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2.5  PROOF: ANALYTICAL AND SYNTHETIC REASONING 
 

Construction of valid arguments or proofs and criticising arguments are essential 
aspects of doing mathematics. However, constructing proofs (deductive reasoning) is 
not always so easy. In this section we look at the logic underlying valid proofs and the 
process of constructing proofs. Let’s start with this orientation problem: 
 

PROBLEM 62: CORRECT OR NOT? 
Give a mark out of 10 for each of the proofs1 in A.  Motivate! 
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1 Q. E. D. We often joke that QED means "quite easily done"! Euclid (about 300 B.C.) concluded his proofs with  

hoper edei deiksai, which Medieval geometers translated as quod erat demonstrandum ("that which was to be proven").
Isaac Newton used the abbreviation Q. E. D. From Earliest Known Uses of Some of the Words of Mathematics 
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First comments on A 
 

As they are expressed here, the proofs in 1 and 2 are invalid! The well-known procedure for 
solving equations in 3 is based on exactly the same reasoning structure as the proofs in 1 
and 2 and the logic is likewise invalid!  Learners should get 0 out of 10 for each question! 
 
But why are the proofs invalid? 
 
Teachers often do not accept the proofs in A, giving as reason that “it is an identity and 
therefore one must work with the left-hand and right-hand sides separately”. Of course 
one can prove the statements using the LHS-RHS proof scheme (if a = c and b = c, then 
a = b), but to insist that it is the only proof scheme, impoverishes mathematics and 
handicaps us as mathematicians! 
 
Underlying the insistence on the LHS-RHS proof scheme, is a perspective that 
“You cannot say they are equal when you have to prove that they are equal, so you may 
not use the =-sign”. 
“You may not assume that it is true and then prove that it is true”. 
“You may only start with something that is true (or that is given)”. 
These perspectives are not correct, as you will see in the rest of this section. 
 

We will analyse the proofs in 1 and 2 in two ways: first from the perspective of logic, and 
then from the perspective of equations, where we will also come back to discuss the logic 
of 3. In the process we also reflect on issues about the nature of mathematics and how 
our views on the nature of mathematics influence the teaching and learning of 
mathematics. 
 
Logic 
 

Pure mathematics is the class of all propositions of the form 'p implies q' where p and q 
are propositions ...   Bertrand Russell 
 
In deductive reasoning, we argue that if certain premises (antecedent or hypothesis) 
(P) are known to be true or assumed, a conclusion (Q) necessarily follows from these.  
 
If a conclusion does not follow from its premises, the argument2 is said to be invalid or non 
sequitur (Latin for “it does not follow”). It should be stressed that in an invalid argument the 
conclusion can be either true or false3, but the argument (the logic of the reasoning) is 
invalid because the conclusion does not follow from (is not caused by) the premises. 
 
If the argument is valid but the premises are not true, then the conclusion may or may 
not be true, but the argument cannot help us decide this4.  
 

To understand the above statements, let’s analyse the logic in the following arguments: 
 

"If Graeme arrives late (P), then he will miss the bus (Q)." 
 
We call this a conditional statement5 – it establishes the condition, the relationship 
between the two statements. We say P implies Q, writing it as P ⇒ Q. 
                                            
2 An argument is a line of reasoning, a sequence of statements aimed at demonstrating the truth of an assertion. 
3 Note that in logic we say a statement is true or false, but that an argument (the reasoning structure) is valid or invalid. 
4 This what A is all about!! Compare: If 3 = 4, add 1 to both sides, then 4 = 5 (false). If 3 = 4, multiply by 0 both sides, then 0 = 0 (true). 
5 A statement is a declarative sentence which is either true or false, according to the Aristotle axiom of the 

excluded middle. For a closed sentence this is immediately obvious, e.g. 2 + 3 = 5 is true and 2 + 3 = 6 is false. 
In the case of an open sentence, e.g. x + 3=5, whether the statement is true depends on the value of the variable. 
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Then we have one further piece of information (fact) about the truth of P or Q (e.g. 
Graeme was late or did not miss the bus), and then we use this information together 
with the implication to draw some conclusion. Consider these cases: 
 

Case 1: Fact: Graeme arrives late. Can we conclude that he misses the bus? Yes! 
This is a valid argument. The structure is: P ⇒ Q is valid, P is true. So Q is true. 
 

Case 2: Fact: Graeme does not miss the bus. Can we conclude that he did not arrive late? 
Yes! This is a valid argument. The structure is: P ⇒ Q is valid, Q is false. So P is false. 
 
Case 3: Fact:  Graeme does not arrive late. Can we conclude that he did not miss the 
bus?  No! This is an invalid argument. This may sound like a good argument, but 
perhaps he did indeed catch the bus, perhaps he fell asleep and missed it anyway – 
we have insufficient information to conclude anything. 
The structure is: P ⇒ Q is valid, P is false. So Q is false. 
 

Case 4: Fact:  Graeme misses the bus. Can we conclude that he must have arrived late? 
No! This is an invalid argument.  This may sound like a good argument, perhaps he was 
indeed late, but maybe he arrived on time but for some reason did not get on the bus, or 
the bus may have been full – we have insufficient information to conclude anything.  
The structure is: P ⇒ Q is valid, Q is true. So P is true. 
 

As the two invalid arguments above suggest, the conclusion of an invalid argument 
does not necessarily have to be false – it's just unproven by this particular argument. 
In everyday language there is often an expectation that if P happens then Q will 
follow, but if P fails then Q fails also (e.g. if you study hard, you will pass implies that if 
you do not study hard you will fail – see also case 3 above) and that if Q happened 
the prerequisite P was fulfilled (e.g. if someone passed, it means that he studied hard 
– see also case 4 above). 
 
However, in mathematics such assumptions are not made. In mathematics a proof in 
the form if P then Q simply requires that if P is true, then Q must be true also. If P is 
false, then no implication as to the truth or falsehood of Q is possible. Likewise if Q 
is true, we cannot conclude that P is true, as assumed in the “proofs” in A!  When the 
mathematician says “is true”, he means “is always/generally true” or “is necessarily true”. 
 

Consider this conditional:  If x > 6 then x > 3. In mathematics this is considered a valid 
implication: if x is a number bigger than 6 then it must necessarily also be bigger than 3. 
However, consider this as separate statements, where P is “x > 6” and Q is “x > 3”. 
What happens for various values of x? Of course you will expect that if P is true then 
Q is true, but note that if x = 5, P is false and Q is true! Look again: if x = 5, Q is true 
but P is false – does this convince you that the arguments in A are invalid? 
 
Make sure that you agree with the summary of the different possibilities in this table. 
Maybe you will also find it useful to interpret the relationships on the number line model. 
 

 
 
Let’s try to draw some conclusions about possible P-Q relations from this information: 
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• What can we say if we know that P is true? You can see in the table that for P there is 
only one true value, so we know that if P is true, then Q is true, for certain! 

• What can we say if we know that Q is false? You can see in the table that for Q there is 
only one false value, so we know that if Q is false, then P is false, for certain! 

• What can we say if we know that P is false? We cannot conclude anything, because 
as you can see in the table, Q can be true or false, so we do not know! 

• What can we say if we know that Q is true? We cannot conclude anything, because as 
you can see in the table, P can be true or false, so we do not know! 

 

So of the above four possibilities, two are valid arguments, and two are invalid. 
 

