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THE GAINS AND THE PITFALLS OF REIFICATION -


THE CASE OF ALGEBRA 


A B S T R A ~ .Algebraic symbols do not speak for themselves. What one actually sees in them depends 
on the requirements of the problem to which they are applied. Not less important, it depends on what 
one is able to perceive and prepared to notice. It is this last statement which becomes the leading theme 
of this article. The main focus is on the versatility and adaptability of student's algebraic knowledge. 

The analysis is carried out within the framework of the theory of reification according to which 
there is an inherent process-object duality in the majority of mathematical concepts. It is the basic tenet 
of our theory that the operational (process-oriented) conception emerges first and that the mathematical 
objects (structural conceptions) develop afterward through reification of the processes. There is much 
evidence showing that reification is difficult to achieve. 

The nature and the growth of algebraic thinking is first analyzed from an epistemological per- 
spective supported by historical observations. Eventually, its development is presented as a sequence 
of ever more advanced transitions from operational to stn~ctural outlook. This model is subsequently 
applied to the individual learning. The focus is on two crucial transitions: from the purely operational 
algebra to the structural algebra 'of a fixed value' (of an unknown) and then from here to the functional 
algebra (of a variable). The special difficulties experienced by the learner at both these junctions are 
illustrated with much empirical data coming kom a broad range of sources. 

When you look at an algebraic expression such as,say, 3(x+ 5) + 1 ,  what do you 
see? It depends. 

In certain situations you will probably say that this is a concise description of 
a computationalprocess. 3(x+ 5) + 1 will be seen as a sequence of instructions: 
Add 5 to the number at hand, multiply the result by three and add 1. In another 
setting you may feel differently: 3(x + 5) + 1 represents a certain number. It 
is the product of a computation rather than the computation itself. Even if this 
product cannot be specified at the moment due to the fact that the component 
number z is unknown, it is still a number and the whole expression should be 
expected to behave like one. If the context changes, 3(x + 5) + 1 may become 
yet another thing: afunction - a mapping which translates every nubmer x into 
another. This time, the formula does not represent any fixed (even if unknown) 
value. Rather, it reflects a change. The things look still more complicated when 
a letter appears instead of one of the numerical coefficients, like in a (x + 5) + 1. 
The resulting expression may now be treated as an entire family offunctions from 
R to R. Alternatively, one may claim that what hides behind the symbols is a 
function of two variables, from R2to R. 

There is, of course, a much simpler way of looking at 3(x + 5) + 1: it may 
be taken at its face value, as a mere string of symbols which represents nothing. 
It is an algebraic object in itself. Although semantically empty, the expression 
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may still be manipulated and combined with other expressions of the same type, 
according to certain well-defined rules. 

At this point somebody may wonder whether the above observations on the 
semantics of algebra are of any practical significance. Indeed it is. For instance, 
when faced with such an equation as ( p + 2 q ) x 2  + x  = 5 x 2 +  ( 3 p -  q ) x  one will not 
be able to make a move without knowing whether the equality is supposed to be 
numerical or functional -whether the question is that of the value of x for which 
the equality holds (this value should be expressed by means of p and q) , or that of 
the values of the parameters p ad q for which the two functions, ( p + 2q)x2+ x 
and 5x2+ ( 3 p+q)x,are equal. The different interpretations will lead to different 
ways of tackling the problem and to different solutions: in the former case one 
finds the roots of the equation using the formula x l ,  = (-b fa ) / ( 2 a ) ;in the 
latter, the values of parameters p and q are sought for which the coefficients of 
the same powers of x in both expressions are equal ( p+2q = 5 and 3 p  - q = 1). 
It is worth noticing that another possible outlook - the one which leaves symbols 
without much meaning - may initially render the problem-solver helpless. An 
automatic reaction is likely to follow. A person may be tempted to do what he or 
she was conditioned to do when faced with a quadratic equation: regardless of the 
question that has been asked, he or she may have recourse to the formula for the 
roots. 

The plurality of perspectives which one may assume while looking at such a 
seemingly simple thing as 3 ( x+5 )+ 1 is certainly confusing. In the next sections 
it will be argued that it is also a source of algebra's strength. 

I .  PRELIMINARIES: ALGEBRA THROUGH THE LENSES OF THE THEORY OF 

REIFICATION 


Algebraic symbols do not speak for themselves. What one actually sees in them 
depends on the requirements of the specific problem to which they are applied. 
Not less important, it depends on what one is prepared to notice and able to 
perceive. It is this last observation which will be the leading theme of the present 
article. The main focus will be on the versatility and adaptability of the algebraic 
knowledge of the student. The question that will be addressed is to what extent 
the learner is capable of seeing and using the variety of possible interpretations 
of algebraic constructs. Before tackling this problem, however, let us pause for a 
moment to reflect on the kind of analysis which is to be carried out here. 

The distinctions which we made in the opening examples are quite subtle 
and refer to what is going on in people's heads rather than to what they actu- 
ally communicate to the world by means of written records. Indeed, the differ- 
ence between the alternative interpretations of the equation ( p + q ) x 2+ 2x = 
3x2+ (p - q)z will not always show on a standard test, since whether the stu- 
dent thinks about the expression as a numerical equality or as a mere string of 
symbols, he or she may eventually apply the same formulae and perform the 
same manipulations. A painstakingly detailed scrutiny of student's behaviors and 



193 REIFICATION -THE CASE OF AUjEBRA 

utterances (see, e.g., Schoenfeld et al., 1993; the authors call this kind of analysis 
'microgenetic') is necessary to have some insight into his or her thinking. 

Ow 'fine-grained' analysis will be carried out within a certain theoretical 
framework by help of which the profusion of loose facts will hopefully turn into a 
meaningful, manageable whole. It will be called here the theory of reijication (it 
must be pointed out that other authors may use somewhat different terminology for 
basically the same or closely related ideas; see the list of possible names in Harel 
and Kaput, 1991). Like any theoretical model, it emphasises certain aspects of the 
explored domain while ignoring many others. Even so, it has already proved itself 
as a tool for analyzing development of several mathematical concepts, notably the 
concept of function (Sfard, 1992: Breidenbach et al., 1992); also, it was used to 
introduce some order into the quickly growing bulk of findings about algebraic 
thinking (Kieran, 1992). Another glance at algebra through it's lenses will be 
offered in the next chapters. 

In the remainder of this section we will confine ourselves to the presentation 
of the basic tenet of the theory of reification. Different elements of the resulting 
system of claims will be discussed throughout this paper. For a more exhaustive 
presentation of the basic ideas the reader is advised to turn to Sfard (1991) and 
Kieren (1991). Further, Dubinsky (1991) and Harel and Kaput (1991) describe 
closely related models. Dubinsky's ideas are an elaboration of Piagetean theory 
of reflective abstraction (Beth and Piaget, 1966); Harel and Kaput's observations 
bear on Greeno's notion of conceptual entity (Greeno, 1983). It should also be 
mentioned that the idea of the process-object duality of mathematical concepts 
which is central to this paper reminds Douady's (1985) tool-object dichotomy. 

In our opening example, several mathematical objects have been identified 
as possible referents of algebraic expression. We have mentioned a number, 
a function, a family (set) of functions. One interpretation, however, was of a 
different nature: when 3(x + 5) + 1 was read as a series of operations, it was 
the computational process rather than any abstract object (except the processed 
numbers) which gave meaning to the symbols. What was observed in the example 
apparently pervades the whole of mathematics: the same representation, the same 
mathematical concepts, may sometimes be interpreted as processes and at other 
times as objects; or, to use the language introduced elsewhere (Sfard, 1991), 
they may be conceived both operationally and structurally. The fact that these 
two ostensibly incompatible ways of seeing mathematical constructs seem to be 
present in any kind of mathematical activity, and thus are complementary, is 
the basic observation which constitutes the point of departure for our model of 
mathematical learning and problem-solving. The notion of complementarity is 
used here in the same way in which it appears (due to Niels Bohr) in physics, 
where to fully account for observed phenomena one must treat subatomic entities 
both as material particles and as waves. 

The distinction between the two models of thinking, operational and structural, 
is delicate and not always easy to make. The ability to perceive mathematics in 
this dual way makes the universe of abstract ideas into the image of the material 
world: like in real life, the actions performed here have their 'raw materials' 
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and their products in the form of entities that are treated as genuine, permanent 
objects. Unlike in real life, however, a closer look at these entities will reveal that 
they cannot be separated from the processes themselves as self-sustained beings. 
Such abstract objects like fl,-2 or the function 3(2 + 5) + 1 are the result of 
a different way of looking on the procedures of extracting the square root from 
-1, of subtracting 2, and of mapping the real numbers onto themselves through 
a linear transformation, respectively. Thus, mathematical objects are an outcome 
of reijcation - of our mind's eye's ability to envision the result of processes as 
permanent entities in their own right. 

This basic ontological observation has numerous theoretical implications. It 
generates a whole system of claims about mathematical problem-solving; it gives 
rise to a model of concept formation which applies to historical development as 
well as to individual learning; it provides its own explanation of the difficulties 
experienced by a student exposed to a new mathematical idea. All these topics 
will be discussed in what follows here, in the context of algebra. In section 2 
we begin our discussion with an epistemological analysis sypported by historical 
observations. In section 3, we shall assume a psychological perspective and will 
try to show that to great extent, the model of algebra's formation constructed 
through the historical and epistemological analysis fits processes accompanying 
individual learning. 

2. WHAT ALGEBRA IS A M )  HOW IT DEVELOPED 

Many theoretical and empirical arguments may be employed to show that in math- 
ematics, operational conception precedes the structural. What is conceived as a 
process at one level becomes an object at a higher level (see, e.g., Sfard, 1991, 
1992). Kaput (1989) seems to make a similar observation when talking about 
"mental entity building through reification of actions, procedures, and concepts 
into phenomenological objects which can then serve as the basis for new actions, 
procedures, and concepts at a higher level of organization" (p. 168). Even though 
the point of departure for this statement may be quite different from ours (Kaput's 
ideas seem to bear on Piaget's theory of reflective abstraction), it points to the 
basic agreement about the roles of mathematical processes and objects, and about 
their mutual dependence. Freudenthal was one of the most outspoken proponents 
of the vision of mathematics as a hierarchy of alternating perspectives: "My anal- 
ysis of mathematical learning process has unveiled levels in the learning process 
where mathematics acted out on one level becomes mathematics observed on the 
next" (Freudenthal, 1978, p. 33). Once again, although originating in a different 
kind of analysis, this assertion points to the same fundamental characteristics of 
mathematical construction as those implied by our theory: it underlines the fact 
that mathematics is a multi-level structure where basically the same ideas are 
viewed differently when observed from different positions. 

