2.5 PROOF: ANALYTICAL AND SYNTHETIC REASONING

Construction of valid arguments or proofs and criticising arguments are essential
aspects of doing mathematics. However, constructing proofs (deductive reasoning) is
not always so easy. In this section we look at the logic underlying valid proofs and the
process of constructing proofs. Let’s start with this orientation problem:

PROBLEM 62: CORRECT OR NOT?
Give a mark out of 10 for each of the proofs® in A. Motivate!

1. Prove that: sin?@+cos*9 =1

Vusi's proof : sin?@+cos*6 =1
R o Rt
r r

xrl:

Ly Xt =r?
Qistrue.So P istrue. QED

sind  1+cosd

2. Prove that: =
1-cosé@ siné

Thandi's proof : —om?_ _1+cosd .. b
1-cosé sin@
-.sin?@ = (1-cos) (1+cosd) and sind=0,cosd =1
- sin?@=1-cos* 6
sin20+c0820 =1 ---cemmean- Q
Qistrue.So P istrue. QED

3. Sove for x : 2x=9)  x+3_,
5 3
Mary's solution : 2x=3) , X;FB =2 e, P

<. 6(x—3) +5(x+3) =30
- 6X—18 +5x +15=30
~.11x-3=30
- 11x =33

x = 3is the solution of Q, so x = 3is the solution of P

! Q. E. D. We often joke that QED means "quite easily done"! Euclid (about 300 B.C.) concluded his proofs with

hoper edei deiksai, which Medieval geometers translated as quod erat demonstrandum (“that which was to be proven™).
Isaac Newton used the abbreviation Q. E. D. From Earliest Known Uses of Some of the Words of Mathematics &
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First comments on A

As they are expressed here, the proofs in 1 and 2 are invalid! The well-known procedure for
solving equations in 3 is based on exactly the same reasoning structure as the proofs in 1
and 2 and the logic is likewise invalid! Learners should get O out of 10 for each question!

But why are the proofs invalid?

Teachers often do not accept the proofs in A, giving as reason that “it is an identity and
therefore one must work with the left-hand and right-hand sides separately”. Of course
one can prove the statements using the LHS-RHS proof scheme (if a = c and b = ¢, then
a = b), but to insist that it is the only proof scheme, impoverishes mathematics and
handicaps us as mathematicians!

Underlying the insistence on the LHS-RHS proof scheme, is a perspective that

“You cannot say they are equal when you have to prove that they are equal, so you may
not use the =-sign”.

“You may not assume that it is true and then prove that it is true”.

“You may only start with something that is true (or that is given)”.

These perspectives are not correct, as you will see in the rest of this section.

We will analyse the proofs in 1 and 2 in two ways: first from the perspective of logic, and
then from the perspective of equations, where we will also come back to discuss the logic
of 3. In the process we also reflect on issues about the nature of mathematics and how
our views on the nature of mathematics influence the teaching and learning of
mathematics.

Logic
Pure mathematics is the class of all propositions of the form 'p implies g' where p and q
are propositions ... Bertrand Russell

In deductive reasoning, we argue that if certain premises (antecedent or hypothesis)
(P) are known to be true or assumed, a conclusion (Q) necessarily follows from these.

If a conclusion does not follow from its premises, the argument? is said to be invalid or non
sequitur (Latin for “it does not follow”). It should be stressed that in an invalid argument the
conclusion can be either true or false®, but the argument (the logic of the reasoning) is
invalid because the conclusion does not follow from (is not caused by) the premises.

If the argument is valid but the premises are not true, then the conclusion may or may
not be true, but the argument cannot help us decide this®.

To understand the above statements, let's analyse the logic in the following arguments:
"If Graeme arrives late (P), then he will miss the bus (Q)."

We call this a conditional statement® — it establishes the condition, the relationship
between the two statements. We say P implies Q, writing itas P = Q.

An argument is a line of reasoning, a sequence of statements aimed at demonstrating the truth of an assertion.

Note that in logic we say a statement is true or false, but that an argument (the reasoning structure) is valid or invalid.
This what A is all about!! Compare: If 3=4, add 1 to both sides, then 4 =5 (false). If 3 =4, multiply by 0 both sides, then 0= 0 (true).
A statement is a declarative sentence which is either true or false, according to the Aristotle axiom of the
excluded middle. For a closed sentence this is immediately obvious, e.g. 2 + 3 =5 is true and 2 + 3 = 6 is false.
In the case of an open sentence, e.g. X + 3=5, whether the statement is true depends on the value of the variable.
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Then we have one further piece of information (fact) about the truth of P or Q (e.g.
Graeme was late or did not miss the bus), and then we use this information together
with the implication to draw some conclusion. Consider these cases:

Case 1: Fact: Graeme arrives late. Can we conclude that he misses the bus? Yes!
This is a valid argument. The structure is: P = Q is valid, P is true. So Q is true.

Case 2: Fact: Graeme does not miss the bus. Can we conclude that he did not arrive late?
Yes! This is a valid argument. The structure is: P = Q is valid, Q is false. So P is false.

Case 3: Fact: Graeme does not arrive late. Can we conclude that he did not miss the
bus? No! This is an invalid argument. This may sound like a good argument, but
perhaps he did indeed catch the bus, perhaps he fell asleep and missed it anyway —
we have insufficient information to conclude anything.

The structure is: P = Q is valid, P is false. So Q is false.

Case 4: Fact:. Graeme misses the bus. Can we conclude that he must have arrived late?
No! This is an invalid argument. This may sound like a good argument, perhaps he was
indeed late, but maybe he arrived on time but for some reason did not get on the bus, or
the bus may have been full — we have insufficient information to conclude anything.

The structure is: P = Qs valid, Q is true. So P is true.

As the two invalid arguments above suggest, the conclusion of an invalid argument
does not necessarily have to be false — it's just unproven by this particular argument.
In everyday language there is often an expectation that if P happens then Q will
follow, but if P fails then Q fails also (e.qg. if you study hard, you will pass implies that if
you do not study hard you will fail — see also case 3 above) and that if Q happened
the prerequisite P was fulfilled (e.g. if someone passed, it means that he studied hard
— see also case 4 above).

However, in mathematics such assumptions are not made. In mathematics a proof in
the form if P then Q simply requires that if P is true, then Q must be true also. If P is
false, then no implication as to the truth or falsehood of Q is possible. Likewise if Q
is true, we cannot conclude that P is true, as assumed in the “proofs” in A! When the
mathematician says “is true”, he means “is always/generally true” or “is necessarily true”.

Consider this conditional: If X > 6 then X > 3. In mathematics this is considered a valid
implication: if X is a number bigger than 6 then it must necessarily also be bigger than 3.
However, consider this as separate statements, where P is “X > 6” and Q is “X > 3.
What happens for various values of X? Of course you will expect that if P is true then

Q is true, but note that if X = 5, P is false and Q is true! Look again: if X =5, Q is true
but P is false — does this convince you that the arguments in A are invalid?

Make sure that you agree with the summary of the different possibilities in this table.
Maybe you will also find it useful to interpret the relationships on the number line model.

P:x>6 Q:x>3 , ,
x=7 true true > P
x=5 false true 3 6 q
r=2 false false | |

Let’s try to draw some conclusions about possible P-Q relations from this information:
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e What can we say if we know that P is true? You can see in the table that for P there is
only one true value, so we know that if P is true, then Q is true, for certain!

e What can we say if we know that Q is false? You can see in the table that for Q there is
only one false value, so we know that if Q is false, then P is false, for certain!

e What can we say if we know that P is false? We cannot conclude anything, because
as you can see in the table, Q can be true or false, so we do not know!

e What can we say if we know that Q is true? We cannot conclude anything, because as
you can see in the table, P can be true or false, so we do not know!

