{2} x$ [Pythagoras]

Eight equal sides:

$$\therefore \sqrt{2}x = 16 - 2x$$
$$2x^2 = 256 - 64x + 4x^2$$
$$x^2 - 32x - 128 = 0$$

$$x = \frac{32 \pm \sqrt{32^2 - 4(128)}}{2}$$

[The other answer not acceptable] Length of side: 16 - 2x = 6.63

- 4.2 Area of face: 16 4) ABD = $16 4 (0.5x^2) = 212.1$
- 5.1.1 g: $y = \log_3 x$ h: $y = -\log_3 x$ of $y = \log_\frac{1}{3} x$

5.1.2 (a) All real values of x. (b) $x \ge 1$

5.2 $(\log 3x)^2 - 2 \ge \log 3x$ $a^2 - a - 2 \ge 0$ $\therefore (a-2)(a+1) \ge 0$ $a \le -1 \text{ OR } a \ge 2$ $\therefore \log 3x \le -1 \text{ OR } \log 3x \ge 2$ $x \le 3^{-1}x \ge 3^2$ $x \le 1/3x \ge 9$ but x > 0, definition Solution: 0 < x ≤ 1/3 OF x ≥ 9

6.1
$$f(x) = ax^{3} - 5x^{2} + bx + 6$$
 (i) $x4: 16a + 4b = 28$

$$f(2) = 8a - 20 + 2b + 6 = 0$$
 (ii) $a + 4b = -62$
 $8a + 2b = 14$ subtract : $15a = 90$
 $4a + b = 7$ (i) $a = 6$
en $b = -17$
 $f(1) = a - 5 + b + 6 = 2$

en
$$f\left(\frac{1}{2}\right) = \frac{a}{8} - \frac{5}{4} + \frac{b}{2} + 6 = -3$$

 $a - 10 + 4b + 48 = -24$
 $\therefore a + 4b - -62 \dots (ii)$

6.2
$$(x + y)$$
 is a factor of f if f(-y) = 0
(-y)ⁿ + yⁿ = 0 if n is an odd number
[We know it is true for n = 3].

7.1
$$\sum_{k=2}^{\infty} 8\left(\frac{1}{2}\right)^{k+2}$$

$$Stop = \frac{\alpha}{1-r} = \frac{\frac{1}{2}}{1-\frac{1}{2}} = 1$$

$$T_1 = \frac{1}{2}$$

$$T_2 = \frac{1}{4}$$

$$T_3 = \frac{1}{8}$$

7.2
$$\frac{T_7}{T_5} = \frac{T_5}{T_3}$$

$$\therefore m^2 + 2m + 1 = 5m^2 - 9m - 2$$

$$4m^2 - 11m - 3 = 0$$

$$\therefore \frac{m-2}{m+1} = \frac{m+1}{5m+1}$$

$$\therefore m = -1/4 \text{ OF } m = 3$$
NO
Solution : m = 3

7.3.1 Arithmetic series with a = 4800 and $S_{20} = 143500$. d is required.

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

$$143500 = \frac{20}{2} [9600 + 19d]$$

$$14350= 9600 + 19d$$

$$d = 250$$

.

7.3.2 Income : a = 4800 and d = 250Expenses : a = 2600 and d = 400When will T_n be equal?

$$Tn - a + (n - 1)d$$

$$\therefore 4800 + (n - 1) 250 = 2600 + (n - 1) 400$$

$$4800 + 250n - 250 = 2600 + 400n - 400$$

$$150n = 2350$$

$$\therefore n = 15,7$$

The expenses will exceed the income in the 16th year.

8.1
$$f(x) = x - x^{2}$$

$$f'(x) = \lim_{k \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{k \to 0} \frac{(x+h) - (x^{2} + 2hx + h^{2}) - x + x^{2}}{h}$$

$$= \lim_{k \to 0} \frac{x+h - x^{2} - 2hx - h^{2} - x + x^{2}}{h} = \lim_{k \to 0} \frac{h - 2hx - h^{2}}{h} = \lim_{k \to 0} \frac{h(1 - 2x - h)}{h}$$

$$= \lim_{k \to 0} (1 - 2x - h)$$

$$= 1 - 2x$$

8.2.1
$$y = (x^3 - 1)^2 = x^6 - 2x^3 + 1$$

 $\frac{dy}{dx} = 6x^5 - 6x^2$

8.2.2 $y = \frac{x^3 + \sqrt{x^3}}{x} = \frac{x^3 + x^{\frac{3}{2}}}{x} = x^2 + x^{\frac{1}{2}}$
 $\frac{dy}{dx} = 2x + \frac{1}{2}x^{-\frac{1}{2}} = 2x + \frac{1}{2x^{\frac{1}{2}}}$