As we have already pointed out, the process-object duality should be conveyed 
by algebraic constructs. For several reasons, with a common root in the rigidity of 
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people's ontological attitudes, the ability to grasp the structural aspect is not easy 
to achieve. Therefore, those crucial junctions in the development of mathematics 
where a transition from one level to another takes place are the most problematic, 
and clearly the most interesting. To use Freudenthal's words once again, "If 
learning process is to be observed, the moments that count are its discontinuities, 
the jumps in the learning process" (p. 78). Thus, in the analysis that follows, 
the focus is on the singular points in the development of algebraic concepts - at 
those points where the ontological perspective must undergo an accommodation 
to make further progress possible. 

Let us precede our account of the development of algebra with a remark on 
the nature of our investigation. The construction of algebra, like that of any other 
domain of human knowledge, may be scmtinized from several perspectives. One 
may focus on the logical structure of the discipline and ask about the way the 
different items of knowledge combine into one coherent system. Let us call this 
kind of analysis logical. Then, there is a historical approach, which concentrates 
on the collective efforts invested through ages into the construction of the given 
system of concepts. Finally, a researcher may choose to make an inquiry into the 
cognitive processes which constitute individual learning. One can hardly expect 
that these three kinds of analysis would yield the same result. As some writers put 
it, it is but a myth that "[tlhe [logical] structure of mathematics accurately reflects 
its history" (Crowe, 1988). One should also be careful not to make automatic 
projections from history to psychology. After all, the deliberately guided process 
of reconstruction may not follow the meandering path of those who were the 
first travellers through an untrodden area. Even so, one may also expect some 
striking similarities between the pictures obtained through the different kinds of 
analysis. Garcia and Piaget (1989)made a particularly strong case for the analogy 
between the historical and psychological developments. Although much caution is 
advisable, logical analysis should not be dismissed altogether as a potential source 
of insights about the process of learning. After all, mathematics is a hierarchical 
structure in which some strata cannot be built before another has been completed. 
Thus, after making certain fundamental claims regarding the development of 
algebra on the basis of logical, ontological, and historical analysis, we will show 
in the next section that they also hold for individual learning. 

2.1. Algebra as Generalized Arithmetic: the Operational Phase 

Throughout our analysis we will call some kinds of algebra 'operational' and 
other kinds of algebra 'structural'. This is not to say that at any of the different 
stages in algebra's development only one type of ingredient - either operational 
or structural -was present. The complementary nature of the distinction between 
processes and objects makes it clear that this would be impossible. Also, it is 
obvious that if some processes (operational ingredient) are considered, there must 
be certain objects (structural ingredient) to which these processes are applied. Our 
claims that certain kinds of algebra were operational in their character while others 
were structural should be understood as referring to what constituted the primary 
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TABLE I 

Rhetoric algebra -Examples 


1. Babylonirs second (?) milknium B.C. (after Boyer, 1985, p. 34) 
The problem: Find the side of the square if the area less the side is 14,30 (the numbers are 

presented on basis 60). 

Solution: Take half of one, which is 0;30, and multiply 0;30 by 0;30 which is 0;15; 
add this to 14,30 to get 14,30;15. This is the square of 29;30. Now add 0;30 
to 29;30, and the result is 30, the side of the square. 

2. Al-Khwarivni, A.D. 825, (after Struik, 1986, p. 58) 
The problem: What is the square which combined with ten of its roots will give a sum 

total of 39? 
Solution: ... take one-half of roots just mentioned. Now the roots in the problem 

before us are 10. Therefore take 5, which multiplied by itself gives 25, an 
amount which you add to 39, giving 64. Having taken then the square root 
of this which is 8, subtract from it the half of the roots, 5, leaving 3. The 
number three therefore represents one root of this square, which itself, of 
course, is 9. 

focus of a given type of algebra. Or, to put it differently, a statement that, say, 
algebra was initially operational in its character means that the most advanced, 
central, ideas investigated at this stage were still conceived operationally rather 
than structurally. 

The history of algebra brings much support to the thesis about the precedence 
of the operational over the structural approach. For thousands of years, algebra 
was nothing more than a science of computational procedures. 

From the developmental point of view, algebra is a continuation of arithmetic. 
Like arithmetic, it deals (at least at its early stages) with numbers and with 
numerical computations, but it asks questions of a different type and treats the 
algorithmic manipulations in a more general way. Those who do not view symbolic 
representation as a necessary characteristic of algebra agree that both in history 
and in the process of learning mathematics, algebraic thinking appears long before 
any special notation is introduced. Typically, it begins with the first attempt to 
find the unknown number on which a given operation was performed and a given 
result obtained. In this kind of activity. the usual arithmetic practice of applying 
a computational algorithm to a concrete number must be reversed: instead of 
computing, say, the sum paid for a given number of pencils and a notebook, 
one must 'undo' what was done to the number of pencils when the total has 
been calculated. Although initially quite simple and intuitively immediate, such 
reversal stops being a trivial matter when word problems of some complexity start 
to appear. 

Let us dwell for a moment on the earliest stages in the development of the 
domain. First, let us have a look at two typical pieces of ancient and medieval 
algebra (see Table I). 
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It is worth noticing that in spite of the three millennia that separate them, the 
two samples are not much different in their basic characteristics: they involve 
quadratic equations (or at least they would lead today's problem-solver to such), 
they use concrete numbers instead of general coefficients, and they present the 
solution in the form of verbal prescription for finding the unknown. The approach 
is thus purely operational: the focus is on numerical processes and there is no hint 
of abstract objects other than numbers. 

The rhetoric algebra (it is how the verbal algebra is referred to by historians) 
was practiced from the earliest times till the sixteenth century. This is also the kind 
of algebra encountered by today's school children well before any formal notation 
is introduced. Naturally, what children are expected to solve 'rhetorically' is much 
simpler and the words in which they put their solutions sound differently; still, it 
is basically the same type of mathematics: verbal and operational. 

At this point it must be stressed that the operational character of algebra is 
not inseparable from its being verbal. It is true that as long as algebraic ideas are 
dressed in words and in words only, it is difficult to imagine the more advanced 
structural approach, where the computational processes are considered in their 
totality from a higher point of view, and where operational and structural slants 
meet in the same representations. To put it differently, words are not manipulable in 
the way symbols are. It is this manipulability which makes it possiblefor algebraic 
concepts to have the object-like quality. It is the possibility of performing higher- 
level processes on the processes represented by compact expressions that spurs 
structural thinking. Thus, introduction of a symbolic notation seems necessary for 
reification. On the other hand, it is not suficient for the transition to the structural 
mode. As already stated in our first example, operational conceptions may also 
be conveyed through symbolic representations. In any case, the verbal means 
perpetuate operational thinking. This may be one of the reasons why the absolute 
reign of the operational algebra lasted thousands of year. 

2.2. Algebra as Generalised Arithmetic: the Structural Phase 

Before we make a further step into the history of algebra, we should make some 
preliminary theoretical clarifications. 

First, it is important to explicitly stress an important implication of the closing 
remark in the last section: the history of algebra is not a history of symbols. 
True, from a certain stage on, algebraic concepts become practically inseparable 
from symbols just like the artist's conception of a picture or of a sculpture is 
inseparable from its physical embodiment. Indeed, the basic concepts of modern 
algebra can hardly be conveyed by any means other than algebraic symbols. 
Moreover, new algebraic knowledge is constructed through manipulations and 
investigations of formal expressions, and therefore the changes in symbolism 
parallel conceptual metamorphoses. Thus, from the moment modem algebraic 
notation was introduced, the history of algebra and the history of symbols, although 
certainly different from each other, became so intimately intermingled that it is 
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practically impossible to tell the story of one of them without telling the story of 
the other. 

Another important issue which should be explicated at this point regards the 
correlation between the advancement from operational to structural algebra and 
the difficulty of demands which the algebraic ideas place on their user. The 
point we wish to make is that climbing the hierarchy of algebraic ideas is not 
necessarily tantamount to increase in the sophistication of a person's thinking. 
One may even feel tempted to say that the opposite is the case: the transition from 
operational to structural algebra, although a significant step forward in the degree 
of abstraction and generality, results in facilitating the performance rather than in 
adding complexity. Although reification itself may be difficult to achieve, once it 
happens, its benefits become immediately obvious. The decrease in difficulty and 
the increase in manipulability is immense. What happens in such a transition may 
be compared to what takes place when a person who is carrying many different 
objects loose in her hands decides to put all the load in a bag. To fully appreciate the 
facilitating impact of reification (attained through an appropriate symbolization), 
it is enough to have a glimpse at the samples of rhetoric algebra presented in 
Table I. The algorithms which seem so easy and obvious when performed through 
formal manipulations on concise formulae become very intricate when dressed 
in verbal, purely operational, representation. Thus, the medieval mathematicians 
deserve our highest esteem for systematically dealing with problems as advanced 
and complex as cubic and quartic equations without the ingenious apparatus of 
structural symbolic algebra (the complex algorithms were presented in a rhetoric 
manner by Cardan in his famous Ars Magna of 1545). As far as their capabilities 
and the sophistication of thinking are concerned, they can only be compared to 
the best of today's mathematicians dealing with the most advanced problems of 
modern mathematics. We should keep all these facts in mind later, when focusing 
on issues of individual learning and problem solving. 

2.2.1. Algebra of a f i e d  value (of an unknown). As previously stated, algebraic 
symbolism is unrivalled in its power to squeeze the operationally conceived ideas 
into compact chunks and thus in its potential to make the information easier to 
comprehend and manipulate. If introduced earlier, the parsimonious notation 
could have changed the rate of algebra's development, something that the science 
of computations seems to have needed badly since the day it was born. In 
comparison to geometry, where the means for structural thinking in the form of 
graphic representations were readily available, the progress of algebra was slow 
and hesitant. By the end of the sixteenth century algebra approached such a degree 
of complexity that without a transition to a structural mode its further development 
would have been stymied. Historians of mathematics have often wondered why 
the thinkers of the past, having such strong incentives for a radical change of the 
method, did not come across the idea of non-verbal representations much earlier. 

