INSTRUCTIONS

- 1. This paper consists of 10 pages with 10 questions.
- 2. A formula sheet is included on page 10 in the question paper. Detach it and use it to answer the questions in this question paper.
- 3. Answer ALL the questions.
- 4. All the necessary working details must be shown.
- 5. Clearly number all the answers correctly.
- 6. The diagrams are not drawn to scale.
- 7. A diagram sheet is included. Detach it and place it inside the ANSWER BOOK.
- 8. Non-programmable calculators may be used, unless the question states otherwise.
- 9. The number of decimal digits to which answers must be rounded off will be stated in the question where necessary.

ANALYTICAL GEOMETRY

NOTE: - USE ANALYTICAL METHODS IN THIS SECTION. - CONSTRUCTION AND MEASUREMENTS ARE NOT TO BE USED.

QUESTION 1

- 1.1.1 Determine the equation of line k_2 if $k_2 || k_1$ and k_2 passes through point A. (3)
- 1.1.2 Determine the equation of line k_3 if $k_3 \perp k_1$ and k_3 passes through point A. (4)
- 1.1.3 Calculate the distance AB between the lines k_1 and k_2 . (5) Leave the answer in surd form if necessary.
- 1.1.4 If P(x; y) is a point on k_1 such that BP = AB, calculate the possible co-ordinates of P. (6)

1.2.1	Show that the co-ordinates of S are $(2 + 2\sqrt{5}; 0)$	(5)
1.2.2	Determine the gradient of TS rounded off to two decimal digits.	(2)

1.2.3 Calculate RTS rounded off to two decimal digits. (4)

[29]

QUESTION 2

2.1 The point P(x; y) is twice as far from the point A (4; -2) as it is from the origin. (4) Prove that the equation of the locus of P is $3x^2 + 3y^2 + 8x - 4y - 20 = 0$

2.2 2.2.1 Show that the equation of the tangent to the circle (8)

$$x^{2} + y^{2} - 4x + 6y + 3 = 0$$
 at the point (5;-2) is $y = -3x + 13$

- 2.2.2 If T(x; y) is a point on the tangent in QUESTION 2.2.1, such that its (7) distance from the centre of the circle is $\sqrt{20}$ units, determine the values of x and y
- 2.3 In an attempt to find the condition that the line y = mx + c, $m \neq 0$, is a tangent to the graph of $y^2 + 4x = 0$, the following solution was given. State the line in which an error appears and give the correct answer for that line.

2.3.1 The line meets the graph where
$$y^2 + 4\left(\frac{y-c}{m}\right) = 0$$

- 2.3.2 That is where $my^2 + 4y 4c = 0$
- 2.3.3 If the line is a tangent to the graph, this equation will have real unequal roots.
- 2.3.4 The required condition therefore is mc = -1 (3)

[22]

TRIGONOMETRY

QUESTION 3

3.1 If
$$\operatorname{cosec} \theta = \frac{1}{2k} + \frac{k}{2}$$
 (0 < k < 1) and 90° ≤ θ ≤ 270°, determine, with the aid of a diagram, the value of $\operatorname{cosec} \theta + \cot \theta$ in terms of k (7)

3.2 Simplify to one trigonometric ratio of
$$\alpha$$
:

$$\frac{2 \tan(180^\circ - \alpha) - 2 \cot(\alpha - 180^\circ)}{\csc(\alpha - 90^\circ) \sin(360^\circ - \alpha)}$$
(9)

3.3 Determine the values of
$$x \in [-90^\circ; 90^\circ]$$
 for which $\tan^2 x = \frac{\sin 600^\circ \tan(-300^\circ)}{\cos(-120^\circ)}$ (6)

QUESTION 4

4.1 Solve for x in $\tan x = \sin 2x$ if $x \in [-180^\circ; 180^\circ]$.	(]	11	.)
--	----	----	----

- 4.2 Use the set of axes provided on the diagram sheet to draw sketch graphs of (6) $f(x) = \tan x$ and $g(x) = \sin 2x$ for $x \in [-180^\circ; 180^\circ]$. Indicate the intercepts with the axes as well as the co-ordinates of any turning points of the graphs.
- 4.3 Use the graphs in QUESTION 4.2 as well as the answers to QUESTION 4.1 to (5) determine the values of $x \in [-180^\circ; 180^\circ]$ for which $\tan x \ge \sin 2x$