Mathematicians do not study objects, but relations between objects. Thus, they are free to 
replace some objects by others so long as the relations remain unchanged. Content to 
them is irrelevant: they are interested in form only6.      Jules Henri Poincaré, 1854-1912 
 

Here is a summary/generalisation of the forms of the logic (i.e. P and Q are any statements): 
 

Valid arguments Invalid arguments 
P ⇒ Q 
P is true 
So Q is true 

P ⇒ Q 
Q is false 
So P is false 

P ⇒ Q 
P is false 
So Q is false 

P ⇒ Q 
Q is true 
So P is true 

Modus Ponens 
Latin: mode that affirms 
Direct proof 

Modus Tollens 
Latin: mode that denies 
Indirect proof 
Reductio ad absurdum 

“Inverse7 trap” 
Denying the antecedent 

“Converse trap” 
Affirming the consequent 

 

It should now be clear that all the proofs in A fell into the Converse trap! Maybe this will convince you: 
 

If it rains, it is wet 
It is raining 
So it is wet          9 

If it rains, it is wet 
It is not wet 
So it is not raining   9 

If it rains, it is wet8
It is not raining 
So it is not wet  8 

If it rains, it is wet9
It is wet 
So it is raining   8 

 
The important thing to understand is that, if you reason correctly: 
• If you start with a true statement, you must end with a true statement – this is Modus 

Ponens (Note: we said if you reason correctly, i.e. if you use a valid argument.) 
• If you end with a true statement, you do not know if the original statement is true or false – 

this would be the Converse trap! These three simple examples illustrate the point: 
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 Check again: The reasoning is valid, and each conclusion is a true statement.  But we 
cannot deduce from this true conclusion whether the original statement was true or not! 

 

Let’s return to Ame’s famous x + x = x  :2

To check if the manipulation x + x = x2 is correct, if we check for x = 1: 
x + x = x2 (P) ⇒ 1 + 1 = 12, i.e. 2 = 1 (Q). Q is false, so P is false by Modus Ponens10. 
However, if we check for x = 2: 
x + x = x2 (P) ⇒ 2 + 2 = 22, i.e. 4 = 4 (Q). Q is true. But we cannot deduce that P is true – it 
is the Converse trap.11

                                            
6 Convince yourself that the content of our bus and mathematics arguments above is different, but their logical form is similar. 
7 The Converse of If P then Q  is  If Q then P;  Inverse: If not P then not Q;  Contrapositive: If not Q then not P 
8 Compare: If I am in Stellebosch, I am in South Africa. I am not in Stellenbosch. Therefore, I am not in South Africa? 
9 Compare: If I am a cat, I am a mammal. I am a mammal.Therefore, I am a cat? 
10 Note that disproving a statement using a counter example, is therefore proof by Modus Ponens! 
11 This is also the logical explanation why partial induction can never be a proof! For example: F(n) = n2 – n+11 is 

prime (P)  ⇒ F(1) = 11 is prime, indeed …. ⇒ F(10) = 101 is prime (Q), is the Converse trap! P ⇒ Q is valid, Q is true. 
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PROBLEM 63: ILLOGICAL LOGIC 
If we use valid reasoning (each step in the argument is valid), a true statement cannot 
lead to a false statement. If the conclusion is false, there must be an error in the 
reasoning somewhere! Where is the error in the logic in these arguments? 
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PROBLEM 64: ILLOGICAL LOGIC TOO? 
If we use valid reasoning (each step in the argument is valid), a false statement can lead 
to a true statement. Or can you find an error in the reasoning in the following argument? 
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Remark: 
“Logic” is not formally included as content in the school mathematics curriculum. But it 
should be, and teachers should make sure that their learners understand the basic 
logical principles. Erroneous logical generalisations are not only apparent in proofs as 
illustrated in A, but it effects children’s everyday mathematical activity. 
 
Example from Geometry12: 
Learners often assume that the converse of a statement is true. For example, the theorem “If 
two triangles are congruent, then corresponding angles are equal” is true, but the converse is 
not: “If corresponding angles of two triangles are equal, then the triangles are congruent.” 
 
Example from Algebra. 
Most school children have the misconception that if x + y = 4, then x and y cannot both 
be 2. (If you do not believe it, you should check your learners!) Children often 
“deduce” this idea through erroneous logic (Olivier, 1988), namely: 

                                            
12 Actually there is a serious problem here: Learners mostly assume converses are true, while, in general, converses are not 

(the converse trap)!  We should rather develop the attitude to view each true converse as an exception, as an unexpected 
surprise, which it is! What is the converse of “If a figure is a triangle, then it is a polygon”? What is the converse of “If 
a figure is a rectangle, then it is a square”? And “If triangles are congruent, then they have equal areas”? 
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If the symbols are the same, then their values are the same (P ⇒ Q) 
So: If the symbols are different, then their values are different (Inverse trap: not P ⇒ not Q) 
or 
If the symbols are the same, then their values are the same (P ⇒ Q) 
So: If the values are the same, then the symbols are the same (Converse trap: P ⇐  Q) 
 
 
Analytical reasoning 
Let us now look at the “proofs” in A with different lenses. Although the proofs are 
logically invalid, the kind of reasoning is essential in proving statements. 
 
When we reason backwards to find out how we could prove it, we call the reasoning 
analysis: 
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Now we can easily prove the two original statements in A through Modus Ponens by 
simply reversing the reasoning in B, i.e. reasoning back from the bottom to the top: 
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The proofs in C are completely valid – both use the Modus Ponens proof structure, i.e. 
Q ⇒ P is valid, Q is true, so P is true.  Do not be confused because our Ps and Qs are 
now reversed from the original formulation of the Modus Ponens structure – we used 
the same notation as in A, but reasoned backwards, that is why they are reversed! 
Both proofs are extremely beautiful and elegant. The point is that we “discovered” 
these elegant proofs through analysis, i.e. by reasoning backwards from what we had 
to prove, not by starting with what we had. 
 
Using the Modus Ponens proof structure, i.e. logically reasoning from facts that we 
accept as true (or given information) towards conclusions, is called a synthesis or 
synthetic reasoning. 
 
 
About the nature of mathematics 
Our views on the nature and place of analysis and synthesis influences our view of the 
nature of mathematics. Or probably it is the other way around – our views on the 
nature of mathematics determines our view of the nature and place of analysis and 
synthesis in doing mathematics and in teaching and learning mathematics. 
 
More generally, it is a question about the place of informal and formal mathematics in 
mathematics.  Griffiths (1978) talks of untidy and tidy mathematics. The exposition in B – 
analysis – and induction are important aspects of “untidy mathematics”. The exposition 
in C – synthesis – is an aspect of “tidy mathematics”. The role of induction and 
deduction and the two faces of deduction (analysis and synthesis) are illustrated in the 
diagram below. Note that from the nature of analysis – to reason backwards from the 
result we want to prove – that analysis is only possible if the result is already known. 
To start from a problem and deduce a new result by deduction, we must necessarily 
use synthetic reasoning without the help of analysis – and this is often difficult, because 
we are working in the “dark” without direction. 
 

PROBLEM
SITUATION CONJECTURE

THEOREM
Induction Deduction:

Deduction: synthesis

Analysis
or

synthesis  
 
The point we are making is that when doing mathematics, mathematicians use “untidy 
mathematics” such as induction and analysis to discover their results. But when it 
comes to writing up the results of a piece of mathematical work in books and journal 
articles, the culture in the community of mathematicians is to show only the tidy 
product C, while omitting both the untidy process of analysis in B underlying the 
method of the proof and the inductive reasoning through which the conjecture may 
have been discovered. This is well expressed by Richard Feynman in his Nobel 
Lecture in 1966: 
 
We have a habit in writing articles published in scientific journals to make the work as 
finished as possible, to cover up all the tracks, to not worry about the blind alleys or 
describe how you had the wrong idea first, and so on. So there isn't any place to 
publish, in a dignified manner, what you actually did in order to get to do the work. 
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In this way many users of mathematics – people reading books and journals, but who 
have never really done any independent creative mathematics themselves, and this 
includes most mathematics teachers – develop the total misconception that C is the 
Mathematics, and that the results were developed or discovered through the process 
of C (synthesis). They are confusing the formal description of mathematics as a 
deductive system with the living, creative activity of mathematicians! Unfortunately 
school mathematics textbooks and many mathematics teachers, well-meaning as they 
may be, convey and perpetuate a distorted view of the true nature of mathematical 
activity. Their expectation that learners must then try to mimic this “sterile” formalist 
style in doing mathematics, without explicit knowledge of inductive and deductive 
reasoning (in particular analysis and logic) is a main contributory factor that 
mathematics continue to mystify most learners.13

 
Lakatos (1976, 142) uses the term “deductivist style” for synthesis and says: 
In deductivist style, all propositions are true and all inferences valid. Mathematics is 
presented as an ever-increasing set of eternal, immutable truths. … Deductivist style 
hides the struggle, hides the adventure. The whole story vanishes, the successive 
tentative formulations of the theorem in the course of the proof-procedure are doomed 
to oblivion while the end result is exalted into sacred infallibility.  
 