Although so natural to us, to them the concept of symbolic notation was 
evidently not at all obvious. In fact, the difficulty lies probably not so much in 
the idea of using letters instead of numbers and operations (these appeared from 
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time to time even in ancient writings), as in the necessity to imbue the symbolic 
formulae with the double meaning: that of computational procedures and that of 
the objects produced. In arithmetic it is easy to keep these two meanings separate 
by putting them in different expressions: 2 + 3 denotes the operation, 5 is the 
outcome. No such separation is possible in algebra, in an expression like a + b or 
3(x t 5) + 1. Here, the process cannot be actually formed; no added value results 
from the operations. The formula, with its operational aspect salient (it contains 
'prompts' for action in the form of operators), must be also interpreted as the 
product of the process it represents. Even our most abstract thinking, however, is 
shaped by metaphors provided by sensory experience (Lakoff and Johnson, 1980), 
and this experience speaks with force against the idea of a process which produces 
no added value and ends up being treated as its own product. Indeed, nothing like 
that is possible in real life: we just cannot eat a recipe for a cake pretending it is 
the cake itself (even though we can imagine the cake or ourselves eating the cake)! 
Thus, our intuition rebels against the operational-structural duality of algebraic 
symbols, at least initially. (The disbelief with which new kinds of numbers were 
invariably greeted throughout history is another example of a phenomenon which 
may probably be ascribed to the same ontological dissonance: such objects like 
314, -2 or flwere born out of operations of division, subtraction, and square- 
root extraction which did not seem to produce anything at all.) 

True, once we manage to overcome this difficulty, it is quickly forgotten. To 
those who are well versed in algebraic manipulation (teachers among them), it 
may soon become totally imperceptible. Our eyes are easily blinded by habit and 
by our own ontological beliefs. Nevertheless, much evidence for the difficulty 
of reification may also be found in today's classroom, provided those who listen 
to the students are open-minded enough to grasp the ontological gap between 
themselves and the less experienced learners. In sections 3.2 and 3.3 we shall 
substantiate this claim with many examples. 

Historical facts indicate that the idea of operational-structural duality was 
also difficult for generations of mathematicians. It was probably Diophantus 
(c. 250 A.D.) who made the first significant step in the direction of a structural 
approach to computational procedures. By systematically intermingling letters 
with words he created for himself a special brand of algebra, known as syncopated. 
While solving word problems, he constructed such expressions as 10-x and 10+x 
(in fact, he wrote equivalent strings of Greek letters) and manipulated them as 
if they were genuine numbers (e.g. he multiplied them obtaining 100 - x2; see 
Fauvel and Grey, 1987, p. 218). The fact that thirteen centuries after Diophantus 
mathematicians still preferred the awkward verbosity of rhetoric algebra bespeaks 
the inherent difficulty of his way of thinking. 

Diophantus did not go beyond the use of algebraic expressions in which a 
letter denoted an unknown but fixed value, and where the resulting expressions 
represented the numbers obtained by combining the unknown with other numbers. 
We shall say that what he developed was algebra of afuced value, as opposed to 
functional algebra, where letters represent changing rather than constant magni- 
tudes. The idea of a letter as variable - as a symbol instead of which any number 
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may be substituted - so obvious to us nowadays, never occurred to Diophan- 
tus. To demonstrate his solution to a problem as, say, "Find two numbers given 
their sum and product", he used to choose concrete numbers as givens. It seems 
that the idea of an algebraic expression as a representation of the final result is 
something quite different - and more difficult to accept - than using formulae as 
temporary representations of manipulations on the unknown. It certainly requires 
a full-blown structural view of algebraic expressions - the ability to relate to the 
above parametric formula as if it was a number and not just an operation which 
could not be implemented. 

2.2.2. Functional algebra (of a variable). It was not until the sixteenth century 
that algebraic expressions came to denote functions rather than fixed values. The 
breakthrough occurred in several steps, the first of which was introduction of 
special symbols for operations and relations, followed by the idea of a letter as a 
parameter (a given). 

The French mathematician Fran~ois ViCte (1540-1603) was the first to replace 
numerical givens with symbols. This invention led to a far-reaching conceptual 
change in algebra. First, the process-product duality of an algebraic expression 
almost imposed itself on the mathematicians since it was a part and parcel of the 
ideaof using letters as unspecified numbers (operations on letters, say 3(xt 5 )+ 1, 
could not be actually implemented, so in order to proceed and do something to 
the resulting number one had no choice but to refer to the formula as if it stood 
also for the product of the computation). Second, once the letteral formulae were 
accepted as representing certain objects, a formal algebraic calculus was created 
which, among other things, specified the ways equations should be manipulated 
to be solved. This was a drastic change in comparison to the operational algebra, 
where problems were solved mainly by reversing computational processes. Third, 
after the new invention was transferred (mainly by Descartes and Fermat) to 
geometry to serve as an alternative to the standard graphic representations, and 
then applied in science (by Galileo, Newton, and Leibniz, among others) to 
represent natural phenomena, algebra was ultimately transformed from a science 
of constant quantities into a science of changing magnitudes. By that time, 
the quest for logical foundations of algebra began. The meaning of algebraic 
expressions and of their symbolic ingredients was found to be elusive and hard 
to capture into a mathematical definition. Such names as 'generalized number' 
or 'variable number' were soon disqualified as lacking precision (see, e.g., Frege, 
1970). The problem was eventually solved by abandoning the idea of defining the 
variable as such and by offering instead an interpretation for an algebraic formula 
in its totality. Function, a new kind of abstract mathematical object, was created 
to serve as a referent for such expressions as 3(x + 5 )  + 1 or x2+ 2y i5 .  

The problematic nature of the new concept, noted and analyzed in detail by 
historians and by psychologists (see, e.g., Kleiner, 1989; Dubinsky and Harel, 
1992), is a separate theme on which we will not elaborate in the present paper 
(another article in this volume is devoted exclusively to this issue). As i t  has much 
bearing on our subject, however, an understanding of the inherent difficulty of the 
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notion of function is necessary for those who wish to have a deep insight into the 
process of learning algebra. 

2.3. Abstract Algebra: Algebra of Fonnul Operations and Algebra of Abstract 
Structures 

Abstract objects, such as different kinds of numbers or functions, emerge at 
these junctions in the development of mathematical knowledge where some new 
processes are introduced, which are to be applied to certain other, already well- 
known, processes. An abstract object mediates between the two: it may be 
viewed as a product of the lower-level process and it lends itself to the higher- 
level manipulations. Thus, with respect to a given object, these two, lower- and 
higher-level, processes may be called, respectively, primary and secondary. For 
example, the idea of rational number originates in dividing integers by integers 
(primary process), but an entity like 314 fully crystallizes as a number in its 
own right only when the rules of manipulating it and combining it with other 
numbers (secondary processes) are established. In algebra, primary processes 
are the arithmetical operations on numbers, the secondary processes are those for 
which these numerical operations serve as inputs. The latter kind of processes 
expresses itself in manipulations on algebraic formulae. Thus, the idea of function 
constitutes aconceptual bond between numerical calculations and formal algebraic 
manipulations. It acts as a link through which new algebraic knowledge is tied to 
the system of arithmetical concepts. 

After the Vietean type of algebra established itself as the leading tool for doing 
mathematics, the next step was to climb to a higher point of view from which 
the present secondary operations - those performed on functions and expressed 
in manipulations on formulae - could be watched in their totality and become an 
object of a systematic study (this is a typical development: a process which is 
regarded as secondary at one level will become primary at a higher level). 

This stage in the development of algebra began in Britain in the third decade 
of the nineteenth century. Although from now on the story goes well beyond 
school algebra, it is worth telling for reasons which will become clear when 
today's students' views on symbolic formulae and equations will be analyzed 
(section 3.3). 

Until the nineteenth century, algebra was regarded as a "universal arithmetic" -
a discipline which specialized in expressing in a general way the rules governing 
arithmetical procedures. However, this interpretation greatly limited the scope 
and the force of the operations on algebraic formulae (e.g., a restriction a > b 
was a necessary supplement to the expression m).Now, when the focus of 
attention was shifted to the formal manipulations themselves, mathematicians felt 
an urge to set algebra free from any confinements. A group of British formalists 
(A. de Morgan, G. Peacock and D. F. Gregory) suggested that algebra should be 
relieved from the ballast of its original interpretation. From now on, an algebraic 
formula should be treated as a thing in itself, interpretable in many different ways 
but devoid of a meaning of its own. The algebraic expression became an empty 
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vehicle waiting to carry an arbitrary semantic load. The formalist school was 
interested not so much in the potential 'cargo' as in the rules that governed the 
movements of the vehicles. As Gregory put it, algebra was to become a science 
"which treats the combinations of operations defined not by their nature, that is 
by what they are or what they do, but by the laws of combinations to which they 
are subject" (Gregory, 1840; as quoted by Novy, 1973, p. 194). Here, the word 
operations is used to denote primary processes, while combinations are clearly 
the secondary processes. Thus, the British formalists initiated a new, higher-level 
operational stage in algebra. It was the first step in the development of abstract 
algebra. 

Although the story of algebra does not end here, it is where our historical 
account stops. The science of abstract structures such as groups, rings, fields or 
ideals, initially developed in the nineteenth century, does not belong to our subject 
as it is not taught at secondary level. Just to complete the picture let us remark 
that with the advent of group theory, a new structural phase began - a natural 
successor to the operational higher-level algebra of the British formalists. 

The numerous stages in the development of algebra are sumarized in Table 11. 
The scheme reinforces the claim that was made at the very outset: algebra is a 
hierarchical structure in which what is conceived operationally at one level must 
be perceived structurally at a higher level. Understanding the nuances of the 
different interpretations of algebraic expressions and their mutual relations is very 
important for our further discussion, in which the learning of algebra by today's 
school children will be analyzed. 

3. THE DEVELOPMEhT OF ALGEBRAIC THINKING - PSYCHOLOGICAL PERSPECTIVE 

3.1. Preliminary Remarks: Competence in Algebra as a Function of Versatility 
and Adaptability in the Interpretation of Symbols 

As we have shown in the above historical account, the development of the long 
sequence of possible approaches to algebra and to its symbolic constructs took 
thousands of years. Today, to solve one little problem from a standard textbook, 
the learner must often resort to all the different perspectives together. The example 
in Table III shows the meandering route through diverse outlooks that one has to 
take to solve the parametric equation discussed in the introduction to this paper. 
The problem-solver oscillates between the operational and structural approach, 
and between one structural interpretation to another. 