[22]

QUESTION 5

5.1 Determine the general solution of x, rounded off to **TWO** decimal digits, if: (8)

$$3\sin x - 4\csc x + 4 = 0$$

5.2 If
$$\sin(\theta - \alpha) = k \sin(\theta + \alpha), k \neq 1$$
, determine $\tan \theta$ in terms of k and $\tan \alpha$ (6)

5.3 5.3.1 Prove the identity:
$$\frac{\tan 2A}{\tan A} = \frac{2\cos^2 A}{\cos 2A}$$
 (6)

5.3.2 For which values of
$$A \in [0^\circ; 90^\circ]$$
 is the identity not valid? (3)

С

[23]

QUESTION 6

Redraw this diagram in the answer book, or use the diagram on the diagram sheet to prove that

$$a^2 = b^2 + c^2 - 2bc \cos A$$

6.1.2 Hence write
$$\cos A$$
 in terms of a , b and c

6.1.3 Deduce that (3) $1 - \cos A = \frac{(a-b+c)(a+b-c)}{2bc}$

6.2 In the diagram alongside, P, Q and R represent three points along two walls of a room. R is a point in the corner such that $P\hat{R}Q = 90^{\circ}$ T is a point vertically above R. QR = PR = 100 units.

P

6.2.1 Prove that $PQ = 100\sqrt{2}$ units. (2)

t

6.2.2 Use the result of QUESTION 6.1.3, or otherwise, to prove in $\triangle PTQ$ that:

$$\cos P\hat{T}Q = 1 - \frac{t^2}{2p^2}$$
(5)

`O

6.2.3 Calculate the size of \hat{PTQ} , rounded off to the nearest integer, if p = 2t (3)

[19]

(1)

EUCLIDEAN GEOMETRY

NOTE: - DIAGRAMS FOR PROVING THEORY MAY BE USED ON THE DIAGRAM SHEET OR REDRAWN IN THE ANSWER BOOK.

- DETACH THE DIAGRAM SHEET FROM THE QUESTION PAPER AND PLACE IT INSIDE THE ANSWER BOOK.
- GIVE A REASON FOR EACH STATEMENT.

QUESTION 7

Prove that:

7.2.1	SR is a tangent to the circle	(6)
7.2.2	QR is a tangent to the circle through Q, X and P	(3)

[15]

QUESTION 8

Prove that:

8.1	OA bisects DÂC	(5)
8.2	$\hat{\mathbf{D}} = 90^{\circ} - x$	(3)
8.3	AE = ED	(5)
8.4	BA = BD	(4) [17]

Write down the values of the following ratios, giving reasons:

9.1	PS:SN	(4)
9.2	MN:TS	(3)
9.3	PX:XM	(3) [10]

QUESTION 10

(2) [21]

TOTAL: 200

<u>Mathematics Formula Sheet (HG and SG)</u> <u>Wiskunde Formuleblad (HG en SG)</u>

$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$			
$T_n = a + (n-1)d$	$S_n = \frac{n}{2} \left(a + l \right)$	$S_n = \frac{m}{2}$	$\frac{1}{2}\left[2a+(n-1)d\right]$
$T_n = a.r^{n-1} \qquad S_n =$	$\frac{a\left(1-r^{n}\right)}{1-r}$	$S_n = \frac{a\left(r^n - 1\right)}{r - 1}$	$S_{\infty} = \frac{a}{1-r}$
$\mathbf{A} = \mathbf{P} \left(1 + \frac{\mathbf{r}}{100} \right)^{n}$	$\mathbf{A} = \mathbf{P} \left(1 - \frac{\mathbf{r}}{100} \right)^n$		
$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f}{h}$	(x)		
$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	$\overline{\left(\begin{array}{c} 1 \end{array} \right)^2}$		
y = mx + c			
$y - y_I = m(x - x_I)$			
$m = \frac{y_2 - y_1}{x_2 - x_1}$			
$m = tan \theta$			
$\left(\frac{x_1+x_2}{2};\frac{y_1+y_2}{2}\right)$			
$x^2 + y^2 = r^2$	$(x-p)^2 +$	$-(y-q)^2=r^2$	
In $\triangle ABC$: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$			
$a^2 = b^2 + c^2 - 2bc.cos A$			
area $\Delta ABC = \frac{1}{2}ab.sinC$			