Schultze describes synthesis and analysis quite elegantly: 
A synthesis shows that every step is true, but does not explain why this step was 
taken (and not another). A synthetic proof convinces the reader that the fact to be 
demonstrated is true, but it does not reveal to him the real plan of the demonstration, 
does not tell him why this sequence of arguments was selected. Proofs are not 
discovered by synthetic methods, and if forgotten, synthetic demonstrations are most 
difficult to reconstruct. But synthetic proofs are usually short and elegant, and are in 
place when no pedagogical conditions need to be considered. 
An analysis, on the other hand, is lengthy and not elegant, but is the only method that 
accounts fully for each step in the demonstration. It is the only method by which 
students can hope to discover proof, or to re-discover then after forgotten. Analysis is 
the method of discovery, synthesis the method of concise and elegant presentation. 
 
However, this description maybe gives the impression that analysis is “not the real 
thing”, not real Mathematics, but that it could be used as a teaching strategy. Nothing 
could be further from the truth: Analysis, and in general “untidy mathematics” is 
Mathematics with a capital M, as Davis and Hersch (1981) emphasise: 
The criticism of formalism in the high school has been primarily on pedagogic grounds: 
this is the wrong thing to teach, or the wrong way to teach. But all such arguments are 
inconclusive if they leave unquestioned the dogma that real mathematics is precisely 
formal derivations from stated axioms. If this philosophical dogma goes unchallenged, the 
critic of formalism in the school appears to be advocating a compromise in quality: he is a 
sort of pedagogic opportunist, who wants to offer the students less than the real thing. 
The issue then, is not, what is the best way to teach, but what is mathematics really all 
about. . . . Controversies about high school teaching cannot be resolved without 
confronting problems about the nature of mathematics. 
                                            
13 We emphasise again that the main objective of this course is exactly to try to give teachers the kind 

of creative experiences that will influence their perspective on the true nature of mathematical 
activity, and that this will change the atmosphere of their mathematics classroom away from 
repetitive routine reproduction towards mathematics as a problem solving process. 
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On teaching and learning 
If teachers have an impoverished perception that mathematics is only the formal/tidy 
aspects of mathematics, they carry that false perception into the classroom and create  
an impoverished mathematics culture, that research show radically influences learners’ 
beliefs and attitudes and determines how and what they learn. See Constructivism. 
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To give the impression that problems are (only) solved using synthetic reasoning like in 
C, puts learners in an impossible position: Learners can only try to fulfil the requirement 
through memorisation, re-production, imitation and rote learning. Then the classroom 
mathematical culture is characterised by memorisation, re-production, imitation and rote 
learning, making an inquiry attitude impossible and then it is impossible to achieve any of 
the wonderful Curriculum 2005 outcomes described in the introduction!
 
Take the following example of a problem and its synthetic proof. Make sure that you 
understand it before continuing! 
 
  Rbaabba ∈≥+ ,for   2 that   Prove 22

 

Q-------------  2
02

P-------  ,for    0)(  :Proof

22

22

2

abba
baba

Rbaba

≥+⇒

≥+−⇒

∈≥−

 

This is a beautiful, elegant and genial proof (do you agree?) using Modus Ponens: 
P ⇒ Q is valid, P is true, so Q is true. However, the teacher "forgot" to show learners 
how she knew to begin with (a – b)2 ≥ 0!! Where did this come from? 
 
Now think of your own understanding of the proof – did you maybe also feel, as 
Schultze says (see previous page), that you understand every step, but not “why this 
step was taken, and not another”?  Were you able to construct this proof on your 
own?  Or do you feel like many learners that you will never be able to ever know how 
to begin with something like (a – b)2 ≥ 0? 
 
The only way for the learners and for the teacher to understand this genial proof, or to 
later re-construct it if one has “forgotten”, or to produce such a proof yourself, is to first 
understand the analysis that underlies the synthesis: 
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Of course, everyone should know that the analysis is not an acceptable proof (beware 
of the Converse trap!). But now learners and the teacher can easily write down the 
genial synthetic proof from bottom to top. Such an “open” approach should contribute 
to demystifying the mystique of mathematics and mathematicians and remove feelings 
of incompetence. The good teacher therefore shows learners the analysis! Then B, 
just as much as C, becomes part of the mathematical culture in the classroom! 
 
 

PROBLEM 65: 

Prove: 
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You should really not read the solution until you have spent some time doing it yourself! 
 

The idea is that you should try to solve it using analysis. Of course you can solve it using the
LHS-RHS scheme. Maybe you should (also) solve it like that and reflect on your thinking and 
compare it with analysis … 

Now try to understand this beautiful synthetic proof: 
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The analysis underlying the proof is: 
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PROBLEM 66: 
Prove in the sketch that  DE.AC = BC.AD 

 
 
Try to solve the problem before continuing reading! 
Reflect on the reasoning process. 
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Here is a “performance” (the synthesis): 

chord) same on the (angles ralquadrilate cyclic a is DBCE 
(given) 90 = BEC  = BDC 0

⇒
∠∠

 

 A 

D

E 

B Csimilar) are angular -(equi    ACB  /// ADE   
)180 is angles internal of (sum ACB angular to-equi is ADE   

DBCE) ralquadrilate cyclic of angle (external     DBC  = AED   (2)
A  =A    (1)

0

s∆∆∆⇒
∆∆⇒

∠∠
∠∠

 

BC.AD = DE.AC
AC
AD

CB
DE 

⇒

=⇒
 

This is a beautiful synthetic proof. But it omits the thinking behind the proof, the 
analysis. It also says nothing about wrong and aborted attempts that the teacher tried 
last night when preparing for the lesson. If the teacher then tomorrow impress the 
learners with a genial synthetic proof, he is mathematically and pedagogically 
dishonest! One can make hundreds of valid statements about the figure (Interior 
angles of a triangle is 1800, vertically opposite angles are equal, external angle of a 
triangle ...). But the poor learners do not understand how the teacher knows to use 
these specific statements (theorems) and not others. They may understand each 
“step” in the proof, but they do not understand why the teacher chose this step and not 
another, and they do not understand where this is all going – they do not understand 
the plan! The famous mathematician Poincaré also emphasises that if one does not 
see the total plan, it leads to a feeling of not understanding: 
 

To understand the demonstration of a theorem, is that to examine successively each 
of the syllogisms14 composing it and to ascertain its correctness, its conformity to the 
rules of the game? For the majority [of people], no. Almost all are more exacting; they 
wish to know not merely whether all the syllogisms of a demonstration are correct, but 
why they link together in this order rather than another. In so far as to them they seem 
engendered by caprice and not by an intelligence always conscious of the end to be 
attained, they do not believe they understand. 
 