Some 'real life' examples of such process-object swinging in algebraic problem 
solving may be found in Moschkovich et al. (1992). Gray and Tall (1991) point to 
a similar phenomenon in arithmetic. Mason (1989) notes the frequent occurrence 
and the importance of the "delicate shift of attention from seeing an [algebraic] 
expression as an expression of generality, to seeing the expression as an object 
or property". All the researchers agree than the "flexibility [of the perspective] 
is a hallmark of competence" (Moschkovich et al., 1992). The reason for this: 
as suggested by the theory of reification, may be summarized as follows (for a 
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TABLE I1 

Stages in the development of algebra 

TY~e stage New focus on Representation Historical 
highlights 

1. Generalized 1.1. Operational 1.1.1. Numeric Verbal Rhind papyrus, 
Arithmetic computations (rhetoric) c. 1650 B.C. 

Mixed: Diophantus, 
verbal+symbolic c. 250 A.D. 

(syncopated) 
1.2. Structural 1.2.1. (Numeric) Symbolic 16th century, 

product of (letter as mainly 
computations an unknown) Viete 
('algebra of a (154C-1603) 
fied value') 

1.2.2. (Numeric) Symbolic Viete, Leibniz 
function (letter as a (1646-1716), 
('finctionan variable) Newton 
algebra') (1642-1727) 

- -

2 Abstract 2 1 Operational Processes on Symbol~c Bntish formallst 
Algebra symbols (no meaning school 

(combinations to a letter) (de Morgan, 
of operations) Peacock, Gregory), 

since 1830 
2.2. Structural Abstract Symbolic 19th and 20th 

structures century: 
theories of 
groups, rings 
fields, etc., 
linear algebra 

much more comprehensible treatment of this issue, see Sfard, 1987,1991, 1992). 
The operational way of thinking dictates the actual actions to be taken to solve 
the problem at hand, while the structural approach condenses the information and 
broadens the view. The abstract objects serve as landmarks with the help of which 
the problem-solving process may be navigated. Since a jump from operational to 
structural mode of thinking means a transition from detailed and diffuse to general 
and concise - from the foot of a mountain to its top - it is only natural that it is 
accompanied by an increase in student's ability to cope with the task at hand. 

Now, let us take a closer look at the notion of flexibility purported to be 
the source of competence. This particular trait of algebraic thinking seems to 
be a function of two parameters: the versatility of the available interpretations, 
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TABLE In 

Oscillating between approaches when solving an algebraic problem 


The problem: For what values of the parameters p and q the equation 
(p +2q)x2 + z = 5z2 + (3p - q) r  holds for every value of I? 

A possible solution 

A step in the solution (decision, operab'on) The approach applied 

(1) 	 Each of the component formulae represents (I)  Here, the formula is 

a family of quadratic functions. The task interpreted as 
is to find these members of the two representing a 
families that are equal to each other. family of functions 
Two polynomial functions are equal if the (one may think about 
coefficients of the same powers of x are two parabolas and ask 
equal. Thus, to answer the question we for what p and q these 
have to solve the system of equations: two curves overlap) 

p + 2 q = 5  

3 p - q = 1  


(2) 	 Let's start with solving the first (2) First interpretation 
equation with respect top: p f 2q = 5 is seen as 

p = 5 - 2 q  a string of symbols 
3 p - q = 1  to be manipulated 

according to rules 
Second interpretation 

p + 2q is a number; 
submction of 2q 

(also a number) from 
p + 2q and 5 preserves 
the equality. 

(3) 	 Let'ssubstitute 5 - 2q instead of p in (3) 5 - 27 is treated as 
the second equation 	 a number (a product of the 

p = 5 - 2 q  process which it represents) 
3(5 - 2q) - q = 1 

(4) 	 Let's solve the second equation with (4) the formulae are 
respect to q: seen as strings of symbols 

3 ( 5 - 2 q ) - q =  1 to be subjected to 
15-69-q  = 1 formal operations, 
15-7q = 1 according to the 

-7q 	 = -14 N I ~ S  

'2 = 2 

(5) 	 Let's substitute 2 instead of q in the (5) the expression 5 - 29 

first equation and compute the value of p which turned into 
p = 5 - 2 * 2 = 5 - 4 = 1  5 - 2 * 2 is interpreted as 

computational process 

(6) 	 Let's formulate the answer: (6) Back to the 
(the functions) (p +2q)x2 +z and functional 
5x2 + (3p - q)z are equal outlook 
i f f p = l a n d q = 2  
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and the adaptability of the perspective. These two parameters appear to be quite 
independent. In certain circumstances aperson may display his or her ability to see 
an expression as a process, in another context he or she may view it as the product of 
this process, and in still another situation as a function. One would say, therefore, 
that the versatility of his or her outlook is quite impressive. This, however, does 
not necessarily mean that the person will always be able to adapt the perspective 
to the task at hand. Although such adaptation would sometimes occur as smoothly 
and imperceptibly as the accommodation of an eye to a changing perspective, in 
certain circumstances it may be equally difficult as alternating between different 
perceptions of a cube represented in a two-dimensional picture. For instance, one 
may be well aware, in principle, that such expressions as (p + 2q)x2 + x and 
5x2 + ( 3 p  - q)x can represent functions, but this particular interpretation would 
not occur to him or her spontaneously at a time of solving the problem presented 
in Table 111. Thus, pointing to the potential versatility of student's conceptions is 
not enough to arrive at a good assessment of their algebraic competence. Equally 
important, the adaptability of their outlook should be tested. 

It is one of our basic theoretical assumptions that the assortment of perspectives 
available to the student grows gradually, roughly following the logical-historical 
path presented in Table II.The hierarchical structure of algebra and of its different 
interpretations makes this conjecture fairly plausible. A direct jump, say, over 
the wide gap separating functional algebra from operationally interpreted algebra 
may end in broken bones. In the discussion that follows, we shall focus our 
attention on two critical junctions in school algebra: first, we shall consider the 
transition from purely operational conception of a symbolic formula to the dual 
process-product interpretation (from cell 1.1.1. to 1.2.1. in Table 11); second, we 
will investigate the passage from here to the functional approach (to cell 1.2.2.). 
We shall make an effort to find out how difficult these two steps are for the pupil 
and what phenomena may be regarded as symptoms of such difficulties. In the 
last section, the looking glass will be turned at the final outcome of schooling: the 
question of versatility and adaptability of the conceptions with which the students 
typically leave the school will be addressed. 

3.2. Toward the Structural Outlook 

Although past investigations did not originate in one consistent conceptual frarne- 
work, their findings, when combined together and re-examined through the lenses 
of the theory of reification, will often lead to new insights and to a more com- 
prehensive picture of learning. To make these insights even more powerful, we 
shall reinforce them with samples of interviews and observations canied out by 
ourselves with children of various ages and competences. The interviews focused 
on the notion of propositional formula (equation, inequality). Our interviewees 
included 
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Group 1: 	 Six seventh-graders (age 12-13) of an average and slightly over- 
average ability who, by the time we met them for the first time, were 
already acquainted with the notion of an algebraic expression but not 
with the concept of equation; 

Group 2: 	 Four ninth-graders (age 14-15) of above-average ability who were 
supposed to be well versed in basic algebra, including linear and 
quadratic equations and linear inequalities, and were familiar with the 
notion of function in general and with linear functions in particular; 

Group 3: 	 Four tenth-graders (age 15-16) of above-average ability who had had 
a long experience with algebra in many different contexts, including 
analytic geometry and calculus (thus, could be expected to be well 
acquainted with the functional approach). 

There was also another kind of inquiry. Each of the children from Group 1, after 
he or she was taught to solve linear equations of the type ax + b = cx + d, was 
asked to help in explaining the subject to his or her peer for whom the whole 
issue of equations was still completely new. In this way, we hoped to get another 
perspective on the children's thinking. We believed that since the necessity to 
convince an uninitiated is a strong motivational force, listening to children giv- 
ing explanations to other children may be a more powerful method of inquiry 
than asking direct questions. All the interviews and the teaching meetings were 
recorded either on video- or on audio-tape. 

It must be emphasized that the present paper is by no means a systematic report 
of the above research, nor an attempt at a comprehensible presentation of all the 
results. The large-scale study from which our interviews were but a small part will 
be summarized elsewhere. Here we shall only avail ourselves of those selected 
samples which bring our message with particular clarity. 

3.2.1. First step: toward algebra of afuced value (recognition of a process-product 
dualio). Since the transition from purely operational outlook to the dual, process- 
product interpretation of algebraic formulae occurs in close vicinity to the point at 
which arithmetic meets with algebra, much data relevant to our topic may be found 
in the research devoted to this crucially important junction. In the following brief 
summary, enriched with our own observations, we shall try to find out how the 
transition from operational algebra to structural algebra of a fixed value expresses 
itself in student's behavior. With this goal in mind, we shall analyze pupil's initial 
understanding of formulae, of the equality sign, and of equations. 

It is one of our basic theoretical theses that an operational conception naturally 
precedes a structural. Findings collected by ourselves and by other researchers 
gave this supposition strong support: it seems that even without direct intervention 
from a teacher, the learners initially interpreted algebraic expressions as compu- 
tational processes. The following are only a few out of many examples that may 
be brought to illustrate this point. 

Those who listen carefully to the language used by the pupils will usually 
notice that the way many children initially refer to algebraic expressions indicates 



207 RE~CATION-THE CASE OF ALGEBRA 

their operational outlook. It may be easily seen in the interviews quoted by Booth 
(1988, p. 21). For instance, a child asked by an interviewer to write down the 
length of a space-ship's path composed of y 11-light-years long segments said: 
'What, shall I write what I would do?" and after she eventually contrived the 
formula 11 * y,  she exclaimed to the interviewer: "What, is that all it was? Why 
didn't you say so? I thought you wanted an answer." Thus, for this child the 
expression was a mere prescription for the sought-for quantity, not the quantity 
itself. In our own teaching experiment with children of Group 1, such references 
to algebraic expressions as 'this is an exercise that must be done' were noted 
time and again even when a pupil was explaining what this 'thing' (say 8s)  was 
which he or she decided to subtract from both sides of an equation. The following 
fragment of a dialogue between the interviewer (I) and the Group-1 pupil Ayala 
(A) is particularly enlightening, as it indicates that the operational approach to 
algebraic formulae is inherited from arithmetic. Ayala was trying to explain how 
her friend Irit solved an equation. 

I: 	 How did Irit go from here [15x = 8 s  + 351 to here [7x = 35]? 