8.3.1
$$f(x) = -x^3 + 6x^2 9x + 4$$

 $f(1) = -1 + 6 - 9 + 4 = 0$, Thus : $(x - 1)$ is 'n factor of $f(x)$
 $\therefore f(x) = (x - 1)(-x + 4)$
X - intercepts : $f(x) = 0$
Dus : $x = 1$ OR $x = 4$
Turning points : $f(x) = 0$
 $\therefore -3x^2 + 12x - 9 = 0$
 $x^2 - 4x + 3 = 0$
 $(x - 3)(x - 1) = 0$
 $\therefore x - 3$ OR $x = -1$
 $y = 4y = 0$

8.3.2 Tangent :
$$m = f(2)$$

f (x) = $-3x^2 + 12x - 9$
f'(2) = $-3(4) + 12(2) - 9$
= 3
Eq : $y = 3x + c$
 $\therefore 2 = 3(2) + c$
 $\therefore c = -4$
Tangent : $y = 3x + c$ deur (2: 2)
 $\therefore 2 = 3(2) + c$
 $\therefore c = -4$
Tangent : $y = 3x - 4$

9.1.1
$$OP^2 = x^2 + y^2$$

 $= -x^3 + x^2 + 8 = x^3$

9.1.3 For max/min values
$$f'(x) = 0$$

 $\therefore -3x^2 + 2x = 0$
 $x(-3x+2) = 0$ Thus : $x = 0$ OR $x = 2/3$

Substitute : x = 0: y = 0 + 0 + 8 = 8Substitute : x = 2/3 $y = -\left(\frac{2}{3}\right)^3 + \left(\frac{2}{3}\right)^2 + 8$ $= \frac{-8}{27} + \frac{4}{9} + 8 = 8\frac{4}{27} = 8,15$

Maximum of OP² is 8,15.

9.1.4 If the question refers to the graph in 9.1:

The Y-intercept of the graph is $2\sqrt{2}$ and the X-intercept is x = 2. Calculate different lengths of OP by substituting values for x and y. The minimum value is found where y = 0 and x = 2. The minimum length of OP is 2. [The graph of OP² can also be considered but is more complicated.] 9.2 Die raakpunt lê op die raaklyn sowel as op 9.3.1 m = 40 f(x).
f(-1) - 3 [gradient of tangent]
f(-1) is die y- value of the point of tangency.
∴ y = -3(-1) + 4 = 7
∴ f(-1) = 7
9.3.2 a = 30

9.3.3 f increases if f '(x) is positive. $0 \le x < 30$

10.3 Cost:
$$K - 250x + 200y$$

 $\therefore y = \frac{-5}{4}x + \frac{K}{200}$
Min. by P: $K = 250(500) + 200(750)$
 $= 275\ 000$

10.4 Profit :
$$W = 50x + 200y$$

 $\therefore y = \frac{-1}{4}x + \frac{W}{200}$
Maks. at Q(2000;1500)
 $W = 50(2000) + 200(1500)$
 $= 400$
[The dotted line at Q may indicate that
the number of tables should be less than
1500, i.e. 1499. The Profit will then be
reduced by R200.]

10.1 $2y \le x + 1000$ $2y \ge -x + 2000$ $500 \le y < 1500$ $x \le 2000$ x and y positive integers.

10.2

Coordinate s P : Solve equations simultaneo usly.

$$2y - x = 1000$$

$$2y + x = 1000$$

$$\therefore -2x = -1000$$

$$x = 500$$

en y = 750 P(500,750)

Coordinate s of K :

x + 2y = 2000 [subst. y] x + 1000 = 2000 $\therefore x = 1000$ and y = 500 T(1000:500) 10.5 Cost: K = 250x + 500y $\therefore y = \frac{-1}{2}x + \frac{K}{500}$ Gradient of this line is $-\frac{1}{2}$. Gradient of PT is also $-\frac{1}{2}$. Any point on PT (integers) will give a minimum cost. At P: K = 250(500) + 500(750) = 500 000 At T: K = 250(1000) + 500(500) = 500 0

- 11.1.1 $T_5 = 30$ of (5 x 6); Each number is the product of two consecutive numbers.
- 11.1.2 $T_{10} = 10 \times 11 = 110$

11.1.3.
$$T_n = n(n + 1)$$

11.2
$$S_n \frac{n(n+1)}{2}$$