
EUCLID’S AXIOMS  
In addition to the great practical value of Euclidean Geometry, the ancient Greeks also found 
great aesthetic value in the study of geometry.  Much as children assemble a few kinds blocks 
into many varied towers, mathematicians assemble a few definitions and assumptions into 
many varied theorems. The blocks are assembled with Hands, the axioms are assembled with 
Reason.  
 
All of Euclidean Geometry (the thousands of theorems) were all put together with a few 
different kinds of blocks.  These are called “Euclid’s five axioms”:  
• A-1 Every two points lie on exactly one line.  
• A-2 Any line segment with given endpoints may be continued in either direction.  
• A-3 It is possible to construct a circle with any point as its center and with a radius of any 

length.  (This implies that there is neither an upper nor lower limit to distance. In-other-
words, any distance, no mater how large can always be increased, and any distance, no 
mater how small can always be divided.)  

• A-4 If two lines cross such that a pair of adjacent angles are congruent, then each of these 
angles are also congruent to any other angle formed in the same way.  

• A-5 (Parallel Axiom): Given a line l and a point not on l, there is one and only one line 
which contains the point, and is parallel to l.  
 

In addition to these axioms, Euclidean Geometry is based on a number of Common Notions or 
rules of logic that Euclid listed in “The Elements”:  
• CN-1  Things which are equal to the same thing are also equal to one another.  
• CN-2  If equals be added to equals, the wholes are equal.  
• CN-3  If equals be subtracted from equals, the remainders are equal.  
• CN-4  Things which coincide with one another are equal to one another.  
• CN-5  The whole is greater than the part.  

 
Euclid’s goal was for these axioms and common notions to be (1) few in number, and (2) so 
obviously true that they could not possible be argued with.  For over 2000 years many 
mathematicians believed that the fifth axiom (the Parallel Axiom) was not needed. They 
believed that it could instead be proved as a theorem of the first four axioms. There were 
numerous attempts to do so. Early in the nineteenth century, three men working independently, 
finally put an end to this impossible search.  These men were Ivanovitch Lobachevski in 
Russia, Karl Gauss in Germany, and János Bolyai in Hungary.  These men each developed 
theorems using Euclid’s first four axioms and a negation of the Parallel Axiom.  Their 
expectation was to eventually develop two theorems which contradicted each other.   This 
would prove that their negation of the Parallel Axiom is inconsistent with the first four axioms 
- thereby proving the Parallel Axiom (and making it the Parallel Theorem). To their surprise, 
however, they never obtained a contradiction. Instead, they developed a complete and 
consistent geometry - a non-Euclidean Geometry that is now called Hyperbolic Geometry.  
This proved that the Parallel Axiom could not be derived from the other four.  This was of 
great mathematical and philosophical interest.  From the time of the Greeks, it was believed 
that geometric theorems were such pure and perfect Truth that they did not need to be 
scrutinized by observations of the real world.  Now, those statements are only true is some 
geometries. The only reason to prefer one geometry over another is by comparison to the real 
world - a heavy blow to a geometor.  In the early twentieth century, Albert Einstein developed 
The General Theory of Relativity which made extensive use of Hyperbolic Geometry.  This 
abstract, mathematical philosophical was now firmly in the realm of Science.  
 
 



There are actually two ways to negate the Euclidean Parallel Axiom:  
• A-5S (Spherical Geometry Parallel Axiom):  Given a line l and a point not on l, no lines 

exist that contain the point, and are parallel to l.  
• A-5H (Hyperbolic Geometry Parallel Axiom):  Given a line l and a point not on l, there are 

at least two distinct lines which contains the point, and are parallel to l.  
 
When thinking about these parallel axioms, it is important to remember that “parallel” does not 
mean “lines that look like train tracks”.  “Parallel” means two lines in the same plane that, no 
matter how far extended, do not intersect.  
 
The Spherical Geometry Parallel Axiom is inconsistent with Euclid’s first four axioms.  In 
Spherical Geometry,  The “lines” are great circles.  Most pairs of points (A and B) in Spherical 
Geometry, lie on one and only one great circle; however if A and B happen to be antipodal (on 
opposite ends of any single axis), then there are an infinite number of different great circles 
that pass through them.  This violates Euclid’s first axiom.   Euclid’s second axiom, “any line 
segment with given endpoints may be continued in either direction” is also violated.  In 
Spherical Geometry, if points the endpoints of a line segment are moved farther and farther 
apart, then they will eventually coincide.  
 
Contrary to Lobachevski’s, Bolyai’s, and Gauss’ expectations, the Hyperbolic Geometry 
Parallel Axiom is perfectly consistent with Euclid’s first four axioms.  And what a beautiful 
world this surprise opened up.  
 
Betweeness and SAS Axioms 
In addition to the axioms and common notions that Euclid included in “The Elements”,  he 
unknowingly made a number of implicit assumptions.  One of these is called the Betweeness 
Axiom and can be stated: “Of any three points on a line, exactly one is between the other two.” 
Another is called the SAS (or Side-Angle-Side) Axiom.  
 
The SAS axiom states that if two sides and the included angle of one triangle are congruent to 
two sides and an included angle of a second triangle, then the two triangles are congruent.  
In “The Elements”, Euclid presents what he believed to be a proof for SAS:  
 
Given:  
∆ABC and ∆DEF, with sides AB ≅ DE, side AC ≅ DF, and ∠A ≅ ∠D.  
Proof:  

Move ∆ABC such that point A coincides with point D, and line AB coincides with DE. 
Point B will coincide with E, because AB ≅ DE.  
Also, segment AC will coincide with DF, because ∠A ≅ ∠D.  
Point C will coincide with F, because AC ≅ DF.  
Line BC will coincide with EF, because two lines cannot enclose a space.  
Finally, side BC is congruent to side EF, because the lines and endpoints of each 
coincide.  
Therefore, ∠B ≅ ∠E, ∠C ≅ ∠F, and ∆ABC ≅ ∆DEF. 