So of the above four possibilities, two are valid arguments, and two are invalid.

Mathematicians do not study objects, but relations between objects. Thus, they are free to
replace some objects by others so long as the relations remain unchanged. Content to
them is irrelevant: they are interested in form only®.  Jules Henri Poincaré, 1854-1912

Here is a summary/generalisation of the forms of the logic (i.e. P and Q are any statements):

Valid arguments Invalid arguments
P=0Q P=0Q P=0Q P=0Q
P is true Q is false P is false Qis true
So Q is true So P is false So Q is false So P is true
Modus Ponens Modus Tollens “Inverse’ trap” “Converse trap”
Latin: mode that affirms | Latin: mode that denies | Denying the antecedent | Affirming the consequent
Direct proof Indirect proof

Reductio ad absurdum

It should now be clear that all the proofs in A fell into the Converse trap! Maybe this will convince you:

If it rains, it is wet If it rains, it is wet If it rains, itis wet®  [If it rains, it is wet®
It is raining It is not wet It is not raining It is wet
So it is wet v Soitis notraining v' |Soitis not wet x Soitis raining x

The important thing to understand is that, if you reason correctly:

e If you start with a true statement, you must end with a true statement — this is Modus
Ponens (Note: we said if you reason correctly, i.e. if you use a valid argument.)

e If you end with a true statement, you do not know if the original statement is true or false —
this would be the Converse trap! These three simple examples illustrate the point:

2 =2, which is true 2 =3, which is false 3 =-3 whichis false
+3:=>2+3=2+3,avalid argument |x 0:= 0x 2 =0x 3, a valid argument =3 = (3, awvalid argument
= 5=5, which is true = 0 =0, which is true =9 = 9, whichistrue

Check again: The reasoning is valid, and each conclusion is a true statement. But we
cannot deduce from this true conclusion whether the original statement was true or not!
Let's return to Ame’s famous x + X = x*:
To check if the manipulation x + x = x? is correct, if we check for x = 1:
x+x=x>(P)=1+1=1%ie.2=1(Q). Qis false, so P is false by Modus Ponens™.
However, if we check for x = 2:
x+x=x*(P)=>2+2=2%ie. 4=4(Q). Qis true. But we cannot deduce that P is true — it
is the Converse trap.

Convince yourself that the content of our bus and mathematics arguments above is different, but their logical form is similar.

The Converse of If P then Q is If Q then P; Inverse: If not P then not Q; Contrapositive: If not Q then not P
Compare: If 1 am in Stellebosch, I am in South Africa. | am not in Stellenbosch. Therefore, | am not in South Africa?
Compare: If | am a cat, | am a mammal. | am a mammal.Therefore, | am a cat?

1% Note that disproving a statement using a counter example, is therefore proof by Modus Ponens!

™ This is also the logical explanation why partial induction can never be a proof! For example: F(n) = n? — n+11 is
prime (P) = F(1) =11 s prime, indeed .... = F(10) = 101 is prime (Q), is the Converse trap! P = Q is valid, Q is true.

© 00 N O
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PROBLEM 63: ILLOGICAL LOGIC

If we use valid reasoning (each step in the argument is valid), a true statement cannot
lead to a false statement. If the conclusion is false, there must be an error in the
reasoning somewhere! Where is the error in the logic in these arguments?

-20=-20 X=2 i Q) X=2 i, 1)
= 25-45=16-36 =>x-1=1 =>x-1=1
2 2
2545+ °% 1636+ 1 = (x-1)" =1 = (=17 =1=x-1
5 5 =x*-2x+1=1 = x*-2x+1=x-1
:(5_5)2:(4_5)2 = x*-2x=0 = x?-2Xx=x-2
9 9 = Xx(x-2)=0 = X(x-2) =1(x-2)
=>5-——=4-—— _ _ _
2 2 = Xx=00rx=2 =x=1
=5=4 Putx=0in(1): 0=2 Putx=1in(1): So 1=2

PROBLEM 64: ILLOGICAL LOGIC TOO?
If we use valid reasoning (each step in the argument is valid), a false statement can lead
to a true statement. Or can you find an error in the reasoning in the following argument?

5=4
:>5—g :4—g
2 2

9% _ 4 9
=6 =(4-)

= 25—45+§ :16—36+§
4 4

= 25-45=16-36
= -20=-20

Remark:

“Logic” is not formally included as content in the school mathematics curriculum. But it
should be, and teachers should make sure that their learners understand the basic
logical principles. Erroneous logical generalisations are not only apparent in proofs as
illustrated in A, but it effects children’s everyday mathematical activity.

Example from Geometry™?:

Learners often assume that the converse of a statement is true. For example, the theorem “If
two triangles are congruent, then corresponding angles are equal” is true, but the converse is
not: “If corresponding angles of two triangles are equal, then the triangles are congruent.”

Example from Algebra.

Most school children have the misconception that if X + y = 4, then X and y cannot both
be 2. (If you do not believe it, you should check your learners!) Children often
“deduce” this idea through erroneous logic (Olivier, 1988), namely:

12 Actually there is a serious problem here: Learners mostly assume converses are true, while, in general, converses are not
(the converse trap)! We should rather develop the attitude to view each true converse as an exception, as an unexpected
surprise, which it is! What is the converse of “If a figure is a triangle, then it is a polygon”? What is the converse of “If
a figure is a rectangle, then it is a square™? And “If triangles are congruent, then they have equal areas”?
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If the symbols are the same, then their values are the same (P = Q)
So: If the symbols are different, then their values are different (Inverse trap: not P = not Q)
or

If the symbols are the same, then their values are the same (P = Q)
So: If the values are the same, then the symbols are the same (Converse trap: P < Q)

Analytical reasoning
Let us now look at the “proofs” in A with different lenses. Although the proofs are
logically invalid, the kind of reasoning is essential in proving statements.

When we reason backwards to find out how we could prove it, we call the reasoning
analysis:

We can prove that sin®@+cos*6 =1------- P

i Yya XNz _
if we can prove that (?) + (?) =1 ANBLYSIS
i.e.if wecanprovethat y*+x*=r® ------- Q

But we know that Q is true, we do not have to prove it!

We can prove that Sing__1+cosf =

1-cosd  sin@
if we can prove that sin® @ = (1—cos @) (1+cosé)

i.e.if we can prove that sin®6 =1-cos* 6
i.e.if we can provethat sin@+cos®’6=1----Q
But we know that Q is true, we do not have to prove it!

Now we can easily prove the two original statements in A through Modus Ponens by
simply reversing the reasoning in B, i.e. reasoning back from the bottom to the top:

y>+x*=r® (Pythagoras) --------- Q
¥ = (1)2+(5)2 =1 if r=0 <C
r r SYNTHESIS
= SiN20 +C0S% @ =1 ---nmmmmmmmmmmmm- p

SoQ = Pisvalid.Qis true. So P is true.

SiN“+C08°@ =1 -----mmmmmmmmemeee Q
= sin’f =1—-cos’ @
= sin® @ = (1—cosd) (L+cosb)
sind  1+cosd
1-cosd  sind
SoQ = Pisvalid.Qis true. So P is true.

+sind(l—cosh) .= if sind =0, cos@=1---P
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The proofs in C are completely valid — both use the Modus Ponens proof structure, i.e.
Q = Pisvalid, Q is true, so P is true. Do not be confused because our Ps and Qs are
now reversed from the original formulation of the Modus Ponens structure — we used
the same notation as in A, but reasoned backwards, that is why they are reversed!
Both proofs are extremely beautiful and elegant. The point is that we “discovered”
these elegant proofs through analysis, i.e. by reasoning backwards from what we had
to prove, not by starting with what we had.