A: 	 She subtracted an exercise, 8 times x, and she subtracted it also from 
the other side of the equation. 

I: 	 What do you mean when you say 'exercise'? 

A: 	 8 times x is an exercise, it is something you must do. She takes off this 
exercise. It's like when you have 1 + 2 + 4 = 3 + 4. Then you can 
take off 3, and then at the other side you take off 'one plus two'. 

I: 	 1 + 2 is an exercise and 3 is not an exercise? 

A: 	 3 is a number, it's a result of an exercise. This [points to 1 + 21 is the 
exercise: and 8x is an exercise and 15s is an exercise. We subtract the 
same exercise from both sides so that what is left is the same. 

(Ayala's statements indicate that she is somehow half-way between operational 
and structural outlook: she already manipulates algebraic expressions as if they 
were objects, but the language she uses is still operational.) 

The conviction that a formula is nothing else than a process waiting to be per- 
formed may be responsible for what Collis (1974) called the inability to accept the 
lack of closure -a student's difficulty with complex expressions not followed by an 
equality sign and not complemented by the 'result' of the computation written on 
the other side of this sign (see also Chalouh and Herscovics, 1988). This inability 
may be responsible for the striking result obtained at the British national survey 
of IS year olds (as quoted by Bell, 1992): a wide gap in students' performance 
was noted in the following, seemingly not too different, problems: 'What is x if 
2x +7 = 45?'and 'If -4 = L * B tells us how to work out A, what formula tells us 
how to work out L?' The success rates on these two questions were 73% and 39%, 
respectively. The dramatic difference may probably be ascribed to the fact that 
in the second problem, in which some of the letters played the role of parameters 
('givens'), the final result (the value of L) would have to be presented by means 
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of a formula and not of a number. This must have seem unacceptable to those for 
whom an algebraic expression was still only a process (as it probably was even 
for Diophantus, who did not refrain from using formulae to present intermediary 
calculations, but would not use them for the final outcome). Similar difficulty was 
experienced by Gay, a 15year old pupil (group 2), when he was trying to simplify 
the expression kx - x = -2. Although Gay had already two years of algebra 
behind him, and he was regarded by all his past and present teachers as talented 
in mathematics, he could not cope with the problem. No idea seemed to come to 
his mind. 

kx - x -can't you present it in a different way? 


No. There is a multiplication here, kx,so what can I do? 


And if I wrote 3s - x,would you be able to do anything? 


3x - x ?  It's 22.  


So? Isn't kx - x similar? 


But this ...but this does not work ... I don't know the value of k. 


So what? 


So what can I write? k - x?  


What have you done here [3x- x] to get 2x? What did you do to 3? 


I subtracted 1. 


So? 


So what? Shall I take one off? I don't know ... If I subtract 1 from k 

1'11 be left with the same mess. As if it was ... See, I don't know how 
to write it. 

Here [3x-x]you subtracted one from 3 and multiplied x by the result, 
right? Here [kx- x] you subtract one from k and ... 
Multiply by x ... But how do I subtract one from k?  How do I write 
it? k - l ?  

Not surprisingly, when algebraic expressions are seen as processes rather than ob- 
jects, the equality sign is interpreted as a 'do something signal' (Behr et al., 1976; 
Kieran, 1981) and not as a symbol of a static relation. The expression on the 
left-hand side is a process, whereas the expression on the right-hand side must be 
a result. Once again, the idea seems to come from arithmetic where the sign '=' 
is used as a prompt for the implementation of a 'program' appearing to the left of 
this sign. Nowadays, this outlook may get additional reinforcement from the fact 
that this is exactly the way we use the '=' key in hand-held calculators. It serves 
here as a 'run' command. When treated in this way, the equality symbol looses 
the basic characteristics of an equivalence predicate: it stops being symmetrical 
or transitive. Indeed, young children seem to have no qualms about solving word 
problems with the help of a chain of non-transitive equalities. For instance, when 
asked 'How many marbles do you have after you win 4 marbles 3 times and 
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2 marbles 5 times?', the child would often write: 

(see also Vergnaud et a]., 1979). The 'one-way', non-symmetric approach to the 
equality sign, so symptomatic of the operational perspective on algebra manifested 
itself with force in the following little incident between a Group-1 pupil Danna 
and her friend and 'student' Zohar. After Zohar had successfully solved the 
equation 7 2  + 157 = 248, she looked baffled and stymied when presented with 
the next example, 112 = 122 + 47. Whereas the observer was puzzled, Danna 
immediately suggested the reason for Zohar's helplessness. "She doesn't know 
what to do because the order of the equation confuses her, it's not like it should 
be", she said. 

The spontaneity of the operational outlook is exhibited in the easiness with 
which many young children handle simple linear equations of the form ax +b = c. 
As was noted more than once in different studies (e.g., Kieran, 1988, 1992; Filloy 
and Rojano, 1989), for young pupils it is often intuitively obvious that in order 
to solve this kind of problem, one must just 'undo' what had been done to the 
unknown. We have witnessed many examples of such spontaneous reversal of the 
computation in our first interviews with Group-1 pupils. The following little story 
is one of them. When Snir came to the interview, he knew nothing about equations. 
The interviewer mentioned to him that in an equation like 7 2  + 157 = 248, 7 x  
means '7 times x' and without any further explanations asked for a solution. Snir 
immediately concluded: "Here, I have to find a number so that 7 times this number 
plus 157 is 248. First, 248 minus 157 is 91. Now, the number times seven ... 91 
divided by 7 is 13. The number is 13." The operational character of Snir's algebra 
is underlined by its rhetorical presentation. 

All the above observations point in the same direction: the operational outlook 
in algebra is fundamental and the structural approach does not develop immedi- 
ately. Moreover, as we have shown in our historical outline and reinforced with 
theoretical argumentation, there is an inherent difficulty in the idea of process- 
object duality - of a recipe which must also be regarded as representing its own 
product. This difficulty cannot be expected to disappear without some struggle. 

Davis (1975)was probably one of the first writers who realized the significance 
of what came to be known in literature as the 'name-process dilemma' (in fact, the 
term 'process-product dilemma' seems more adequate, as there is no indication 
that the student distinguishes between the name of a thing and the thing itself; 
incidentally, the inability to sever a sign from the signified may be one of the 
reasons why the duality of algebraic expressions is sometimes so difficult to 
grasp). Davis pointed out to what until now might have well gone unnoticed 
by the majority of teachers: the idea of duality is not self-evident and may be 
perplexing for a student. 

A particularly convincing symptom of this difficulty may be the phenomenon 
of 'didactic cut' in learning to solve equations, noted by Filloy and Rojano (1985, 
1989) and confirmed by others (e.g., Herscovics and Linchevski, 1991, 1993). 
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These researchers discovered that, whereas the solution of an equation of the form 
ax+ b = c is intuitively accessible to most pupils, the equation with an unknown 
appearing on both sides, such as ax + b = cx or ax + b = cx + d,evidently 
poses a problem. Since in the former equation the equality sign still functions like 
in arithmetic - operations on one side and the result on the other - they called it 
'arithmetical'. 

On the grounds of our general claims and assumptions, the apparent difficulty 
at this particular point in learning is not surprising. The cut runs along the demarca- 
tion line between operational and structural algebra. As long as only arithmetical 
equations were concerned, there was no need to hold the dual process-product 
outlook. The computational operations and their results remained separated by 
an equality sign and each side of an equation preserved its particular ontological 
identity - that of a process and that of an object, respectively. This division of 
roles is no longer in force in the non-arithmetical equation. The expression on the 
right-hand side, expected to be a product of the left-hand expression, is in fact a 
process. Without the dual outlook, which would turn this last expression into an 
object, the equation does not make much sense. This may be clearly seen in the 
following typical dialogue, taken from the interview with Snir, a thirteen year old 
pupil of more than average ability (Group 1). Snir, for the first time, is faced with 
a non-arithmetical equation 15x + 12 = 8s+ 47. 

S: One must find something ... that when I multiply 15 by a number and I 
add 12 to it, it will be equal to eight times a number, and I add 47 to it. 
Let's start with something simple. Here, times 3 and times 1 [writes 3 
over x on the left-hand side and 1 over x on the right-hand side]. No, 
it's not that ... I don't know. 

I: What are you looking for when you are solving the equation? 

S: We must find two things. Something that when I multiply it or divide 
it ... doesn't matter ... will be equal to the other thing. One must find 
the way of making them equal, there are two equations here. 

Much can be learned from this little exchange. It was difficult for Snir to make 
sense of the equation which looked to him like 'two equations', two processes 
waiting to be performed while the relation between them was not clear at all (at 
this point, Ayala said that there are 'two exercises' here). The meaning of the 
equality sign here, so evident to the experienced person, turned out to be far from 
obvious for the beginner: what aspects of the two processes should be equal'? 
The object operated upon? The object obtained? Or maybe both? Interestingly 
enough, for Snir it was obviously the equality of results that was required, whereas 
the numbers for which this equality would hold could be different. Indeed, he 
looked for two different values of x on the two sides of equation. We were initially 
perplexed by this interpretation, and even more so when we noticed the same un- 
expected approach in almost all interviews with Group-1 children and with their 
peer-students. The phenomenon seemed surprising because at this stage of learn- 
ing the pupils already knew the convention that different occurrences of the same 
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letter in a given expression signify the same number. It seems that this principle 
collapsed in the face of an equality which could not be interpreted on the basis of 
the previous knowledge (as was stated by Herscovics and Linchevski, 1991, the 
problem of the double interpretation may be easily solved by an explicit statement 
of the convention regarding different appearances of the same letter in a given 
equation; even so, we find it significant that this restriction does not occur to the 
student spontaneously in spite of former instruction). 

The difficulty with non-arithmetical equations becomes even more visible 
when such an equation must be solved. Here, the technique of 'undoing' no 
longer works. The structural conception of an algebraic formula is a prerequisite 
for the comprehension of the strategy that must be used - that of adding, sub- 
tracting, multiplying and dividing both sides by the same expression. Indeed, 
the idea can only be accepted by those for whom the sides of an equation and 
the expressions with which these sides are operated upon are objects while the 
equality sign is a symbol of equivalence. That this is not always the case may be 
seen from the following exchange between Danna and Zohar, the two Group-1 
students quoted above: 

D: [To solve 152 = 8x + 351 you subtract 82 from both sides now. 

Z: But I don't know how much is 8x,so how can I subtract it? ... I don't 
even know whether the x's on both sides are equal. 