Learners cannot construct such synthetic proofs if we do not also teach them the 
underlying analytical reasoning: 

 

(given) 90 = BEC = BDC  know But we
equal chord same on the angles provecan   weif ralquadrilate cyclic a is DBCE that  provecan  We

angle) internalan  DBC and external is (AED ralquadrilate cyclic a is DBCE that provecan   weif
 DBC = AED  (2)say can  We

A =A   (1) that  know We
equal are  trianglesin the angles  that twoprovecan   weif  thisprovecan   weand

ACB angular to-equi is ADE that provecan   weif  thisprovecan   weand
ACB ADE/// that  provecan   weif  thisprovecan   weand

AC
AD

CB
DE that  provecan   weIf

BC.AD? = DE.AC that  prove can we How

0∠∠

∠∠
∠∠

∆∆
∆∆

=

 

                                            
14 A syllogism, also known as a rule of inference, is a formal logical scheme used to draw a conclusion from a set of 

premises. An example of a syllogism is Modus Ponens. The Greek "sullogismos" means “deduction”. 
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Through analysis the plan and the necessary individual steps is now clear and 
transparent for everyone to see and understand. We can now write down the synthetic 
proof by reasoning backwards, from the bottom to the top. Even if the teacher can 
write down a synthetic proof directly, the good teacher will act and pretend that he 
cannot, and take learners with him through the whole analysis and the synthesis 
following it. 
 
One of the best teaching strategies to develop analytical thinking is to let learners 
write down proofs from the bottom to the top: when one has finished the analysis 
(writing from bottom to top), then the (from top to bottom) is automatically finished! 
Learners should therefore be able to write down the last step first, then the second 
last step, etc. Let’s illustrate with the following example: 
 

C 

B 

A D 

 
PROBLEM 67: 
In the sketch AD // EC and ∠BAD = ∠DAC. 
Prove that  AB // ED 

 
 
The last step is therefore AB//ED: 

ANALYSIS Ï equal) are angles (Alternate     ED // AB   
ADE  = BAD 

??         

⇒
∠∠⇒  Ð SYNTHESIS 

E

C

D

B

A

 

The previous step – the premise for the conclusion that AB//ED – can be that alternate 
angles are equal, or corresponding angles are equal, or co-interior angles are 
supplementary, or that ABDE is a trapezium, or …  Choose one, e.g. that alternate angles 
are equal. Then the previous step is to find a premise leading to the conclusion that these 
(alternate) angles are equal, etc.  Complete the proof … 
 
Whether you try to physically write proofs “bottom-up” or not, the fact is that we can 
only conceive the plan for a proof through analysis, and that means “reasoning 
backwards”! For each statement Q we need to prove, we need to find a premise P so 
that we can say P ⇒ Q. But we must first prove P, so we need a premise M so that we 
can say M ⇒ P, etc.  

 
 
PROBLEM 68: 
AD = 4 cm is the diameter of a circle. AB = BC = 1 cm. 
Find the length of CD. 

 

NO 

YES 

Solve it now! 
Have you 
solved the 
problem?

Continue … 
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PROBLEM 67 Solution: 

1  2  3  4
1  4

 AB // ED     (Alternate angles are equal)

∠ = ∠ = ∠ = ∠
⇒∠ = ∠
⇒

C 

B 

A D 

1 

1 

4 

 Analysis Synthesis 

 

PROBLEM 68 Solution: 
What resources (knowledge) is applicable? There can be 
many approaches. We will use the cosine formula in ∆BCD.  
Substituting the given value BC = 1, we have: 

(1)  ................... Ccos2CDCD1BD
Ccos2BC.CD.CDBCBD

22

222

−+=⇒

−+=
 

 

It is clear that to solve for CD, we first need to find the values of the other unknowns, i.e. BD2 
and cos C. These then become sub-goals and give direction to our activity. Without such 
direction, we can try all kinds of directions in a wild goose chase that may lead nowhere! 
 

Sub-goal 1: To find the length of BD: 
What resources can we bring to bear on the problem? 
We know that AD is a diameter of the circle, so we can use the general theorem If we 
have a diameter of a circle, then the diameter subtends a right angle. But we know AD 
is the diameter, therefore we can conclude that ∠ABD = 900. 
 

This means that we can apply the Theorem of Pythagoras: If ∠ABD = 900, then 
AD2 = AB2 + BD2.  But we know that ∠ABD = 900. Therefore: 

(2)  .....................  cm 15BD
BD14

BDABAD

2

222

222

=⇒

+=⇒

+=

 

 

Sub-goal 2: To find the value of cos C: 
If you have a cyclic quadrilateral, then the sum of opposite interior angles is 1800. 
But ABCD is a cyclic quadrilateral by definition (the four corners lie on the circle).  

(3)  .....  
4
1 A  cosA)(180 cos  C cos

A180C   180CA

…−=−=−=⇒

∠−°=∠⇒°=∠+∠⇒
 

Now we simply have to substitute equations 2 and 3 into 1, and we are done: 

4
12CD.CD115 2 ++=  

Well almost! Again, it is now recognising the structure or form of the equation to recall 
a relevant knowledge structure. The CD2 should trigger that it is a quadratic equation. 
If we now recall our “quadratic equation schema”, we know we must write the equation 
in the standard form, factorise, etc.: 

cm 3,5CD
3,5CDor    4CD

04)7)(CD(2CD
028CD2CD     2

=⇒
=−=⇒
=+−⇒

=−+

 

 

Reflect for a moment! Does the answer make sense in the situation? Well yes, it is 
shorter than 4 cm, as it should be, because the diameter is the longest chord in a circle! 
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PROBLEM 69: 

Prove that    
acbb

c
a

acbb
4

2
2

4
2

2

−+−
=

−−−  

 
 

PROBLEM 70: 
(a) Prove: 

  m3 – m is divisible by 3 for all m ∈ N 

  m5 – m is divisible by 5 for all m ∈ N 

(b) For which n ∈ N is mn – m divisible by n? 
 
Be sure to try to solve it – several times – before continuing reading! 
 
To make sure that we understand the problem, and believe that it is true, we can 
specialise. In the case of (a) we have 
 

m m3 – m Divisible by 3? 

1 1 – 1 = 0 Yes 
2 8 – 2 = 6 Yes 
3 27 – 3 = 24 Yes 
4 64 – 4 = 60 Yes 

 
It certainly looks like the answer is divisible by 3. In fact, one could probably make a 
stronger conjecture: the result is always divisible by 6! 
 
But of course we are aware of the dangers of generalising through incomplete 
inductive reasoning – to prove that the answer is always divisible by 3 (or 6) for all 
values of m, we will have to construct a general deductive argument. Also, our numerical 
examples give us no indication of why the answer should be a multiple of 3 – only an 
analysis of the structure of the situation, i.e. general deductive reasoning will explain the 
nature of the result. 
 
Now that we have made sure that we understand the problem (Polya’s phase 1), we 
must make a plan (Polya’s phase 2)! How will we know if a number is divisible by 3? 
We need an implication of the type P ⇒ Q, where Q is the statement “the number is 
divisible by 3”. What can P (the premise) be? We need to recall some relevant 
knowledge. Perhaps you know the divisibility test for 3: 
If the sum of the digits of a number is divisible by 3, then the number is divisible by 3. 
 
 

PROBLEM 71: 
Prove the divisibility test for 3, i.e. a number is divisible by 3 iff15 the sum of the 
digits is divisible by 3. 

                                            
15 “iff” is mathematical notation for “if and only if”, which is a two-way implication P ⇔ Q 
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So if we can prove that in any number of the form m3 – m the sum of the digits is 
divisible by 3, then we can conclude that these numbers are divisible by 3. It may be 
possible to prove it in this way, but I see no entry, so I abort the approach. Control! ☺ 
 
What other P (premise) could be useful? Well, if all else fails, let’s manipulate the 
expression and see what happens! 

  
(1)   ...........................    )1()1(

)1)(1(
)1( 23

+−=
−+=

−=−

mmm
mmm

mmmm

Can we conclude anything from this structure? Well, we can recognise that (m – 1), m 
and (m+1) are three consecutive natural numbers. What can we say about three 
consecutive numbers? Would you agree with the statement: “given any three 
consecutive natural numbers, one of them is divisible by 3”? 
 