Using the Modus Ponens proof structure, i.e. logically reasoning from facts that we
accept as true (or given information) towards conclusions, is called a synthesis or
synthetic reasoning.

About the nature of mathematics

Our views on the nature and place of analysis and synthesis influences our view of the
nature of mathematics. Or probably it is the other way around — our views on the
nature of mathematics determines our view of the nature and place of analysis and
synthesis in doing mathematics and in teaching and learning mathematics.

More generally, it is a question about the place of informal and formal mathematics in
mathematics. Griffiths (1978) talks of untidy and tidy mathematics. The exposition in B —
analysis — and induction are important aspects of “untidy mathematics”. The exposition
in C — synthesis — is an aspect of “tidy mathematics”. The role of induction and
deduction and the two faces of deduction (analysis and synthesis) are illustrated in the
diagram below. Note that from the nature of analysis — to reason backwards from the
result we want to prove — that analysis is only possible if the result is already known.
To start from a problem and deduce a new result by deduction, we must necessarily
use synthetic reasoning without the help of analysis — and this is often difficult, because
we are working in the “dark” without direction.

Deduction: synthesis

Inductlon Deduction:
Analysis
or
synthesis

The point we are making is that when doing mathematics, mathematicians use “untidy
mathematics” such as induction and analysis to discover their results. But when it
comes to writing up the results of a piece of mathematical work in books and journal
articles, the culture in the community of mathematicians is to show only the tidy
product C, while omitting both the untidy process of analysis in B underlying the
method of the proof and the inductive reasoning through which the conjecture may
have been discovered. This is well expressed by Richard Feynman in his Nobel
Lecture in 1966:

PROBLEM
SITUATION

We have a habit in writing articles published in scientific journals to make the work as
finished as possible, to cover up all the tracks, to not worry about the blind alleys or
describe how you had the wrong idea first, and so on. So there isn't any place to
publish, in a dignified manner, what you actually did in order to get to do the work.

70



In this way many users of mathematics — people reading books and journals, but who
have never really done any independent creative mathematics themselves, and this
includes most mathematics teachers — develop the total misconception that C is the
Mathematics, and that the results were developed or discovered through the process
of C (synthesis). They are confusing the formal description of mathematics as a
deductive system with the living, creative activity of mathematicians! Unfortunately
school mathematics textbooks and many mathematics teachers, well-meaning as they
may be, convey and perpetuate a distorted view of the true nature of mathematical
activity. Their expectation that learners must then try to mimic this “sterile” formalist
style in doing mathematics, without explicit knowledge of inductive and deductive
reasoning (in particular analysis and logic) is a main contributory factor that
mathematics continue to mystify most learners.*?

Lakatos (1976, 142) uses the term “deductivist style” for synthesis and says:

In deductivist style, all propositions are true and all inferences valid. Mathematics is
presented as an ever-increasing set of eternal, immutable truths. ... Deductivist style
hides the struggle, hides the adventure. The whole story vanishes, the successive
tentative formulations of the theorem in the course of the proof-procedure are doomed
to oblivion while the end result is exalted into sacred infallibility.

Schultze describes synthesis and analysis quite elegantly:

A synthesis shows that every step is true, but does not explain why this step was
taken (and not another). A synthetic proof convinces the reader that the fact to be
demonstrated is true, but it does not reveal to him the real plan of the demonstration,
does not tell him why this sequence of arguments was selected. Proofs are not
discovered by synthetic methods, and if forgotten, synthetic demonstrations are most
difficult to reconstruct. But synthetic proofs are usually short and elegant, and are in
place when no pedagogical conditions need to be considered.

An analysis, on the other hand, is lengthy and not elegant, but is the only method that
students can hope to discover proof, or to re-discover then after forgotten. Anal;}vswigwivsw
the method of discovery, synthesis the method of concise and elegant presentation.

However, this description maybe gives the impression that analysis is “not the real
thing”, not real Mathematics, but that it could be used as a teaching strategy. Nothing
could be further from the truth: Analysis, and in general “untidy mathematics” is
Mathematics with a capital M, as Davis and Hersch (1981) emphasise:

The criticism of formalism in the high school has been primarily on pedagogic grounds:
this is the wrong thing to teach, or the wrong way to teach. But all such arguments are
inconclusive if they leave unquestioned the dogma that real mathematics is precisely
formal derivations from stated axioms. If this philosophical dogma goes unchallenged, the
critic of formalism in the school appears to be advocating a compromise in quality: he is a
sort of pedagogic opportunist, who wants to offer the students less than the real thing.
The issue then, is not, what is the best way to teach, but what is mathematics really all
about. . . . Controversies about high school teaching cannot be resolved without
confronting problems about the nature of mathematics.

¥ We emphasise again that the main objective of this course is exactly to try to give teachers the kind
of creative experiences that will influence their perspective on the true nature of mathematical
activity, and that this will change the atmosphere of their mathematics classroom away from
repetitive routine reproduction towards mathematics as a problem solving process.
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On teaching and learning

If teachers have an impoverished perception that mathematics is only the formal/tidy
aspects of mathematics, they carry that false perception into the classroom and create
an impoverished mathematics culture, that research show radically influences learners’
beliefs and attitudes and determines how and what they learn. See Constructivism.

LEARNERS’
LEARNING = = N
il N\

LEARNERS’ TEACHER'S
AVATHERATIS CLASSROOM AMATHEMATIS
*LEARNING & MATHEMATICAL “ *LEARNING
*TEACHING CULTURE *TEACHING
*SELF *LEARNERS

To give the impression that problems are (only) solved using synthetic reasoning like in
C, puts learners in an impossible position: Learners can only try to fulfil the requirement
through memorisation, re-production, imitation and rote learning. Then the classroom
mathematical culture is characterised by memorisation, re-production, imitation and rote
learning, making an inquiry attitude impossible and then it is impossible to achieve any of
the wonderful Curriculum 2005 outcomes described in the introduction!

Take the following example of a problem and its synthetic proof. Make sure that you
understand it before continuing!

Provethat a’?+b?>2ab fora,beR

Proof : (a—b)* >0 fora,beR ------- P
—a’-2ab+b*>0
—a’+b*>2ab ------ooeo-o- Q

This is a beautiful, elegant and genial proof (do you agree?) using Modus Ponens:
P = Qis valid, P is true, so Q is true. However, the teacher "forgot" to show learners
how she knew to begin with (a — b)2 > 0!l Where did this come from?

Now think of your own understanding of the proof — did you maybe also feel, as
Schultze says (see previous page), that you understand every step, but not “why this
step was taken, and not another™? Were you able to construct this proof on your
own? Or do you feel like many learners that you will never be able to ever know how

to begin with something like (a — b)2 >07?
The only way for the learners and for the teacher to understand this genial proof, or to

later re-construct it if one has “forgotten”, or to produce such a proof yourself, is to first
understand the analysis that underlies the synthesis:
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a’+b*>2ab
Analysis| = a’—2ab+b®>0 Synthesis
= (a—-b)2>0 provideda,beR (remember,(v-1)? =-1)

Of course, everyone should know that the analysis is not an acceptable proof (beware
of the Converse trap!). But now learners and the teacher can easily write down the
genial synthetic proof from bottom to top. Such an “open” approach should contribute
to demystifying the mystique of mathematics and mathematicians and remove feelings
of incompetence. The good teacher therefore shows learners the analysis! Then B,
just as much as C, becomes part of the mathematical culture in the classroom!