The utterances by Zohar and similar statements by other students leave little doubt 
as to the source of the difficulty they experienced at this point. The children were 
not able to relate to a formula as a representation of a ready-made object. For them 
it was still a process, and how can a process be subtracted from another process? 
(In fact, Ayala's utterances quoted above hint at a possibility that some children 
may be able to put up with the idea of 'arithmetic operation' on processes; the 
question is whether this kind of understanding is really consistent and effective). 

The last point to be made in this section regards solving word problems using 
equations. Equation requires suspension of actual calculations for the sake of 
static description of relationships between quantities. This approach does not 
comply with the pruely operational view of algebra. 

Moreover, the declarative, structural mode of the algebraic presentation re- 
verses the order in which the operations must be performed if the 'answer' is to 
be found. These may be the reasons why in many studies, even quite advanced 
students have been found to prefer verbal-operational mode of solving word prob- 
lems rather than symbolic-structural way of putting things (Clement et al., 1979; 
Soloway et al., 1982; Sfard, 1987; Harper, 1987). 

Let us end this section with a quotation from Davis (1975): 

Many major cognitive adjustments - 'accommodations' rather than 'assimi- 
lations' - are required if one is to do the necessary mental flip-flop and start 
seeing the equal sign in new ways, and even seeing 312 as an 'answer' instead 
of a problem. It is not entirely clear that this whole new point of view can 
be acquired by gentle accumulation of small increments. It may resemble the 
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geological phenomenon of earthquake more than the phenomenon of erosion 
or dust deposit. [p. 291 
The conjecture ventured here by the author is perfectly in tune with the theory 

of reification: the transition from purely operational to a dual process-object 
outlook is probably not a gradual smooth movement toward a higher level. Like 
any reification it is likely to be a quantum leap toward a higher vantage-point. 

3.2.2. Second step: toward thefunctional algebra. The passage from the algebra 
of a fixed-value (of an unknown) to the functional algebra (of a variable) is not 
as well documented in the literature as the previous transition -that from purely 
operational to the dual, process-product, approach. True, much has been written 
about the notion of function - about the way it develops and about the difficulty 
with which it is acquired and applied by themajority of people. Although all 
this is of some relevance to our present subject, it does not provide us with the 
kind of direct information that is needed to understand the specific problems of 
the functional approach to algebra. Among the issues that should be addressed 
are such questions as student's ability to think about algebraic formulae in terms 
of functions and his or her readiness to apply this outlook whenever appropriate 
(thus, once again, the problem we are facing is that of versatility and adaptability 
of pupil's algebraic thinking). 

There are several reasons why our present issue is somehow more difficult 
to cope with than the previous one. For one thing, the significance, or even the 
very existence, of the particular turning point we are now talking about may be 
less clear than the former. Even if recognized, it is quite elusive. Whereas it is 
quite obvious where to look for the transition from the operational to process- 
product outlook (after all, it is a part and parcel of the passage from arithmetical to 
symbolic algebra!), it is not that easy to pinpoint the moment in learning when the 
functional approach becomes truly necessary. Also, distinguishing one functional 
approach from any other in student's solutions to standard school problems is 
certainly not a trivial matter. 

On top of it, the modern school curricula often introduce the functional ap- 
proach almost from the beginning. so that, at the face of it, there is not much sense 
in talking about a transition to this approach. The Israeli method of teaching 
algebra may serve as an example. An advanced structural outlook is assumed here 
almost simultaneously with the introduction of algebraic symbols. Let us draw a 
sketchy picture of the method. 

Algebraic expressions are introduced before they become a part of an equation 
or inequality. The 12-13 year old child begins her or his algebraic education with 
modelling different 'real-life' situations and numeric relationships using symbolic 
formulae. At this stage he or she is not requested yet to compute any values, just to 
describe the state of affairs assuming that all the numbers are given. Thus, from the 
very start, the letters are applied as variables rather than as unknowns. Equations 
and inequalities are introduced slightly later, as two different, but closely related, 
instances of a single mathematical notion: propositional formula (PF, from now 
on). This universal construct is defined as 'a combination of symbols (names of 
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numbers, letters, operators, predicates, and brackets) that turns into a proposition 
when names of numbers are substituted instead of the letters'. The idea of PF is 
introduced as early as seventh grade, and then equations and inequalities are dealt 
with simultaneously. Every PF has its truth-set (TS,for short), namely the set of 
all the substitutions that turn this PF into a true proposition. Any two PFs with the 
same truth sets are called equivalent. Solving an equation or an inequali~ means 
finding its TS. As a consequence of this approach, even the solution procedures 
are described in set-theoretic terms: to solve, say, an equation E, one must find 
the simplest possible PF which is equivalent to E. The basic steps which may 
be taken to transform an equation into an equivalent PF are called elementary 
(permissible) operations (in our language, these are the secondary processes of 
school algebra). 

Although the concept of function is officially introduced some time later (eight 
grade, sometimes only ninth grade), the above method of teaching provides a good 
example of a structural, functional approach: lener is presented as a variable, an 
algebraic expression as a function of this variable, and propositional formulae are 
interpreted as comparisons between functions. Notably, there is much emphasis 
on graphical representations of the truth sets, which in the case of an equation 
with two variables, x and y, often leads to the graph of a function y = f (x). 
This uncompromisingly structural way of dealing with the subject is certainly 
very attractive due to its mathematical elegance, consistency, and universality. 
However, since it is somehow at odds with the epistemological and historical 
order in which the algebraic concepts seem to be related to each other, one cannot 
be sure that the functional approach is the best slant to begin with. 

In a series of interviews carried out in Group 2 (age 14-15, Grade nine) and 
Group 3 (age 15-16, Grade ten), it was our goal to assess students' familiarity 
with the functional approach and their competence in using it in different contexts. 
In preliminary talks with our interviewees, we tried to ascertain that all of them 
were beyond the 'didactic cut' and that they had assimilated the fixed-value 
approach. Indeed, we found that they could cope with many kinds of equations 
and inequalities and could explain the necessary moves in terms of operations on 
both sides of a propositional formula (e.g., "Here I added 2x to both sides ... it is 
permissible because when I do it on both sides, one thing balances the other and 
the two sides remain equal"). 

Our first task was to decide in what kind of problems the functional approach 
becomes indispensable or at least more helpful than any other outlook. We scruti- 
nized several textbooks and identified three representative examples: a quadratic 
inequality, a system of equations with an infinite truth set (singular equations) and 
a system of parametric equations. An explanation for why the functional approach 
is indeed vital in dealing with each of these problems is given below. 

Let us precede the explications and the examples of our findings with a method- 
ological remark. While presenting the interviewee with our three questions, we 
were well aware that he or she may not yet be acquainted with the techniques for 
answering some of the problems (e.g., quadratic inequalities). For us, it was an 
advantage rather than a drawback. Since we were interested in diagnosing the 
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student's ways of interpreting algebraic constructs, we had to prevent his or her 
conceptions from being buried under mechanical algorithmic behavior, typically 
displayed in solving standard problems. In theory, even our younger interviewees 
were endowed with all the information necessary to actually implement even 
those tasks which were not yet exercised at school. The intriguing question was 
whether their algebraic knowledge was versatile and adaptable enough to allow 
them at least to understand the problems. In the following short account of our 
clinical interviews we will not try to give any statistics or generalizations. We 
shall confine ourselves to three brief case studies which seem to us most enlight- 
ening and quite typical. The fact that all our interviewees were considered by 
their mathematics teachers as being perceptive and successful makes these three 
episodes particularly telling. 

Problem 1: Quadratic inequality 

I Solve: x 2  + x + 1 > 0 I 
Inequalities were introduced to Alon (age 1.5) more than a year before we met. By 
the time of the interview he was already well versed in solving linear inequalities. 
Thus, for the reasons we explained above, it was clear that presenting him with 
this kind of problem would not provide us with much information. Like for all 
Israeli pupils, an inequality was supposed to be for Alon just a special case of 
a propositional formula, not much different from an equation. To us, however, 
the former kind of PF seemed more difficult, as it clearly demanded a more ad- 
vanced structural outlook. Whereas equations may be understood and solved on 
the grounds of a fixed-value approach, namely by treating a letter as a certain 
unknown number and each side of an equation as a concrete product of operations 
on this number, an inequality requires that the values of the component formulae 
are tested and compared for different values of the letter. Thus, in the inequality, 
the letter plays the role of a variable and the component expressions -of functions 
of this variable (it goes without saying that the more basic operational approach 
is out of question: unlike the equality sign, the symbol '>' cannot be interpreted 
as a 'do something' signal). Perhaps the most efficient way of solving a quadratic 
inequality such as the one we have chosen is to look at the graph of the appropriate 
function (in our case: x2+ x + 1) and choose those segments of the x-axis which 
run below the graph. Although all the pupils we talked to had some previous 
experience in drawing parabolas, our expectations as to their performance were 
not very high. A study by Even (1988) with prospective mathematics teachers 
has already shown that "relating solutions of equations to values of correspond- 
ing functions in a graphical representation" is a tough task with which not many 
learners can cope. Indeed, not even one of our interviewees, whether the younger 
or the older, resorted to graphing. Not even one of them solved the inequality. 
The following dialogue between Alon and the interviewer is quite typical. 



215 REIFICATION -THE CASE OF ALGEBRA 

[Pointing to the inequality] What is it? What do we call such 
a thing? 

Quadratic equation. 

Equation? 

No, inequality. 

What do we look for when we solve it? 

We try to find out what the left-hand side is equal to. 

What do you mean? 

We check how much greater than zero it is and whether it really 
is greater than zero. 

Could you be more precise? What are you looking for? What 
do you want to get and to write down in the end? 

That x2 + x + 1... I want to find x2 and x ... then I can 
substitute and check whether it is true, this equation ... this 
inequality. 

Say it again. What are you looking for? Chairs, pens, tables? 

A number. 

A certain number? 

(14) A: Yes, one number. 

(15) I: The special number that ... what? 

(16) A: That I can substitute and find a solution. 

(17) I: What do you mean by 'find the solution'? 

(18) A: Solution, it means that the inequality is true. 

From what Alon is saying it seems that he is 'stuck' in the fixed-value view of 
algebraic formula. In utterances 6 and 9 he refers to x2+ x + 1 as if it had only 
one, well defined, value. Statements 10, 12, 14, and 16 also indicate that the letter 
x is for him just a code name for a certain concrete number. With this approach, 
Alon could not be expected to be able to cope with the problem. To solve the 
inequality he turned to some old routines, obviously hoping that they will do the 
job for him even if he could not tell why. 