 

PROBLEM 72: 
Convince yourself that given any three consecutive natural numbers, one of 
them is divisible by 3.  See this Excel worksheet. 
The mathematical mind will wonder if the structure "three … divisible by 3" is 
general! Is here a more general pattern? 
Given two consecutive natural numbers, is one always divisible by 2? 
Given four, five, six … consecutive whole numbers, is one always divisible by 4, 5, 6, …? 
Can you convince yourself that in any n consecutive whole numbers one of the 
numbers must be divisible by n? 

 

If we accept the statement that in any n consecutive natural numbers one of the 
numbers must be divisible by n, we have solved Problem 70 (a): m3 – m can always 
be written as the product of three consecutive numbers (see (1) above), so one of them is 
divisible by 3, so m3 – m is divisible by 3. Put differently: 3 is a factor of the right-hand side 
of (1), therefore it is a factor of the left-hand side of (1) and that proves the conjecture. 
 

We can also prove that m3 – m is divisible by 6 by looking at the structure of (1) with 
different eyes, i.e. through the lens of even and odd numbers: m is either even or odd. 
If m is even, then m3 – m is divisible by 2. Do you agree? So m3 – m is divisible by 2 
and by 3, therefore it is divisible by 6. Are you convinced of this argument (“If a 
number is divisible by 2 and by 3, then it is divisible by 2 × 3 = 6”)?  If m is odd, then 
both m – 1 (the previous number) and m + 1 (the next number) are even and divisible 
by 2. Therefore m3 – m is divisible by 2 and by 3, therefore it is divisible by 6. 
 
 

PROBLEM 73: 
Prove that if m is odd, then m3 – m is divisible by 24. 
 

There are other possibilities to solve Problem 70. For example, just as we know that 
any whole number is either even or odd, we also know that if we divide any whole 
number by 3, the remainder is either 0 or 1 or 2. This is merely a different, and 
stronger formulation of the statement that in any three consecutive whole numbers 
one is divisible by 3.  
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PROBLEM 74: 
Convince yourself of the following.  See this Excel worksheet. 
Any natural number is either even or odd. So any natural number can be written as 
2n or 2n + 1, n ∈N0, i.e. if you divide a natural number by 2, the remainder is 0 or 1. 
If you divide any natural number by 3, the remainder is 0, 1 or 2, so any natural 
number can be expressed as 3n or 3n + 1, 3n + 2, n ∈N0 (for a given value of n,  
3n, 3n + 1 and 3n + 2 are three consecutive whole numbers). 
Generalise … 

 
If we accept the statement above as true, we can solve Problem 70 (a) with the 
following reasoning: m can be expressed as either 3n or 3n + 1 or 3n + 2, n ∈N0. In 
the first case we have m3 – m = (3n)3 – 3n = 27n3 – 3n = 3n(9n2 – 1), which is clearly 
divisible by 3. Note that we are now using a different general theorem as the basis for 
our reasoning, namely “if a number can be expressed as 3k, k ∈N0, then the number 
is divisible by 3.” Our proof is therefore to show that the special case m3 – m can be 
written as 3k, k ∈N0 (P), which implies that m3 – m is divisible by 3 (Q). 
 
In the second case, if m can be expressed as 3n + 1, we have 
    m3 – m 
 = (3n + 1)3 – (3n + 1) 
 = 27n3 + 27n2 + 9n + 1 – 3n – 1     (refer to the use of Pascal's triangle!) 
 = 3n(9n2 + 9n + 2) 
 = 3k where k = n(9n2 + 9n + 2) is a whole number 
 
So m3 – m can be expressed as 3k, k ∈N0, 3k is divisible by 3, so m3 – m is divisible 
by 3. 
 
 

PROBLEM 75: 
Complete the above proof by analysing the case if m can be expressed as 
3n + 2, n ∈N0. 

 
The purpose of the above was to demonstrate that in order to prove a statement Q 
through Modus Ponens, we need to find a relevant premise P and an argument to 
show that P implies Q. The statement P and the implication P ⇒ Q usually are facts or 
theorems we already know and accept as true. If not, we first have to prove them as 
sub-problems. In our case we have considered three general possibilities: 
• If the sum of the digits of a number is divisible by 3 (P), then the number is divisible 

by 3 (Q). 
• If we have three consecutive numbers(P), one of them is divisible by 3 (Q). 
• If we can express a number as 3k, k ∈N0 (P), then the number is divisible by 3 (Q). 
 
To prove our specific conjecture that m3 – m is divisible by 3 (Q), we had to prove 
• that the sum of the digits of m3 – m is a multiple of 3 (P), or 
• that m3 – m can be written as the product of three consecutive natural numbers (P), or 
• that m3 – m can be written as 3k, k ∈N0 (P). 
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It is very important that we understand the general structure of proof through Modus 
Ponens. To apply the structure to prove a specific conjecture Q, it is very important 
that we identify appropriate relevant premises (P) based on some known theorem 
P ⇒ Q.  Let us further illustrate this important know-how with reference to some 
school problems. 
 
 
A few school problems 
In this course, in order to develop your perspectives, our problems are not always at 
the school level, otherwise there is the danger that we will do it automatically or 
mechanically without reflection and then not learn from it. But it is just as important to 
use our new perspectives to look at school-level problems with new eyes! 
 
You may find school-level problems easy and our course problems difficult and 
frustrating. Apart from developing our problem solving know-how, it has the added 
advantage that we can appreciate the fact that our learners experience their school 
problems just as difficult and frustrating as we experience these difficult unknown 
problems! Like us, their problem usually is that they do not know what is “the next 
step” or "what to do now" or “where to start”. We believe that we will be able to help 
our learners better with their difficulties if we understand and teach the structure of 
proof through Modus Ponens. So let’s look very briefly at a few school problems. 
 
 

PROBLEM 76: 
Prove that    has real roots for all px qx m mx+ = − 2 p, q, m ∈ R. 

 

We may find problems such as these easy and solve it routinely, mainly because we 
have previously done many similar problems. However, for our learners these 
problems are a challenge, and they often have no direction, e.g. many learners in this 
problem typically try to solve for x.  We must help them to understand the proof 
structure: We need an implication P (?) ⇒ Q (the roots are equal). We get the 
required premise from a well-known theorem: “If ∆ ≥ 0 (P), then the quadratic equation 
has real roots (Q)”. This is the same as the point made earlier that analysis is thinking 
backward, and we can even think of it as writing down the last step first: 
 

real are roots  the
0  

⇒
≥∆  

 
So we cannot directly prove that the roots are real. We must prove something else, 
namely our premise P that ∆ ≥ 0, then we can say that P ⇒ Q. So our problem boils 
down to proving that ∆ ≥ 0 for this equation. Knowing where we want to end, tells us 
where to start: First we need ∆; we know ∆ = b2 – 4ac; so we need a, b and c; a, b and 
c are the coefficients of the quadratic equation ax2 + bx + c = 0; so first we need to 
write our equation in the standard form, then find the value of ∆: 
 

22

2

2

4)( So
0)(

mqp
mxqpmx
mxmqxpx

++=∆

=−++⇔

−=+

 

real are roots  the
0  

⇒
≥∆
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This looks promising, but what to do next? We can manipulate and see what happens, 
but if we do not know what to look for, we will probably not realise it when we get 
there. Let’s remember what we are trying to do: we want to prove that ∆ ≥ 0. How will 
we manage that? Again we need some premise. Where previously we had ”If ∆ ≥ 0 
(P), then the roots are real (Q)”, what we need now is “If ?? (P), then ∆ ≥ 0 (Q)”. The 
fact we need is that k2 ≥ 0 if k is a real number. Now we can continue: 
 

real are roots  the
0  

,, if 04 and 0)(
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PROBLEM 77: 
Solve for x:   log( ) log( ) logx x x− + − =3 2 2  

 
We should think what implication P ⇒ Q will enable us to find the solution. The 
required implication is  log A = log B ⇒ A = B. In order to be able to apply this general 
structure we must therefore write this specific equation in the form log A = log B, which 
is usually taught as “write separate logs as one log”. In order to do that we must call 
on two properties of logs, namely  log A + log B = log AB and nlog A = log An. We 
leave the rest of the solution. 