PROBLEM 65:
ac+2b®> c’+2bd
bc dc

Prove: IfE:E then
b d

You should really not read the solution until you have spent some time doing it yourself!

The idea is that you should try to solve it using analysis. Of course you can solve it using the
LHS-RHS scheme. Maybe you should (also) solve it like that and reflect on your thinking and
compare it with analysis ...

Now try to understand this beautiful synthetic proof:

a ¢
b d
2b, a 20 c 2b
¢ b c d c
ac+2b®> ¢’ +2bd
bc  de

The analysis underlying the proof is:
ac+2b> c®+2bd

We can prove that

C dc
if we can prove that %+2—b = % +2—b (division is right - distributive over addition)
C

i.e.if we can prove that % :g (—%b both sides)

But a_c is given!
b d

PROBLEM 66: A
Prove in the sketch that DE.AC = BC.AD E

Try to solve the problem before continuing reading!
Reflect on the reasoning process. B C
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Here is a “performance” (the synthesis):

ZBDC = £ BEC =90° (given) A
= DBCE is a cyclic quadrilateral (angles on the same chord) E
1) £zA=ZA
(2) £ AED=2DBC (external angle of cyclic quadrilateral DBCE) D
= A ADE is equi - angular to AACB (sum of internal angles is180°)
= AADE/// AACB (equi-angular As are similar) B Cc
_ DE_AD
CB AC

= DE.AC=BC.AD

This is a beautiful synthetic proof. But it omits the thinking behind the proof, the
analysis. It also says nothing about wrong and aborted attempts that the teacher tried
last night when preparing for the lesson. If the teacher then tomorrow impress the
learners with a genial synthetic proof, he is mathematically and pedagogically
dishonest! One can make hundreds of valid statements about the figure (Interior
angles of a triangle is 180°, vertically opposite angles are equal, external angle of a
triangle ---)- But the poor learners do not understand how the teacher knows to use
these specific statements (theorems) and not others. They may understand each
“step” in the proof, but they do not understand why the teacher chose this step and not
another, and they do not understand where this is all going — they do not understand
the plan! The famous mathematician Poincaré also emphasises that if one does not
see the total plan, it leads to a feeling of not understanding:

To understand the demonstration of a theorem, is that to examine successively each
of the syllogisms™* composing it and to ascertain its correctness, its conformity to the
rules of the game? For the majority [of people], no. Almost all are more exacting; they
wish to know not merely whether all the syllogisms of a demonstration are correct, but
why they link together in this order rather than another. In so far as to them they seem
engendered by caprice and not by an intelligence always conscious of the end to be
attained, they do not believe they understand.

Learners cannot construct such synthetic proofs if we do not also teach them the
underlying analytical reasoning:
How can we prove that DE.AC = BC.AD?
DE AD

If we can prove that — =——
CB AC

and we can prove this if we can prove that AADE///A ACB

and we can prove this if we can prove that AADE is equi - angular to AACB

and we can prove this if we can prove that two anglesin the triangles are equal

We know that (1) ZA=ZA

We cansay (2) ZAED = ~/DBC

if we can prove that DBCE is a cyclic quadrilateral (AED is external and DBC an internal angle)
We can prove that DBCE is a cyclic quadrilateral if we can prove angles on the same chord equal

But we know ~BDC = ZBEC =90° (given)

14 A syllogism, also known as a rule of inference, is a formal logical scheme used to draw a conclusion from a set of
premises. An example of a syllogism is Modus Ponens. The Greek "sullogismos" means “deduction”.
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Through analysis the plan and the necessary individual steps is now clear and
transparent for everyone to see and understand. We can now write down the synthetic
proof by reasoning backwards, from the bottom to the top. Even if the teacher can
write down a synthetic proof directly, the good teacher will act and pretend that he
cannot, and take learners with him through the whole analysis and the synthesis
following it.

One of the best teaching strategies to develop analytical thinking is to let learners
write down proofs from the bottom to the top: when one has finished the analysis
(writing from bottom to top), then the (from top to bottom) is automatically finished!
Learners should therefore be able to write down the last step first, then the second
last step, etc. Let’s illustrate with the following example:

E

PROBLEM 67:

In the sketch AD // EC and ZBAD = Z/DAC.

Prove that AB // ED c

B
The last step is therefore AB//ED: 5
?2?
ANALYSIS ¢ = /BAD=ZADE * SYNTHESIS
= AB//ED (Alternateanglesare equal)

The previous step — the premise for the conclusion that AB//ED — can be that alternate
angles are equal, or corresponding angles are equal, or co-interior angles are
supplementary, or that ABDE is a trapezium, or ... Choose one, e.g. that alternate angles
are equal. Then the previous step is to find a premise leading to the conclusion that these
(alternate) angles are equal, etc. Complete the proof ...

Whether you try to physically write proofs “bottom-up” or not, the fact is that we can
only conceive the plan for a proof through analysis, and that means “reasoning
backwards”! For each statement Q we need to prove, we need to find a premise P so
that we can say P = Q. But we must first prove P, so we need a premise M so that we
can say M = P, etc.

PROBLEM 68:
AD = 4 cm is the diameter of a circle. AB =BC =1 cm. B
Find the length of CD.

y A

Have you
solved the
problem?

Solve it now!

Continue ...
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n ———F

PROBLEM 67 Solution: ‘
A=/,2=,3=/,4
=/ = /4 TAnalysis Synthesisl

B

= AB//ED (Alternate angles are equal) ‘V

PROBLEM 68 Solution:

N2

What resources (knowledge) is applicable? There can be <
many approaches. We will use the cosine formula in ABCD. B
Substituting the given value BC = 1, we have:
BD? = BC? + CD? - 2BC.CD.cosC 1
= BD? =1+CD*-2CD¢c0sC........cceoe...... (1) A Z D

It is clear that to solve for CD, we first need to find the values of the other unknowns, i.e. BD?
and cos C. These then become sub-goals and give direction to our activity. Without such
direction, we can try all kinds of directions in a wild goose chase that may lead nowhere!

Sub-goal 1: To find the length of BD:

What resources can we bring to bear on the problem?

We know that AD is a diameter of the circle, so we can use the general theorem If we
have a diameter of a circle, then the diameter subtends a right angle. But we know AD
is the diameter, therefore we can conclude that Z/ABD = 90°.

This means that we can apply the Theorem of Pythagoras: If Z/ABD = 90° then
AD? = AB? + BD?. But we know that ZABD = 90°. Therefore:
AD? = AB’ + BD?
= 4* =1 +BD®
= BD? =15CM ..ocoverrrrens 2)
Sub-goal 2: To find the value of cos C:

If you have a cyclic quadrilateral, then the sum of opposite interior angles is 180°.
But ABCD is a cyclic quadrilateral by definition (the four corners lie on the circle).

= /ZA+£C=180° = £ZC=180°-ZA

= cosC=cos(180-A) = —cosA:—% i (3)

Now we simply have to substitute equations 2 and 3 into 1, and we are done:

15 =1+CD? +2(:D%

Well almost! Again, it is now recognising the structure or form of the equation to recall
a relevant knowledge structure. The CD? should trigger that it is a quadratic equation.
If we now recall our “quadratic equation schema”, we know we must write the equation
in the standard form, factorise, etc.:

2CD?+CD-28=0
= (2CD-7)(CD+4)=0
=CD=-4o0or CD=35
=CD=3,5cm

Reflect for a moment! Does the answer make sense in the situation? Well yes, it is
shorter than 4 cm, as it should be, because the diameter is the longest chord in a circle!
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PROBLEM 69:

—b—+/b*—4ac _ 2c

2a —b++/b?—4ac

Prove that

PROBLEM 70:
(&) Prove:

m® — m is divisible by 3 forallm e N
m° — m is divisible by 5 forallm e N
(b) For which n € N is m" —m divisible by n?