(19) I: 	 Do you know how to do what you want to do? 

(20) 	 A: Maybe...[wri t e sx l ,2=( - l f J1 -4 .1 .1 ) /2 ] . Ihavehe re  
the square root of -3. There is no solution. 

(21) I: 	 So? 

(22) A: 	 So this [points to the inequality] is not true. 

(23) I: 	 What do you mean? 
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(24) 	 A: That whatever I substitute, it will be less than zero, or maybe 
zero, but it won't be more than zero. 

Alon was unable to assume the functional approach which would allow him to deal 
with the inequality in a meaningful way. This handicap led him to a mechanical 
behavior grounded in habits which he never tried to revise. The mere occurrence 
of a square root of a negative number was for him a signal that the answer should 
be 'no solution' (while, in fact, any number fulfills the inequality!). His response 
was given automatically and there was no attempt on his part to postpone the 
decision in order to check how it related to the particular contents of the question 
he was asked. 

Problem 2: Singular system of equations 

2(x  - 3 )  = 1 - y 
solve:1 { 

2x+y = 7  
J 

Singularities and the things that happen at the fringes of mathematical definitions 
are often the most sensitive instruments with which student's understanding of 
concepts may be probed and measured. This is also the case with regard to 
singular simultaneous equations. 

Without a functional approach to algebraic formulae, one is not likely to realize 
that a system of linear equations may have infinitely many solutions. If the letters 
in the equations represent unknown but fixed numbers, how can anybody expect 
that one or both of these fixed numbers will be 'any number'? Moreover, in the 
case of two linearly dependent equations, the truth set itself is, in fact, a function: 
to each value of x there is a corresponding value of y. To be prepared for this 
possibility, the student must realize that each of the component equations may be 
considered as representing a function, and the graphs of the two functions can 
coincide in any number of points. Only if he knows this, will he be capable of 
interpreting in the correct way the tautological equality, such as 0 = 0, which is 
usually obtained as the final output of the routine solving procedure applied to a 
system of linearly dependent equations. 

Unlike in the case of quadratic equations, the issue of singular equations 
should have been known to all our students, even to the youngest among them. 
This subject is usually touched upon almost simultaneously with the introduction 
of systems of equations (Grade nine), and it is given additional treatment at more 
advanced stages of learning. Even so, some of the interviewees responded to 
Problem 2 with such answers as: 'The truth set is empty" or "x and y may be any 
numbers" (no functional relationship between x and y specified). 

Let us take a closer look at the particular way in which the problem was tackled 
by 15-year old (ninth grader) Mariella. After several transformations, Mariella 
arrived at 
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( 1 )  	 M: This is the same equation. Now, shall I solve it? [Starts 
humming.] Just a moment, 22 ... let's take 22 off [Writes: 
y = 7 - 22.1 Let's put 7 - 22 instead of y ... [Substitutes in 
the second equation; writes: 2x + (7 - 22) = 7; simplifies 
and arrives at 7 = 7.1 

(2) I :  	 So? 

(3) M: 	 So x equals zero [writes x = 01. Do you want y as well? 

(4) 	 I: I don't know, you decide. How do you usually complete such 
a task in the class? What do you write in the end? 

(5) M: 	 The solution. 

(6)  I: 	 Well, so write the solution. 

(7) 	 M: If x is 0 then y is 7. Now, I shall put it into the first equation ... 
No, in the second. So, 2 times 0 is 0 ... [arrives at an equality 
7 = 71. So my solution is true: (0,7). 

(8) I: 	 Is it the only solution? 

(9) M: 	 Yes. 

Instead of constantly monitoring the problem from a more advanced point of view 
in an attempt to look for meaningful shortcuts, Mariella slips into a less stressful, 
to her taste obviously more secure, algorithmic mode. At the point where the 
two equations became identical - the fact that she explicitly noted in (1) - the 
functional outlook combined with the knowledge of linear functions would have 
given her an immediate answer. Mariella remains unaware of this simple option 
and uses the routine substitution method instead. 

Similar to Alon, Mariella might be thinking in terms of fixed values rather than 
of variables and functions. Her moves could be dictated by a tacit assumption that 
x and y represent specific numbers. Alternatively, she might just be manipulating 
symbols in a routine way without actually giving any thought to the meaning of 
the letters. Her expectation to find an expression of the form 'x = number' in the 
end of the process was strong enough to force her into faulty reasoning (in (3), 
she concluded that x = 0 from 7 = 7) .  The conviction as to the general nature 
of the solution made her insensitive to the mistake. She did not change her mind 
even when the interviewer interrogated her on the reasons for her decision: 

(10) I: 	 How from here [7 = 71did you conclude that x = O? 

( 1  1 )  M: x was cancelled, so I could cancel the 7. And then 0 times x 
equals 0. 
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Problem 3: Parametric equations 

Is it true that the following system of linear equations: 

I k - y = 2  

has a solution for every value of k? 

Our own familiarity with variables often makes us insensitive to the subtle dif- 
ference between equations with numerical coefficients and those with parameters. 
For people well versed in solving techniques, the question of whether they are 
operating on numbers or on letters may seem irrelevant. Thus, even for the teach- 
ers, the great conceptual difference between the regular kind of equations and 
parametric equations would not always be clear. (Incidentally, as it often happens 
with conceptual subtleties, one glance into history could open their eyes.) 

In a problem like the present one, the objects that the student is supposed to 
consider are not just numbers - they are functions. To understand the question, 
one must realize that each of the equations, k - y = 2 and x + y = k, represents 
a whole family of linear functions (or, to put it in different terms, it expresses a 
family of infinite sets of ordered pairs of numbers), and that for different values 
of k the system will yield different pairs of such functions. One of the ways to 
interpret the conjecture presented in Problem 3 is to say that for none of the pairs, 
the graphs of the two functions are parallel. The conceptual step that must be 
taken to reach this interpretation may be higher than even the most experienced 
teachers would guess. 

It should be noted that in our particular problem, the functional approach 
combined with the knowledge of linear functions, if used not only to decipher the 
question but also to answer it, could lead to an appropriate argument immediately, 
without any calculations. To show that the truth-set is never empty, it would 
suffice to realize that the first equation ( k  -y = 2) represents a horizontal straight 
line, while the graph of the second (x +y = k) is oblique. Two such straight lines 
must meet in a point. An alternative algebraic solution would involve applying 
the usual solution technique and finding whether some of the operations put any 
restrictions on the value of k (in this case, there are no such limitations and this 
explains why the truth set is never empty). 

While presenting the problem to our interviewees we had every reason to 
expect that all of them, and especially the older ones, would at least be able to 
understand the question. We also had certain hopes that the functional way of 
proving the claim would occur spontaneously. Indeed, except for the fact that the 
functional approach to propositional formulae was promoted in the school from 
the very beginning, all our students were well acquainted with linear functions, 
with their properties and representations. Moreover, the older pupils had a course 
on analytic geometry behind them and by the time we talked to them they have 
been studying calculus for almost a year. In spite of all this, not even one of our 
interlocutors used their knowledge of linear functions to prove that the existence 
of a solution is independent of the value of k .  Some of them (two from each age 
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group) answered the question using the standard algebraic manipulations. For the 
others, the problem seemed incomprehensible. We find the following conversation 
with Dina (age 16, tenth grade) representative and significant. 

Dina was helpless when faced with the problem. She asked the interviewer 
what she was supposed to do. The question was obviously not clear to her at all. 
After a minute or two of looking at the problem she said, "I am groping in the 
dark." Here is a fragment of our further exchange with her. 

(1) D: [reads the question silently] "... has a solution ..." 
(2) I: What does it mean "has a solution"? 

(3) D: That we can put a number instead of k and it will come out 
true. 

(4) I: When we say that the system has a solution for every value of 
k,  what is the meaning of the word 'solution'? Is it a number 
or what? 

(5) D: Yes, it's a number. 

(6) I: One number? 

(7) D: Yes, it's the number that when you put instead of k,  then the 
system is true. 

Obviously, Dina had a difficulty with grasping the meaning of the word 'solution' 
as it appeared here. One possible interpretation of her utterances 3 and 7 is that, for 
her, the statement 'the equations have a solution' was equivalent to the claim that 
'the equations are true' (utterance 3) - as if all the components of the equations 
had established values. It was probably on the grounds of verbal hints that she 
decided that in this problem the focus is on k rather than on x and y. In the further 
exchange, in which the interviewer insisted on getting a clearer explanation, it 
soon became evident that Dina was far from being firm in her position. Without 
qualms or explanations, she extended the focus from k to x and y. 

(8) 	 I: This word 'solution' here, to what does it refer? Solution of 
what? 

(9) D: 	 Of the equations, k - y = 2 and x + y = k.  

(10) I: 	 What is a solution of these equations? 

(11) D: 	 When we substitute numbers ... 
(12) I: 	 Instead of what? 

(13) D: 	 ... instead of x, y, and k, and it comes out true. 

(14) 	 I: So, once more, what are the solutions we are talking about in 
this question [points to the words 'has a solution']? 

(15) D: 	 I think ... I think that I need three numbers: x, y, and k. 

One possible interpretation is that, similar to Alon, Dina was a captive of the fixed- 
value approach. She could not raise her sight to a higher vantage point which 
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would help her to realize that the objects to be considered here are functions and 
not numbers. Seeing these advanced abstract entities through the standard alge- 
braic symbols, let alone operating upon them, was clearly beyond her power. This 
limitation made her unable to interpret the question in a meaningful, consistent 
way. It left her confused and helpless. Thus, when asked what she was supposed 
to look for, she had no choice but to 'shoot at random' with pieces of standard 
statements which had worked in the past. Needless to say, the way Dina tried to 
actually solve the problem reflected her confusion: she isolated k from the first 
equation (wrote k = 2 + y) and substituted it in the second (x t y = 2 + y). At 
this point she became stymied and could not make a further move. 

Before we end this section it should be mentioned that although none of the 
pupils quoted above were able to demonstrate the functional approach in the 
pieces of conversations we chose to present here, two of our three interviewees 
did display some ability to think in functional terms on other occasions. For 
example, Dina interpreted the quadratic inequality in a correct way: as a problem 
of a possibly infinite set of values of the variable which would render the quadratic 
expression apositive value. Alon solved Problem 3by manipulating the equations, 
but seemingly with some understanding. 