 
 
PROBLEM 78: 
Solve for x:   9 3 1

27
1 1x x− +× =  

 
We should think what implication P ⇒ Q will enable us to find the solution. The 
required implication is  ax = ay ⇒ x = y (a ≠ 0, a ≠ ± 1). In order to be able to apply this 
general structure we must therefore write this specific equation in the form ax = ay, 
which is usually taught as “make the bases the same”. In order to do that we must call 
on the properties of exponents. We leave the rest of the solution.  
 
The point made here is that “write this equation in the form log A = log B” and “write 
separate logs as one log” may seem the same, but they are not. What is missing in 
our teaching and in children's understanding is the underlying logic of Modus Ponens, 
of understanding that each step in our mathematical work is based on using some 
implication P ⇒ Q, that we should understand the logic and that we should 
understand that a large part of doing mathematics is identifying the appropriate P in 
order to can deduce P. The logic above was not “write in the form log A = log B” 
(“write as one log”), but  “log A = log B ⇒ A = B”! 
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PROBLEM 70 continued: 
Prove that m5 – m is divisible by 5 for all m ∈ N. 

 
It was Rene Descartes who said: “Each problem that I solved became a rule which 
served afterwards to solve other problems”. This is the same perspective as Polya’s 
heuristic: “Have you seen it before? Have you seen the same problem in a slightly 
different form?”  It is natural to here try the same approach we used for our m3 – m 
problem above. 
 
Like in the m3 – m problem, we have three possibilities. We make a choice based on 
our intuition of which possibility holds most promise. So let us try the implication “If 
m5 – m can be expressed as the product of 5 consecutive natural numbers, then 
m5 – m is divisible by 5.” So our plan or sub-problem is to prove the premise that 
m5 – m can be expressed as the product of 5 consecutive natural numbers. Now to 
carry out the plan (Polya's phase 3). We will again put our hope in factorisation: 
 

m m m m

m m m m

5 4

2

1

1 1 1

− = −

= + − +

( )

( )( )( ) .................................(1)
 

 
This is very disappointing – we clearly have three consecutive numbers (m – 1, m and 
m + 1), but not five! What does this mean? It could mean that the statement is not 
true, so let’s check by specialising for a few numbers. Let us at the same time try to 
understand the underlying structure: 
 

m – 1 m m + 1 m2 + 1 (m – 1)m(m + 1)(m2 + 1) Divisible by 5? 

0 1 2 2 0 Yes 
1 2 3 5 30 Yes 
2 3 4 10 240 Yes 
3 4 5 17 1020 Yes 
4 5 6 25 3000 Yes 

 
It certainly looks like the answer is divisible by 5. Of course, these few cases do not 
guarantee that it is always true – we need a deductive argument! But our numerical 
examples give us little indication of why the answer should be a multiple of 5. It seems 
that for every value of m, at least one of the four factors is divisible by 5. We may try 
to prove this conjecture, but how? I leave it for the moment … 
 
 

PROBLEM 79: 
Prove that if m ∈N, then at least one of m – 1, m, m + 1 or m2 + 1 is divisible by 5. 
Why is at least one of m – 1, m, m + 1 or m2 + 1 is divisible by 2? 
Why is at least one of m – 1, m, m + 1 or m2 + 1 is divisible by 3? 
Deduce that m5 – m is divisible by 30 for m ∈N. 
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I am rather going to persevere with trying to prove the premise that m5 – m can be 
written as the product of five consecutive whole numbers. We already have 

(1)  .............................. )1)(1)(1(
)1(

2

45

+−+=

−=−

mmmm
mmmm

 

 
Surely, if m5 – m is divisible by 5, we will expect that it can be expressed as the 
product of five consecutive whole numbers? I conjecture that it should be possible to 
end with 
 

(2)  ....................  )2)(1()1)(2(5 ++−−=− mmmmmmm  
 

So the question is, can we manipulate equation 1 to transform it into equation 2? Then 
the problem is solved. There does not seem much to do with equation 1, so let’s work 
from equation 2 to equation 1, i.e. from the “bottom” to the “top”: 

(2)  ....................  )2)(1()1)(2(
(3)  .............................. )4)(1)(1(

(1)  . ............................  )1)(1)(1(

2

25

++−−=
−+−=

+−+=−

mmmmm
mmmm

mmmmmm

 

 

Now I grab at equation 1 and try to change 1 into 3, working from top to bottom, 
making an ingenious substitution: 

  

)2( .......................  )2)(1()1)(2(
)3(  ...............................  )4)(1)(1(

(5) ...  )1)(1(5)4)(1)(1(=
(4)  ......................   ]5)4)[(1)(1(=
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Now, suddenly, if I have not been expecting it, the cold realisation dawns that 
equation 5 definitely is not equivalent to equation 3, so I cannot complete the proof as 
I anticipated! But at the same time I have a deep insight, an Aha Erlebnis! Equation 5 
has two terms, and each term is divisible by 5 (are you sure? Why?), therefore the whole 
expression is divisible by 5. Are you sure? Why? The reason is that “If in a b

c
+ , a is 

divisible by c and b is divisible by c, then a + b is divisible by c.” Do you agree?  
Therefore m5 – m is divisible by 5. QED – we are finished. 
 
But not quite – Polya says we must “look back” (phase 4)! One aspect of looking back 
is to try to generalise our result. It is clear that equation 5 is also divisible by 2 and by 
3, and therefore m5 – m is divisible by 5 × 2 × 3 = 30! 
 
Another aspect of “looking back” is to find possible errors – we should always re-
check our assumptions and each logical inference in our work. So we must wonder 
why I could not complete my original plan, namely to write m5 – m as the product of 
five consecutive numbers. The answer is that I made an error in reasoning! In fact, I 

 83



made two errors in reasoning! My plan was based on the implication “If a number is 
divisible by 5, then it can be written as the product of five consecutive whole 
numbers”. This is clearly false, as a quick specialisation shows: 5, 10, 15, 20, … are 
all multiples of 5, but cannot be written as the product of five consecutive whole 
numbers! The smallest multiple of 5 that can be written in this form is 
1 × 2 × 3 × 4 × 5 = 60.  The statement is generally untrue, e.g. 4 is divisible by 2 but 
cannot be written as the product of 2 consecutive whole numbers (although 2 can), 9 
is divisible by 3 but cannot be written as the product of 3 consecutive whole numbers 
(although 6 can). The source of my error is probably twofold: First, I expected my 
successful method of writing m3 – m as the product of three consecutive whole numbers 
to generalise to writing m5 – m as the product of five consecutive whole numbers, but it 
turns out that m3 – m is a special case! Second, I now realise that I have wrongly 
assumed that the converse of a theorem is also true! While it is true that “If a number 
can be written as the product of n consecutive whole numbers, then it is divisible by n”, 
its converse “If a number is divisible by n, then it can be written as the product of n 
consecutive whole numbers”, is false!  Let’s just say that doing mathematics makes 
you humble! Making mistakes is probably part and parcel of creatively work in 
mathematics – there are many examples in the history of mathematics. It was the 
philosopher Karl Popper who said: “We are fallible, and prone to error; but we can 
learn from our mistakes.”  
 