Be sure to try to solve it — several times — before continuing reading!

To make sure that we understand the problem, and believe that it is true, we can
specialise. In the case of (a) we have

m m3—-m Divisible by 3?
1 1-1=0 Yes
2 8-2=6 Yes
3 27—-3=24 Yes
4 64 -4 =60 Yes

It certainly looks like the answer is divisible by 3. In fact, one could probably make a
stronger conjecture: the result is always divisible by 6!

But of course we are aware of the dangers of generalising through incomplete
inductive reasoning — to prove that the answer is always divisible by 3 (or 6) for all
values of m, we will have to construct a general deductive argument. Also, our numerical
examples give us no indication of why the answer should be a multiple of 3 — only an
analysis of the structure of the situation, i.e. general deductive reasoning will explain the
nature of the result.

Now that we have made sure that we understand the problem (Polya’s phase 1), we
must make a plan (Polya’s phase 2)! How will we know if a number is divisible by 3?
We need an implication of the type P = Q, where Q is the statement “the number is
divisible by 3”. What can P (the premise) be? We need to recall some relevant
knowledge. Perhaps you know the divisibility test for 3:

If the sum of the digits of a number is divisible by 3, then the number is divisible by 3.

PROBLEM 71:
Prove the divisibility test for 3, i.e. a number is divisible by 3 if
digits is divisible by 3.

15 the sum of the

> “iff” is mathematical notation for “if and only if”, which is a two-way implication P < Q
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So if we can prove that in any number of the form m®—m the sum of the digits is
divisible by 3, then we can conclude that these numbers are divisible by 3. It may be
possible to prove it in this way, but | see no entry, so | abort the approach. Control! ©

What other P (premise) could be useful? Well, if all else fails, let's manipulate the
expression and see what happens!

m®—m=m(m?-1)
=m(m+1)(m-1)
=(M-DmMM+1L) ., (1)

Can we conclude anything from this structure? Well, we can recognise that (m — 1), m

and (m+1) are three consecutive natural numbers. What can we say about three
consecutive numbers? Would you agree with the statement: “given any three
consecutive natural numbers, one of them is divisible by 3"?

PROBLEM 72:

Convince yourself that given any three consecutive natural numbers, one of
them is divisible by 3. See this Excel worksheet.

The mathematical mind will wonder if the structure "three ... divisible by 3" is
general! Is here a more general pattern?

Given two consecutive natural numbers, is one always divisible by 2?

Given four, five, six ... consecutive whole numbers, is one always divisible by 4, 5, 6, ...?

Can you convince yourself that in any N consecutive whole numbers one of the
numbers must be divisible by n?

If we accept the statement that in any N consecutive natural numbers one of the

numbers must be divisible by n, we have solved Problem 70 (a): m®*—m can always
be written as the product of three consecutive numbers (see (1) above), so one of them is

divisible by 3, so m®—m is divisible by 3. Put differently: 3 is a factor of the right-hand side
of (1), therefore it is a factor of the left-hand side of (1) and that proves the conjecture.

We can also prove that m®—m is divisible by 6 by looking at the structure of (1) with
different eyes, i.e. through the lens of even and odd numbers: m is either even or odd.
If m is even, then m®—m is divisible by 2. Do you agree? So m®—m is divisible by 2
and by 3, therefore it is divisible by 6. Are you convinced of this argument (“If a
number is divisible by 2 and by 3, then it is divisible by 2 x 3 =6")? If m is odd, then
both m — 1 (the previous number) and m + 1 (the next number) are even and divisible
by 2. Therefore m* — m is divisible by 2 and by 3, therefore it is divisible by 6.

PROBLEM 73:
Prove that if M is odd, then m*—m is divisible by 24.

There are other possibilities to solve Problem 70. For example, just as we know that
any whole number is either even or odd, we also know that if we divide any whole
number by 3, the remainder is either 0 or 1 or 2. This is merely a different, and
stronger formulation of the statement that in any three consecutive whole numbers
one is divisible by 3.
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PROBLEM 74:
Convince yourself of the following. See this Excel worksheet.
Any natural number is either even or odd. So any natural number can be written as

2nor 2n + 1, N Ny, i.e. if you divide a natural number by 2, the remainder is O or 1.
If you divide any natural number by 3, the remainder is 0, 1 or 2, so any natural
number can be expressed as 3n or 3n + 1, 3n + 2, N €Ny (for a given value of n,

3N, 3n + 1 and 3n + 2 are three consecutive whole numbers).
Generalise ...

If we accept the statement above as true, we can solve Problem 70 (a) with the
following reasoning: M can be expressed as either 3n or 3n + 1 or 3n + 2, N €Np. In
the first case we have m®*—m = (3n)° — 3n = 27n® — 3n = 3n(9n? — 1), which is clearly
divisible by 3. Note that we are now using a different general theorem as the basis for
our reasoning, namely “if a number can be expressed as 3k, k eNg, then the number
is divisible by 3.” Our proof is therefore to show that the special case m®*—m can be
written as 3K, k eNg (P), which implies that m®*— m is divisible by 3 (Q).

In the second case, if M can be expressed as 3n + 1, we have
m®—m
=(38n+1)°*-(3n+ 1)
=27n°+27n*+9n+1-3n—-1 (refer to the use of Pascal's triangle!)
=3n(9n° + 9n + 2)
= 3k where k = n(9n? + 9n + 2) is a whole number

So m®—m can be expressed as 3K, k eNo, 3k is divisible by 3, so m®*-m is divisible
by 3.

PROBLEM 75:
Complete the above proof by analysing the case if m can be expressed as
3N+ 2, N eNo.

The purpose of the above was to demonstrate that in order to prove a statement Q
through Modus Ponens, we need to find a relevant premise P and an argument to
show that P implies Q. The statement P and the implication P = Q usually are facts or
theorems we already know and accept as true. If not, we first have to prove them as
sub-problems. In our case we have considered three general possibilities:

e If the sum of the digits of a number is divisible by 3 (P), then the number is divisible

by 3 (Q).
¢ If we have three consecutive numbers(P), one of them is divisible by 3 (Q).
e If we can express a number as 3K, k eNg (P), then the number is divisible by 3 (Q).

To prove our specific conjecture that m® — m is divisible by 3 (Q), we had to prove

e that the sum of the digits of m®— m is a multiple of 3 (P), or

e that m®—m can be written as the product of three consecutive natural numbers (P), or
e that m®—m can be written as 3k, k eNo (P).
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It is very important that we understand the general structure of proof through Modus
Ponens. To apply the structure to prove a specific conjecture Q, it is very important
that we identify appropriate relevant premises (P) based on some known theorem
P = Q. Let us further illustrate this important know-how with reference to some
school problems.

A few school problems

In this course, in order to develop your perspectives, our problems are not always at
the school level, otherwise there is the danger that we will do it automatically or
mechanically without reflection and then not learn from it. But it is just as important to
use our new perspectives to look at school-level problems with new eyes!

You may find school-level problems easy and our course problems difficult and
frustrating. Apart from developing our problem solving know-how, it has the added
advantage that we can appreciate the fact that our learners experience their school
problems just as difficult and frustrating as we experience these difficult unknown
problems! Like us, their problem usually is that they do not know what is “the next
step” or "what to do now" or “where to start”. We believe that we will be able to help
our learners better with their difficulties if we understand and teach the structure of
proof through Modus Ponens. So let’s look very briefly at a few school problems.