 
The flaw in the above argument is that it depends on the undefined term “move”.   Let  “move” 
(in both Euclidean and Hyperbolic Geometry) be defined as a function that maps a set of 
points, P1, P2, P3, ... to P'1, P'2, P'3..., in such a way that for any two points Pn and Pm of the 
original set, the distance from Pn to Pm equals the distance from P'n to P'm.  Then, for SAS to 



hold, it must be that for any two lines L and L', it is always possible to “move” line L so 
that it coincides with L'.   This condition is commonly called the SAS axiom, and it is a 
axiom of both Euclidean and Hyperbolic Geometry.  
 
Proofs in Hyperbolic Geometry:  
Euclid’s 5 axioms, the common notions, plus all of his unstated assumptions together make up 
the complete axiomatic formation of Euclidean Geometry.  The only difference between the 
complete axiomatic formation of Euclidean Geometry and of Hyperbolic Geometry is the 
Parallel Axiom.  
 
This is a powerful statement.  It means that any proof in Euclidean Geometry which does not 
use the Parallel Axiom is also a proof in Hyperbolic Geometry!  
 
Likewise, it means that Euclidean Geometry theorems that require the Parallel Axiom will be 
false in Hyperbolic Geometry.  A striking example of this is the Euclidean Geometry theorem 
that the sum of the angles of a triangle will always total 180°.  Figure 1 may help you recall the 
proof of this theorem - and see why it is false in Hyperbolic Geometry.  

 
Figure 1: Proof for  ∠A + ∠B + ∠C = 180° 

 
In Euclidean Geometry, for any triangle ABC, there exists a unique parallel to BC that passes 
through point A.  Additionally, it is a theorem in Euclidean Geometry that when two parallel 
lines are cut by a transversal, then the opposite interior angles are congruent; therefore,  
∠NAB ≅ ∠ABC and ∠MAC ≅ ∠ACB. In Hyperbolic Geometry, however, there are an 
infinite number of lines that are parallel to BC and pass through point A, yet there does not 
exist any line such that both ∠NAB ≅ ∠ABC and ∠MAC ≅ ∠ACB.  
 
Adapted from http://www.cs.unm.edu/~joel/NonEuclid/proof.html
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ACTIVITY: A LOCAL SYSTEM 

4 
3 2 

1  
If two lines are parallel, then 

 ∠1 = ∠4                corresponding angles are equal 
 ∠2 = ∠4                alternate angles are equal 
 ∠3 + ∠4 = 180°    co-interior angles are supplementary 

 
Prove these three statements. 
Prove here means to explain the result by referring only to previously proven results. 
 
My brief remarks 
 
Here are two attempts: 
 
Analysis 1 Analysis 2 
To prove : 
∠1 = ∠2     .... vertical angles =  
 = ∠4     ....  
 
To prove : 
∠2 + ∠3 = 180°     .... straight line =  
∠4 + ∠3 = 180°     ....  
⇒ ∠2 = ∠4 
 
To prove : 
     ∠1 + ∠3 = 180°     ....  
⇒ ∠4 + ∠3 = 180°      ....  
 
To prove : 
∠1 + ∠3 = 180°     ....  
∠2 + ∠3 = 180°     ....  
⇒ ∠1 = ∠2 
 
To prove : 
     ∠3 + ∠4 = 180°     ....  
⇒ ∠3 + ∠1 = 180°      ....  

To prove : 
      ∠2 + ∠3 = 180°     ....  
⇒ ∠4 + ∠3 = 180°      ....  
 
To prove : 
∠2 = ∠1     ....   
 = ∠4     ....  
 
To prove : 
∠1 + ∠3 = 180°     ....  
∠4 + ∠3 = 180°     ....  
⇒ ∠1 = ∠4 
 
To prove : 
∠1 + ∠3 = 180°     ....  
∠2 + ∠3 = 180°     ....  
⇒∠1 = ∠2 
 
To prove : 
     ∠3 + ∠4 = 180°     ....  
⇒ ∠3 + ∠1 = 180°      ....  
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DEPENDANCE ORGANOGRAMS 
 

 

 

 

 

  
 
 
 
 
 
 

In the first case we have circular arguments  ,   and    



 
Circular arguments 
The problem with a circular argument is that, to prove a statement, we need Modus 
Ponens: 
P ⇒ Q 
P is true 
In order to conclude (prove!) that Q is true, we need to know that P is true, and we 
cannot establish that! 
 
In general, an axiomatic deductive system is the “hygiene” of mathematics: to make 
sure that everything fits together without contradictions. 
 
So, in essence an axiomatic system consists of a series of valid statements: 
P ⇒ Q ⇒ R ⇒ S ⇒ T  ⇒ ... 
So, we have e.g. S  ⇒ T, S is true, therefore T is true by Modus Ponens. 
But we only know S is true if we can prove R  ⇒ S and R is true ... 
That means we work backwards until we reach the “first” statement 
P  ⇒ Q, but we cannot say P is true, we must start somewhere! 
This statement is therefore our assumption, and the whole system depends on this 
assumption. We call it an axiom. 
 
Note again –  P may in fact be “true” – we may know it is true from experience ... 
But we cannot prove it is true ... It just cannot be proven by the argument!! 