Another aspect of “looking back” is to investigate alternative solution methods. So let’s 
revisit the following problem: 

 
 

PROBLEM 80: 
m5 – m = (m – 1)m(m + 1)(m2 + 1) 
Prove that if m ∈N, then at least one of m – 1, m, m + 1 or m2 + 1 is divisible by 5, 
and therefore that m5 – m is divisible by 5. 

 

We start using the basic structure of consecutive numbers: m – 1, m, m + 1, m + 2 
and m + 3 are five consecutive whole numbers, therefore one of them is divisible by 5. 
Now we must use this fact to solve Problem 70: 
If one of m – 1, m or m + 1 is divisible by 5, then m5 – m is divisible by 5. 
If none of m – 1, m or m + 1 is divisible by 5, then m + 2 or m + 3 is divisible by 5. 
First take the case if m + 2 is divisible by 5. If m + 2 is divisible by 5, we can express it 
as 5k, k ∈ N. We will show that it implies that m2 + 1 is divisible by 5, by showing that 
m2 + 1 can be expressed as 5n, n ∈ N: 
     m + 2 = 5k, k ∈ N 
 ⇔ m = 5k – 2 
 ⇒ m2 = (5k – 2)2 = 25k2 – 20k + 4 
 ⇒ m2 + 1 = 25k2 – 20k + 5 = 5(5k2 – 4k + 1), which is divisible by 5. 
 ⇒ m5 – m is divisible by 5. 

 

 
PROBLEM 80 (a): 
Complete the proof for the case if none of m – 1, m, m + 1 or m + 2 is divisible by 
5, but  m + 3 is divisible by 5. 
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PROBLEM 70 (b) continued: 
For which n ∈ N is mn – m divisible by n? 

 

We have proven the special cases that mn – m divisible by n for n = 3 and 5. For what 
other n will it be true? Most of us will probably conjecture that it is true for n an odd 
number. Certainly it is easy to check another special case: if n = 1, m1 – m = 0 is 
divisible by 1. So we know that it is true for n = 1, 3 and 5 and this strengthens our 
conjecture about odd numbers.  But we cannot be sure! Trying to prove it for n = 7 
and 9 can be very difficult. Let’s try for n = 9: 

  m9 – m  = m(m8 – 1) 
 = m(m4 – 1)(m4 + 1) 
 = m(m2 – 1)(m2 + 1) (m4 + 1) 
 = m(m – 1)(m + 1)(m2 + 1)(m4 + 1) 
 
This is good practice in factorisation but it is going nowhere! Another important aspect of 
mathematical know-how is that we should exercise control over our activity. We should 
know when not to go on a wild goose chase and when to abort an effort and rather try 
something else. Mathematicians never jump into doing hard work such as above before 
they do not at least convince themselves psychologically that the conjecture is true. 
 
If you have to prove a theorem, do not rush. First of all, understand fully what the theorem 
says, try to see clearly what it means. Then check the theorem, it could be false. Examine 
the consequences, verify as many particular instances as are needed to convince yourself 
of the truth. When you have satisfied yourself that theorem is true, you can start proving it. 

Polya, 1945 
 

m m7 – m
7    

m9 – m
9   

1 0
7  = 0 

0
9  =0 

2 126
7   = 18 

510
9  = 56, 66… 

Psychological conviction comes mainly 
through specialisation and analogy. So 
before you jump in and get strangled in 
heavy manipulation that does not seem to 
lead anywhere, first check some special 
cases, using a calculator for the 
calculations, as shown here. 3 2184

7   = 312 
19680

9   = 2186,66… 

 

These special cases provide counter-examples that the conjecture is not true for n = 9! 
So our conjecture that mn – m divisible by n for n odd is not true! The special cases do suggest 
that mn – m divisible by n for n = 7, so I believe it and I will be willing to invest time and energy 
to try to prove it! How will you adapt your conjecture? 
 

We have not tested if mn – m divisible by n for n and even number. Special cases for 
n = 2 show that m2 – m is divisible by 2 and it is easily proven deductively: 
m2 – m = (m – 1)m, where (m – 1) and m are two consecutive whole numbers, so one of them 
is divisible by 2, because one is even and one is odd!  What about other even numbers? 
 

PROBLEM 70 (c): 
Show that mn – m is not divisible by any even n except n = 2. 

 

We now know that mn – m divisible by 2, 3, 5, 7, …  Now finish Problem 70(b): 
 

PROBLEM 70 (b): 
For which n ∈ N is mn – m divisible by n? 
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Equivalence 
Let’s now return to our original problems in A. We have shown that the use of one-way 
implications P ⇒ Q was logically invalid as proof, and that the proof itself and the thinking 
behind the proof really depended on analytical reasoning, i.e. P ⇐ Q.  We therefore 
suggested re-writing synthetic proofs as the reverse of the analytical thinking and even 
suggested that we write from the bottom up! 
 

But we can do better than that. We can combine the two one-way implications P ⇒ Q and 
P ⇐ Q in a two-way implication P ⇔ Q where it is valid, and then our analysis (from top to 
bottom) will simultaneously be our synthesis (from bottom to top)! 
 

If P is the statement x = 2 and Q the statement 2x = 4, it is clear that P ⇒ Q (i.e. we can 
deduce Q from P) and also P ⇐ Q (i.e. we can deduce P from Q). In such a case we can 
write P ⇔ Q.  We say that P and Q are logically equivalent and it means that we can 
replace the one with the other whenever we want.  As another example: if P is (x + y)2 and 
Q is x2 + 2xy + y2 then P ⇒ Q and P ⇐ Q, so we can write P ⇔ Q and we can interchange 
the one with the other as we wish. It does not matter which one of the two one uses, 
because you can always deduce the one from the other when needed. 
 

However, we must be careful. For example, if P is the statement x > 4 and Q the statement x > 2, 
it is clear that P ⇒ Q is valid (if a number is greater than 4, it is also greater than 2), but P ⇐ Q is 
invalid (if a number is greater than 2, we cannot conclude that it is greater than 4!).  
 
So let’s now re-write our original proofs in A using equivalence: 

 

 true.is P Therefore  true.is Q  valid.is PQ So
Q -------------1cossin  

cos1sin   
1cos,0sin  and  )cos1)(cos1(sin

P ------------
sin

cos1
cos1

sin       

 true.is P Therefore  true.is Q  valid.is PQ So
Q --------0  provided  

1)()(     

P ----------------  1cossin      
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=+⇔

−=⇔
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=
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θθ
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θ
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D 

EQUIVALENCE 

Analysis Synthesis 

In each case, the plan for the proof was found through the analysis P ⇒ Q, which of 
course is not valid as proof. However, the proof as we have now written it in D is 
completely valid from two perspectives: 
• Using the Modus Ponens proof structure: P ⇐ Q is valid, Q is true, therefore P is true. 

The validity of the proof therefore lies in the converse implications. Reading the proof 
from the bottom to the top represents our synthesis. 

• Using equivalence: each statement is equivalent to the other (we can deduce each 
statement from the other, working top-down or bottom-up. Therefore P and Q are 
equivalent, P ⇔ Q, which also means that the truth of the one implies the truth of the 
other. So again: Q is true, therefore P is true!  

 

I trust that you thoroughly understand the difference between the invalid statement "Q is 
true, so P is true" in A and the valid statement "Q is true, so P is true" in D!  
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To end 
I do not claim that all learners will necessarily excel in mathematics if we teach 
analysis. Mathematical problem solving is complex. For example, Schoenfeld16 
distinguishes the following factors influencing learners’ mathematical problem solving: 
• “Resources”: mathematical knowledge that the individual knows, can recall and 

can use in the situation. 
• Heuristics: problem solving strategies (strategic knowledge) like make a sketch, 

introduce notations, investigate special cases, make a table, find a pattern, ... 
• Control: the selection and monitoring of knowledge and heuristics – to know how 

long to persist with a line of reasoning and when to abort and try something else. 
• “Belief systems”: perspectives on the nature of mathematics, the learning of 

mathematics and the own ability … 
 
What I do claim is that: 
� We have to teach the logic of proof thoroughly, otherwise learners continually 

make mistakes like the Converse trap. 
� Explicit (conscious) knowledge and understanding of analysis is an essential 

heuristic for successful mathematical problem solving. 
� The logic of proof and analysis are not explicitly mentioned in the curriculum, so it 

is not taught, thus depriving learners of the opportunity to be creative and to learn 
mathematics as a constructive process. We do not provide them with the 
necessary tools of the trade! 