PROBLEM 76:

Prove that px +gx = m—mx?

has real roots for all p, g, m € R.

We may find problems such as these easy and solve it routinely, mainly because we
have previously done many similar problems. However, for our learners these
problems are a challenge, and they often have no direction, e.g. many learners in this
problem typically try to solve for X. We must help them to understand the proof
structure: We need an implication P (?) = Q (the roots are equal). We get the
required premise from a well-known theorem: “If A > 0 (P), then the quadratic equation
has real roots (Q)”. This is the same as the point made earlier that analysis is thinking
backward, and we can even think of it as writing down the last step first:

A>0 T
= the roots are real

So we cannot directly prove that the roots are real. We must prove something else,
namely our premise P that A > 0, then we can say that P = Q. So our problem boils
down to proving that A > 0 for this equation. Knowing where we want to end, tells us
where to start: First we need A; we know A = b® — 4ac; so we need a, b and c; a, b and
c are the coefficients of the quadratic equation ax?* + bX + ¢ = 0; so first we need to
write our equation in the standard form, then find the value of A:
PX 4+ QX = m—mx’
Smx+(p+q)x-m=0
SoA=(p+q)°+4m?

A>0
= the roots are real T
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This looks promising, but what to do next? We can manipulate and see what happens,
but if we do not know what to look for, we will probably not realise it when we get
there. Let's remember what we are trying to do: we want to prove that A > 0. How will
we manage that? Again we need some premise. Where previously we had "If A > 0
(P), then the roots are real (Q)”, what we need now is “If ?? (P), then A > 0 (Q)”. The
fact we need is that k? > 0 if k is a real number. Now we can continue:

PX + QX = m—mx’
Smx’+(p+q)x-m=0
SoA=(p+q)°+4m?
(p+q)>>0and 4m®>0if p,g,meR
= A>0

= the roots are real

PROBLEM 77:
Solve for x: log(x—3)+log(x —2) =2log x

We should think what implication P = Q will enable us to find the solution. The
required implication is log A = log B = A = B. In order to be able to apply this general
structure we must therefore write this specific equation in the form log A = log B, which
is usually taught as “write separate logs as one log”. In order to do that we must call
on two properties of logs, namely log A + log B = log AB and nlog A =log A". We
leave the rest of the solution.

PROBLEM 78:
Solve for x: 9%t x 3 = L

27

We should think what implication P = Q will enable us to find the solution. The

required implication is a* =a’ = X = Yy (@a=0,a=z=1). Inorder to be able to apply this

general structure we must therefore write this specific equation in the form a* = &,

which is usually taught as “make the bases the same”. In order to do that we must call
on the properties of exponents. We leave the rest of the solution.

The point made here is that “write this equation in the form log A =log B” and “write
separate logs as one log” may seem the same, but they are not. What is missing in
our teaching and in children's understanding is the underlying logic of Modus Ponens,
of understanding that each step in our mathematical work is based on using some
implication P = Q, that we should understand the logic and that we should
understand that a large part of doing mathematics is identifying the appropriate P in
order to can deduce P. The logic above was not “write in the form log A =log B”
(“write as one log”), but “log A=1log B = A =B"!
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PROBLEM 70 continued:
Prove that m®> — m is divisible by 5 for all m e N.

It was Rene Descartes who said: “Each problem that | solved became a rule which
served afterwards to solve other problems”. This is the same perspective as Polya’s
heuristic: “Have you seen it before? Have you seen the same problem in a slightly

different form?” It is natural to here try the same approach we used for our m®*—m
problem above.

Like in the m® — m problem, we have three possibilities. We make a choice based on
our intuition of which possibility holds most promise. So let us try the implication “If
M>—m can be expressed as the product of 5 consecutive natural numbers, then
m°> —m is divisible by 5.” So our plan or sub-problem is to prove the premise that
M° —m can be expressed as the product of 5 consecutive natural numbers. Now to
carry out the plan (Polya's phase 3). We will again put our hope in factorisation:

m’—m= m(m4—1)

=mM+DM=D(M>+1) oo, (1)

This is very disappointing — we clearly have three consecutive numbers (M — 1, m and
m + 1), but not five!l What does this mean? It could mean that the statement is not
true, so let's check by specialising for a few numbers. Let us at the same time try to
understand the underlying structure:

m-1/| m m+1 | m*+1 | (m=1)m(Mm+1)(m?+1) | Divisible by 5?
0 1 2 0 Yes
1 2 3 5 30 Yes
2 3 4 10 240 Yes
3 4 5 17 1020 Yes
4 5 6 25 3000 Yes

It certainly looks like the answer is divisible by 5. Of course, these few cases do not
guarantee that it is always true — we need a deductive argument! But our numerical
examples give us little indication of why the answer should be a multiple of 5. It seems

that for every value of m, at least one of the four factors is divisible by 5. We may try
to prove this conjecture, but how? | leave it for the moment ...

PROBLEM 79:

Prove that if M €N, then at least one of M — 1, m, m + 1 or m? + 1 is divisible by 5.
Why is at least one of m— 1, m, m + 1 or m? + 1 is divisible by 2?

Why is at least one of m =1, m, m + 1 or m? + 1 is divisible by 3?

Deduce that m> — m is divisible by 30 for m eN.
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| am rather going to persevere with trying to prove the premise that m®> — m can be
written as the product of five consecutive whole numbers. We already have

m®>—m=m(m*-1)
=mM+D(M =DM +1) oo, (1)

Surely, if m> — m is divisible by 5, we will expect that it can be expressed as the
product of five consecutive whole numbers? | conjecture that it should be possible to
end with

m’>—m=(mM-2)(M=-D)MM+D(M+2) .coevvrrrrrree. (2)

So the question is, can we manipulate equation 1 to transform it into equation 2? Then
the problem is solved. There does not seem much to do with equation 1, so let's work
from equation 2 to equation 1, i.e. from the “bottom” to the “top”:

m’>—m=mm+D(M-D(M*+1) wcoerirrrerrrrree. . (1)
=mM-D(M+D(M* =4) eoeeirieriereeee, (3) T
=(M=-2)(M-DMM+L)(M+2) .cceerrrvrrerrene 2

Now | grab at equation 1 and try to change 1 into 3, working from top to bottom,
making an ingenious substitution:
m’>—m=m(m*-1)
=mM+D(M-=D(M*+1) oo (1)
=mM+D)(M-D[(M* =4)+5] oo, (4)

= m(m+1D)(m-D(m*-4)+5m(m+1)(m-1) ...(5)

=mM-=D(M+D(M*=4) oo, (3) T
=(M=2)(M-DMM+L)(M+2) .cceerrerrrrrrenen. (2)

Now, suddenly, if | have not been expecting it, the cold realisation dawns that
equation 5 definitely is not equivalent to equation 3, so | cannot complete the proof as
| anticipated! But at the same time | have a deep insight, an Aha Erlebnis! Equation 5
has two terms, and each term is divisible by 5 (are you sure? Why?), therefore the whole

a+b
c

divisible by ¢ and b is divisible by c, then a + b is divisible by c.” Do you agree?
Therefore m®> — m is divisible by 5. QED — we are finished.

expression is divisible by 5. Are you sure? Why? The reason is that “If in ,ais

But not quite — Polya says we must “look back” (phase 4)! One aspect of looking back
is to try to generalise our result. It is clear that equation 5 is also divisible by 2 and by

3, and therefore m°> — m is divisible by 5 x 2 x 3 = 30!