� The perception that mathematics is only, or really, “tidy mathematics”, undermines 
and sabotages any effort at independent problem solving. 

� The previous two points are main contributory factors to learners’ lack of 
confidence and expertise in mathematical problem solving! 

� The culture in the community of mathematicians17 to publicly show only the formal, 
“tidy” aspect of mathematics, contributes to and entrenches the misconception 
about the nature of mathematical activity among learners, teachers and the public.  

 
 
PROBLEM 81: 

Prove that  baabba ,  , 
2

≥
+   are positive real numbers. 

 
 

PROBLEM 82: 
If we add any fraction and its reciprocal (e.g. 5

6  + 6
5 ), what is the smallest 

possible value of the sum? Supply a general proof or explanation of your 
conclusion! 

 
 

PROBLEM 83: 
Prove that the logarithms of the terms of a geometric sequence form an 
arithmetic sequence. 

                                            
16  Schoenfeld, A. (1985): Mathematical problem solving is essential reading! See also online: 

http://gse.berkeley.edu/faculty/ahschoenfeld/Schoenfeld_MathThinking.pdf
17  There are exceptions – mathematicians that can write describe their thinking from a meta-

perspective, e.g. Poincaré, Hadamard, Polya, Schoenfeld, Davis & Hersch, … 
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PROBLEM 84: 

Use the method of equivalence to prove that 
1cot
1cot

tan1
tan1

−
+

=
−
+

θ
θ

θ
θ . 

Discuss the logic of the proof. 
(You are not asked to use the LHS-RHS proof structure!) 

 
 
PROBLEM 85: SCHOOL PROBLEMS 
Take several trigonometry identities from your school mathematics textbook and 
prove the identities using the method of equivalence. Compare it with the usual, 
LHS-RHS-separately method. Which is easier? Why? 

 
 
PROBLEM 86: 
Prove that for all a, b, c, d ∈ R: 

 a2 + b2 + c2 + d 

2 = ab + bc + cd + da   ⇒   a = b = c = d 
 

 
PROBLEM 87: 
Prove that f(n) = n5 − 5n3 + 4n  is divisible by 120 for all n ∈ N. 
 
 
PROBLEM 88: 
Prove that  is a multiple of 6 for all nnn ++ 23 32 n ∈ N. 
 
 
PROBLEM 89: 
Prove that n(n2 – 1)(3n + 2) is a multiple of 24 for all n ∈ N. 
 
 
PROBLEM 90: 
If we divide any whole number by 3, the possible remainders are 0, 1 or 2. 
If we square a whole number and then divide by 3, what are the possible 
remainders? Check your answer and give a general proof. 
If we square a whole number and then divide by 5, what are the possible 
remainders? Check your answer and give a general proof. 
 
 
PROBLEM 91: AVERAGES 
Check if you agree: The average of the four consecutive numbers  1, 2, 3, 4  is  
21

2  and the average of the first and last number is also 21
2 .  

Is this a coincidence or is it true for any four consecutive numbers? Why? 
What if not? What if it was not four numbers, but three, or five, or six, … or n? 
What if not? What if it was not consecutive natural numbers, but consecutive odd 
numbers, or consecutive even numbers, or …? 
 
 
PROBLEM 92:  
P is a point inside equilateral ∆ABC. P is 3 cm from AB, 4 cm from AC and 5 cm 
from BC. Find the length of a side of ∆ABC. 
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PROBLEM 93: SUM = PRODUCT? 
Check, continue and explain: 
1. 4 + 43  = 4 × 

4
3  2. 4 + 43  + 16

13  = 4 × 
4
3  × 16

13  

 5 + 54  = 5 × 
5
4   5 + 54  + 25

21  = 5 × 
5
4  × 

25
21  

 6 + 65  = 6 × 
6
5   6 + 65  + 36

31  = 6 × 
6
5  × 

36
31  

 

Note: Only a foolhardy person would want to generalise and say that multiplying 
a fraction is the same as adding the fraction! One counter-example will disprove 
the conjecture. But situations like this nevertheless are sometimes true. The 
mathematical mind will always want to know 
• Why are these special cases true? (Explain the structure.) 
• Exactly when is it true? (Find all the cases for which it is true, i.e. generalise.) 
 
 
PROBLEM 94:  THE MISSING CM2 

The four figures are arranged in a triangle below left, and then re-arranged as 
shown to the right. Where does this gap come from? 

 

 
 

? 

Click here for an interactive version of the problem. 
 

 
 

P 
D 

C 

A PROBLEM 95: CHORDS, SECANTS AND TANGENTS 
 

1. ABCD is a cyclic quadrilateral with AB and CD 
intersecting at P. 

 Prove that  PA.PB = PC.PD B 
 

Click here for an interactive applet. 
 

2. Specialise by checking the nature of the result when: 
• P is the centre of the circle. 
• AP = CP and PB = PD (when AC // DB). 

 A 
3. Generalise by proving that the relationship in 1 

applies also when AB and CD intersect outside 
the circle.  Why is it a generalisation? 

B 

P 
 

D 4. Now specialise by taking the following limiting 
cases (i.e. deduce the result directly from the 
relationship in 3): C 
• Secant PBA becomes a tangent to the circle at B 
• Secant PDC also becomes a tangent at D. 
Show that you can deduce that PA = PB. 
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PROBLEM 96: EVERY TRIANGLE IS ISOSCELES 
Analyse the logic of this proof ....  

 
Theorem: Any triangle is isosceles 
 

Construction: Let ABC be any triangle. Bisect angle A to meet the 
perpendicular bisector of BC in O. Draw perpendiculars from O to meet the 
(extentions of the) sides of ∆ABC in P, Q and R. 
 
Proof: 
If O is inside the triangle, as shown in Figure 1: 
 

OBR OCR    ......  , , s
OB OC   ...........  (1)

s∆ ≡ ∆ ∠
⇒ =

 
 

APO AQO    ......  , , s
OP OQ    ...........  (2)
AP AQ    ...........  (3)

∆ ≡ ∆ ∠ ∠
⇒ =
⇒ =

 

 

OPB OQC    ......  90 , hyp, s:  from (1) and (2)
PB QC   ...........  (4)

∆ ≡ ∆ °
⇒ =

 

 

(3) (4) : AP PB AQ QC
AB AC, i.e. ABC is isoceles.
+ + = +

⇒ = ∆
 

 
 
As O buite die driehoek lê, soos in Figuur 2: 
 
Dan geld (1), (2), (3) en (4) presies soos hierbo. 
Neem nou (3) – (4): 
 

   AP PB AQ QC
AB AC, d.i. ABC is gelykbenig.
− = −

⇒ = ∆
 

 
 
 
 
As O op BC lê (Figuur 3): 
 

OB OC   ...........  konstr.    (1)=  
 
Die res van die bewys volg presies soos in Figuur 1: 

O 
Q 

P 

B C R 
Figure 1 

B 
C 

P 
Q 

R 

O Figuur 2 

Q 

C B 

P 

O 
Figuur 3 

A 

A 

A 

 

    AP PB AQ QC
AB AC, d.i. ABC is gelykbenig.

+ = +
⇒ = ∆

 

 
 
Dus, enige driehoek is gelykbenig. 
 
 

JUMP TO 2.6 EQUATIONS
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