Another aspect of “looking back” is to find possible errors — we should always re-
check our assumptions and each logical inference in our work. So we must wonder

why | could not complete my original plan, namely to write m®>—m as the product of
five consecutive numbers. The answer is that | made an error in reasoning! In fact, |
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made two errors in reasoning! My plan was based on the implication “If a number is
divisible by 5, then it can be written as the product of five consecutive whole
numbers”. This is clearly false, as a quick specialisation shows: 5, 10, 15, 20, ... are
all multiples of 5, but cannot be written as the product of five consecutive whole
numbers! The smallest multiple of 5 that can be written in this form s
1x2x3x4x5=60. The statement is generally untrue, e.g. 4 is divisible by 2 but
cannot be written as the product of 2 consecutive whole numbers (although 2 can), 9
is divisible by 3 but cannot be written as the product of 3 consecutive whole numbers
(although 6 can). The source of my error is probably twofold: First, | expected my

successful method of writing m® — m as the product of three consecutive whole numbers
to generalise to writing M> — M as the product of five consecutive whole numbers, but it

turns out that m® — m is a special case! Second, | now realise that | have wrongly
assumed that the converse of a theorem is also true! While it is true that “If a number

can be written as the product of N consecutive whole numbers, then it is divisible by n”,

its converse “If a number is divisible by N, then it can be written as the product of n
consecutive whole numbers”, is false! Let's just say that doing mathematics makes
you humble! Making mistakes is probably part and parcel of creatively work in
mathematics — there are many examples in the history of mathematics. It was the
philosopher Karl Popper who said: “We are fallible, and prone to error; but we can
learn from our mistakes.”

Another aspect of “looking back” is to investigate alternative solution methods. So let’s
revisit the following problem:

PROBLEM 80:

m°—m = (m—1)m(m + 1)(m? + 1)

Prove that if m eN, then at least one of m — 1, m, m + 1 or m? + 1 is divisible by 5,
and therefore that m°> — m is divisible by 5.

We start using the basic structure of consecutive numbers: m -1, m, m+ 1, m+2

and m + 3 are five consecutive whole numbers, therefore one of them is divisible by 5.
Now we must use this fact to solve Problem 70:

If one of M — 1, m or m + 1 is divisible by 5, then m®> — m is divisible by 5.
If none of m—1, mor m + 1is divisible by 5, then m + 2 or m + 3 is divisible by 5.
First take the case if m + 2 is divisible by 5. If m + 2 is divisible by 5, we can express it
as 5k, k e N. We will show that it implies that m? + 1 is divisible by 5, by showing that
m? + 1 can be expressed as 5N, N e N:
m+2=5k keN

o m=5k-2

= m? = (5k — 2)? = 25k?* — 20k + 4

= m? + 1 = 25k% — 20k + 5 = 5(5k* — 4k + 1), which is divisible by 5.

= m°>—m is divisible by 5.

PROBLEM 80 (a):

Complete the proof for the case if none of Mm—1, m, m+ 1 or m + 2 is divisible by
5, but m + 3 is divisible by 5.
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PROBLEM 70 (b) continued:
For which n € N is m" — m divisible by n?

We have proven the special cases that m" — m divisible by n for n = 3 and 5. For what
other n will it be true? Most of us will probably conjecture that it is true for n an odd
number. Certainly it is easy to check another special case: if N =1, m' —m =0 is
divisible by 1. So we know that it is true for n = 1, 3 and 5 and this strengthens our
conjecture about odd numbers. But we cannot be sure! Trying to prove it for n = 7
and 9 can be very difficult. Let's try for n = 9:

m®—m =m(m®-1)
=m(m* - 1)(m* + 1)
=m(m?=1)(m? + 1) (m* + 1)
=m(m — 1)(m + 1)(M? + 1)(m* + 1)

This is good practice in factorisation but it is going nowhere! Another important aspect of
mathematical know-how is that we should exercise control over our activity. We should
know when not to go on a wild goose chase and when to abort an effort and rather try
something else. Mathematicians never jump into doing hard work such as above before
they do not at least convince themselves psychologically that the conjecture is true.

If you have to prove a theorem, do not rush. First of all, understand fully what the theorem
says, try to see clearly what it means. Then check the theorem, it could be false. Examine
the consequences, verify as many particular instances as are needed to convince yourself
of the truth. When you have satisfied yourself that theorem is true, you can start proving it.

Polya, 1945
Psychological conviction comes mainly m m’—m m’—m
through specialisation and analogy. So 7 9
before you jump in and get strangled in 1 % =0 g -0
heavy manipulation that does not seem to 126 510
- : 2 == =-18 =5-=156, 66...
lead anywhere, first check some special 7 9 '
in Iculator for th
cases, using a calcu ator for the 3 21784 - 312 19880  2186.66...
calculations, as shown here.

These special cases provide counter-examples that the conjecture is not true for n = 9!
So our conjecture that MmN —m divisible by n for N odd is not true! The special cases do suggest

that m" — m divisible by n for n = 7, so | believe it and | will be willing to invest time and energy
to try to prove it! How will you adapt your conjecture?

We have not tested if m" — m divisible by n for n and even number. Special cases for
N = 2 show that m* — m is divisible by 2 and it is easily proven deductively:

m?—m = (M — 1)m, where (M — 1) and M are two consecutive whole numbers, so one of them
is divisible by 2, because one is even and one is odd! What about other even numbers?

PROBLEM 70 (c):
Show that mnN — m is not divisible by any even n except n = 2.

We now know that m" —m divisible by 2, 3, 5, 7, ... Now finish Problem 70(b):

PROBLEM 70 (b):
For which n € N is m" — m divisible by n?
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Equivalence

Let's now return to our original problems in A. We have shown that the use of one-way
implications P = Q was logically invalid as proof, and that the proof itself and the thinking
behind the proof really depended on analytical reasoning, i.e. P < Q. We therefore
suggested re-writing synthetic proofs as the reverse of the analytical thinking and even
suggested that we write from the bottom up!

But we can do better than that. We can combine the two one-way implications P = Q and
P < Q in a two-way implication P < Q where it is valid, and then our analysis (from top to
bottom) will simultaneously be our synthesis (from bottom to top)!

If P is the statement x = 2 and Q the statement 2x = 4, it is clear that P = Q (i.e. we can
deduce Q from P) and also P < Q (i.e. we can deduce P from Q). In such a case we can
write P < Q. We say that P and Q are logically equivalent and it means that we can
replace the one with the other whenever we want. As another example: if P is (x + y)* and
Qis x* + 2xy + y*then P = Q and P < Q, so we can write P < Q and we can interchange
the one with the other as we wish. It does not matter which one of the two one uses,
because you can always deduce the one from the other when needed.

However, we must be careful. For example, if P is the statement x > 4 and Q the statement x > 2,
it is clear that P = Q is valid (if a number is greater than 4, it is also greater than 2), but P <= Q is
invalid (if a number is greater than 2, we cannot conclude that it is greater than 4!).

So let’'s now re-write our original proofs in A using equivalence:

SiN20+€0820 =1 ------n-mmmmum-- P

e@r)y-1
r r EQUIVALENCE

< y?+x%=r? provided r#0-------- Q
S0 Q = Pisvalid.Q s true. Therefore P is true.

Analysis | |Synthesis

=

sing  1+cosd
1-cos¢é  siné
< sin?@ = (1-cos@)(1+cosd) and sind = 0,cos0 =1

< sin?0=1-cos? 0
& 5iN20+C05260 =1---n-nmmmmeme- Q
S0 Q = Pisvalid.Q s true. Therefore P is true.

In each case, the plan for the proof was found through the analysis P = Q, which of
course is not valid as proof. However, the proof as we have now written it in D is
completely valid from two perspectives:

e Using the Modus Ponens proof structure: P < Q is valid, Q is true, therefore P is true.
The validity of the proof therefore lies in the converse implications. Reading the proof
from the bottom to the top represents our synthesis.

e Using equivalence: each statement is equivalent to the other (we can deduce each
statement from the other, working top-down or bottom-up. Therefore P and Q are
equivalent, P < Q, which also means that the truth of the one implies the truth of the
other. So again: Q is true, therefore P is true!

| trust that you thoroughly understand the difference between the invalid statement "Q is
true, so P is true" in A and the valid statement "Q is true, so P is true" in D!
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To end

| do not claim that all learners will necessarily excel in mathematics if we teach
analysis. Mathematical problem solving is complex. For example, Schoenfeld®®
distinguishes the following factors influencing learners’ mathematical problem solving:

“Resources”. mathematical knowledge that the individual knows, can recall and
can use in the situation.

Heuristics: problem solving strategies (strategic knowledge) like make a sketch,
introduce notations, investigate special cases, make a table, find a pattern, ...
Control: the selection and monitoring of knowledge and heuristics — to know how
long to persist with a line of reasoning and when to abort and try something else.
“Belief systems”™ perspectives on the nature of mathematics, the learning of
mathematics and the own ability ...

What | do claim is that:

We have to teach the logic of proof thoroughly, otherwise learners continually
make mistakes like the Converse trap.

Explicit (conscious) knowledge and understanding of analysis is an essential
heuristic for successful mathematical problem solving.

The logic of proof and analysis are not explicitly mentioned in the curriculum, so it
is not taught, thus depriving learners of the opportunity to be creative and to learn
mathematics as a constructive process. We do not provide them with the
necessary tools of the trade!

The perception that mathematics is only, or really, “tidy mathematics”, undermines
and sabotages any effort at independent problem solving.

The previous two points are main contributory factors to learners’ lack of
confidence and expertise in mathematical problem solving!

The culture in the community of mathematicians®’ to publicly show only the formal,
“tidy” aspect of mathematics, contributes to and entrenches the misconception
about the nature of mathematical activity among learners, teachers and the public.

PROBLEM 81.:
Prove that 22> ab. ab are positive real numbers.
PROBLEM 82:

If we add any fraction and its reciprocal (e.g. % + g), what is the smallest

possible value of the sum? Supply a general proof or explanation of your
conclusion!

PROBLEM 83:
Prove that the logarithms of the terms of a geometric sequence form an
arithmetic sequence.

'® Schoenfeld, A. (1985): Mathematical problem solving is essential reading! See also online:

http://gse.berkeley.edu/faculty/ahschoenfeld/Schoenfeld_MathThinking.pdf

' There are exceptions — mathematicians that can write describe their thinking from a meta-

perspective, e.g. Poincaré, Hadamard, Polya, Schoenfeld, Davis & Hersch, ...
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PROBLEM 84:
l+tand cotd+1

1-tand cotd—1'

Use the method of equivalence to prove that

Discuss the logic of the proof.
(You are not asked to use the LHS-RHS proof structure!)

PROBLEM 85: SCHOOL PROBLEMS

Take several trigonometry identities from your school mathematics textbook and
prove the identities using the method of equivalence. Compare it with the usual,
LHS-RHS-separately method. Which is easier? Why?

PROBLEM 86:
Prove thatforalla, b, c,d € R:
a’+b’+c?+d’=ab+bc+cd+da = a=b=c=d

PROBLEM 87:
Prove that f(n) = N° = 5n° + 4n s divisible by 120 for all n e N.

PROBLEM 88:
Prove that 2n® +3n° 4+ n is a multiple of 6 for all n € N.

PROBLEM 89:
Prove that n(n® — 1)(3n + 2) is a multiple of 24 for alln e N.

PROBLEM 90:

If we divide any whole number by 3, the possible remainders are 0, 1 or 2.

If we square a whole number and then divide by 3, what are the possible
remainders? Check your answer and give a general proof.

If we square a whole number and then divide by 5, what are the possible
remainders? Check your answer and give a general proof.

PROBLEM 91:. AVERAGES
Check if you agree: The average of the four consecutive numbers 1, 2, 3, 4 is

2% and the average of the first and last number is also 2%.

Is this a coincidence or is it true for any four consecutive numbers? Why?

What if not? What if it was not four numbers, but three, or five, or six, ... or n?
What if not? What if it was not consecutive natural numbers, but consecutive odd
numbers, or consecutive even numbers, or ...?

PROBLEM 92:
P is a point inside equilateral AABC. P is 3 cm from AB, 4 cm from AC and 5 cm
from BC. Find the length of a side of AABC.
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PROBLEM 93: SUM = PRODUCT?
Check, continue and explain:

4 _ 4 4 16 _ 4 16

1. 4+§—4><3 2. 4+3+13—4><3><13
5_. 5 5.25_. 5 25
5+Z_5X4 5+4+21—5><4><21
6 _n 6 6,36 _. 6 36

6+5 =6x3 6+g +37 =6x5 x37

Note: Only a foolhardy person would want to generalise and say that multiplying
a fraction is the same as adding the fraction! One counter-example will disprove
the conjecture. But situations like this nevertheless are sometimes true. The
mathematical mind will always want to know

e Why are these special cases true? (Explain the structure.)

e Exactly when is it true? (Find all the cases for which it is true, i.e. generalise.)

PROBLEM 94: THE MISSING CM?
The four figures are arranged in a triangle below left, and then re-arranged as
shown to the right. Where does this gap come from?

Click here for an interactive version of the problem.

PROBLEM 95: CHORDS, SECANTS AND TANGENTS A D
1. ABCD is a cyclic quadrilateral with AB and CD "

intersecting at P.
Prove that PA.PB = PC.PD B

Click here for an interactive applet.

2. Specialise by checking the nature of the result when:
e P is the centre of the circle.
e AP =CP and PB = PD (when AC // DB).

3. Generalise by proving that the relationship in 1
applies also when AB and CD intersect outside
the circle. Why is it a generalisation?

4. Now specialise by taking the following limiting
cases (i.e. deduce the result directly from the
relationship in 3):

e Secant PBA becomes a tangent to the circle at B
e Secant PDC also becomes a tangent at D.
Show that you can deduce that PA = PB.

C
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PROBLEM 96: EVERY TRIANGLE IS ISOSCELES
Analyse the logic of this proof ....

Theorem: Any triangle is isosceles

Construction: Let ABC be any triangle. Bisect angle A to meet the
perpendicular bisector of BC in O. Draw perpendiculars from O to meet the
(extentions of the) sides of AABC in P, Q and R.

Proof:
If O is inside the triangle, as shown in Figure 1:

AOBR =A0CR ...... S, 4, S

=0B=0C ...... Q)

AAPO =AAQO ... £, 2,8

=0P=0Q ... (2)

=>AP=AQ ... (3)

AOPB=A0QC ... 90°, hyp, s: from (1) and (2)
=PB=QC ... 4)

(3)+(4):AP+PB=AQ+QC
= AB=AC, i.e. AABC is isoceles.

As O buite die driehoek |, soos in Fiquur 2:

Dan geld (1), (2), (3) en (4) presies soos hierbo.
Neem nou (3) — (4):

AP-PB=AQ-QC
= AB = AC, d.i. AABC is gelykbenig.

As O op BC Ié (Fiquur 3):
OoB=0C ......... konstr. (1)

Die res van die bewys volg presies soos in Figuur 1:
AP+PB=AQ+QC
= AB =AC, d.i. AABC is gelykbenig.

Dus, enige driehoek is gelykbenig.

JUMP TO 2.6 EQUATIONS
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