The message from all this may be presented as follows: the functional per- 
spective was not necessarily beyond the assortment of approaches potentially 
available to our students. Rather, the problem we have witnessed was that of 
adaptability: the functional approach was not always accessible; sometimes, even 
if indispensable, it would not be applied spontaneously. 

3.3. When Something Goes Wrong: Pseudostructural Approach 

Despite the functional approach being promoted in Israeli schools, and in spite 
of the fact that the students we talked to scored quite high in their achievements 
in mathematics, what we discovered through the interviews was rather alarming. 
The usually successful pupils displayed very limited ability when thinking about 
propositional formulae in the advanced structural terms of functions and truth 
sets. This fact merits special attention, as a danger may be lurking here of what 
we called elsewhere semantically debased or pseudostructural conceptions (see 
Sfard, 1991, 1992; Linchevski and Sfard, 1991). 

Let us clarify these terms. As we explained before, abstract objects, such as 
functions or sets, play the role of links between the old and the new knowledge 
(see Fig. la).  In algebra, function is what ties together the arithmetical processes 
(primary processes) and the formal algebraic manipulations (secondary processes). 
Thus, reification of the primary processes, or, in the case of algebra, the acquisition 
of the structural functional outlook, is a warranty of relational understanding. 
However, the data we collected up to this point provided sufficient evidence that 
reification is inherently very difficult. It is so difficult, in fact, that at a certain 
level and in certain contexts, a structural approach may remain practically out of 
reach for some students. Once the developmental chain has been broken (Fig. 1b), 
the process of learning is doomed to collapse: without the abstract objects, the 
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Fig. 1 .  Development of mathematical concepts as transitions from operational to structuralconception. 
(a) A 'healthy' developmental chdn; (b)a broken developmental chain: process B has not been reified, 
so there is no link between B and C. 

secondary processes will remain 'dangling in the air' - they will have to be 
executed ... on nothing. Unable to imagine the intangible entities (functions, sets) 
which he or she is expected to manipulate, the student use pictures and symbols as 
a substitute: a graph of a function or an algebraic formula, a name of a number, the 
letters '4' and x' -each of these signs will turn into a thing in itself, not standing 
for anything else (how literal such identification may be can be learned from the 
study by Wagner, 1981,which disclosed that for the majority of secondary school 
students, a change in the name of a variable leads to a completely new equation). 
In this case, we shall say that the learner developed apseudosrructural conception: 
he or she mistakes a signifier for the signified. In the absence of abstract objects 
and their unifying effect, the new knowledge remains detached from its operational 
underpinnings and from the previously developed system of concepts. In these 
circumstances, the secondary processes must seem totally arbitrary. The students 
may still be able to perform these processes, but their understanding will remain 
instrumental. 

In the conversations cited in the last section, there were some disquieting 
incidents in which one may see symptoms of our interviewees' propensity for a 
pseudostructural approach. One salient example is the way Alon tried to solve 
Problem 1 (utterances 19-24). The boy was obviously indifferent to the difference 
between a quadratic inequality and a quadratic equation, and it was just the form 
of the left-hand side expression x2 + x + 1 that provided him with clues for 
his decisions. He applied the formula for the roots mechanically and interpreted 
the outcome like he used to do when solving equations. Another illustration is 
Dina's inability to pinpoint the difference between the role of the parameter k and 
that of the variables x and y, and her confusion as to the meaning of the term 
'solution' in the particular context of Problem 3. Both students acted as if they 
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were not aware that the strings of symbols might be interpreted in many different 
ways, depending on the context. They didn't seem to recognize the existence of 
any objects external to the letters themselves (except, perhaps, some unknown 
numbers, but this interpretation soon proved unhelpful). 

Both these cases seem indeed to be typical examples of pseudostructural think- 
ing: both students acted as if they were handling some kind of object, but their 
thinking was completely inflexible and the appropriate kind of structural interpre- 
tation was unavailable. That this kind of conceptions are quite widespread was 
clearly shown in our study (Sfard and Linchevski, 1993), in which 280 secondary- 
school students (age 15-17) were directly interrogated on the meaning of such 
algebraic notions as solving equations, permissible operations, equivalence of 
equations. The vast majority of the pupils could not provide any sensible justifi- 
cation for the permissible operations and it was obvious that for them these were 
no more than arbitrary 'rules of the game'. To be more precise, in the eyes of 
many respondents, solving equations and inequalities was tantamount to perform- 
ing a certain algorithm. In this game, an expression of the form 'x = number' or 
'x > number' was but a 'halting signal'. 

We have already observed that many pupils seem unable to cope with singular 
propositional formulae - equations and inequalities in which the variable disap- 
pears at a certain stage of the solution process. We illustrated this claim with the 
case of Mariella (Problem 2). Now a possible reason for the difficulty becomes 
even more clear. If the student, unable to see the abstract objects behind the sym- 
bols, is 'programmed' to regard a problem as solved only when an expression of 
the form 'x = number' or '2> number' is obtained, then in a situation in which 
such an expression does not appear at all he or she must feel lost and helpless. The 
following is an excerpt from our interview with 15year old Naomi which renders 
these speculations even more plausible. 

While solving Problem 2, Naomi arrived at a stage where the first of the two 
equations turned into 1 = 1. 

(1) N: One equals one. It's true, but it gives us nothing. Maybe I 
shouldn't have opened the brackets [in the first equation] ... I 
don't know ... 

(2) I: What can you say now about the solution of the system of 
equations? 

(3) N: That maybe there is one solution. 

(4) I: What is it? 

(5) N: One. The number 1. Or in fact ... in fact I don't think so. 

(6) I: So? 

(7) N: There is no solution. An empty set. 

(8) I: Where do you infer it from? 



223 REIFICATION-THE CASE OF ALGEBRA 

(9) 	 N: Because we did all this ... we isolated 22, etc. ... to arrive at 
the value of y. We substituted this [7 - y instead of 2x in the 
first equation] and we were left without x, only with y. And 
then there was no y as well. Our goal was to find the value 
of y and we didn't succeed. So I think that we have here an 
empty [truth] set. 

In the comment about her lack of success (line 9), Naomi was obviously refer- 
ring to the fact that she did not arrive at an expected expression of the form 
'y = number'. Since her perspective was restricted to the situation in which such 
an expression does appear in the end, this 'failure' in the process of finding the 
solution was interpreted as an absence of the result of solving. 

4. AFI'ERWORD: WHERE WE ARE AND WHERE WE SHOULD GO 

The episodes discussed in this article give rise to the suspicion that most of the 
time algebraic formulae are for some pupils not more than mere strings of symbols 
to which certain well-defined procedures are routinely applied. In these students' 
eyes, the formal manipulations are the only source from which the symbolic 
constructs may draw their meaning. 

At face value, this outlook is very close to the view promoted by Peacock and 
his colleagues. In fact, the students' conception and the formalist position cannot 
be equated, and the differences are certainly more significant than the similarities. 
The belief about the nature of the symbolic manipulations is where the formalists 
and today's students part. While dealing with symbols, the formalists focus 
on combinations of operations (Gregory, 1840). The operations that the high- 
school student is supposed to master, namely those that can be interpreted as 
a generalization of arithmetic calculations, are for the formalists but a point of 
departure, mere inputs to the processes they are really interested to investigate. 
In other words, the formalist's algebra begins where the school algebra ends. 
Besides, although both the mathematician and the pupil view the formal operations 
as arbitrary, for the formalist such an approach is a matter of a deliberate choice, 
while for the student it is an inevitable outcome of his or her basic inability to link 
algebraic rules on the laws of arithmetic. 

We started this article with a list of possible perspectives one may assume 
while dealing with algebraic constructs. We stressed all along in our discussion 
the importance of the versatility and adaptability of student's thinking. The 
conclusions we draw are not very encouraging. In a quite consistent way, all 
our findings have shown that more often than not, the pupil cannot cope with 
problems which do not yield to the standard algorithms. Since it became clear 
that the functional approach is not easily accessible even for the better students, it 
is not so difficult to understand why the mechanistic, pseudostructural approach 
may eventually dominate student's thinking like an overgrown weed, leaving no 
room for other, more meaningful perspectives. 



224 ANNA SFARDAND LIORA LINCHEVSK~ 

As we explained more than once, the sense of meaningfulness comes with the 
ability of 'seeing' abstract ideas hidden behind the symbols. However, "mathe- 
matical objects and structures that the teacher can 'see' are unlikely to be apparent 
to the student" (Cobb, 1988). On the other hand, it would be a mistake to claim that 
student's activities and decisions are entirely devoid of an inner logic. With Davis 
(1988) we shall say that "students usually do deal with meanings, and when instruc- 
tional programs fail to develop appropriate meanings, students create their own 
meanings -meanings that are sometimes not appropriate at all" (p. 9). Although 
somehow flat and one-sided, the student's do-it-yourself algebra is not devoid of 
certain consistency. The problem is that those who adopt the pseudostructural 
approach and confuse the powerful abstract objects with their representations do 
not realize that the symbols themselves cannot perform the magic their referents 
are able to do: they cannot glue together lots of detailed pieces of knowledge into 
one powerful whole. Thus, when talking about the mechanistic, pseudostructural 
outlook, one may certainly say "though this be method, yet there is madness in 
it". 

The confrontation between the developmental model we promoted in this 
paper and the structural way of teaching algebra hints at a possible reason for 
the unsatisfactory results of schooling. The curriculum literally reverses the 
order in which algebraic notions seem to be related to each other, the order 
in which they developed through ages. The advanced structural approach is 
assumed at the outset even though the student is evidently not ready yet to grasp 
the idea of process-object duality, let alone to cope with the functional outlook. 
From the very beginning, the letter is supposed to play the role of a variable 
and not just of an unknown, although we have seen that the former is more 
advanced than the latter. The stand-alone algebraic formula is introduced before it 
is incorporated into an equation or inequality, even though it is only in the context 
of simple ('arithmetical') equations that it may be interpreted in the operational 
way, more accessible for the young student. Finally, equations and inequalities 
are taught simultaneously although the latter put heavier demands on student's 
understanding. The conceptual pyramid is put on its head, so it is only natural 
that it has a tendency for falling. Revision of the order in which the pupils are 
exposed to the central ideas of algebra is likely to bring some improvement. It 
seems reasonable that we can capitalize on the students' natural propensity for an 
operational approach by beginning with processes rather than with ready-made 
algebraic objects. As to the latter, there is some evidence that their construction 
in a student's mind may be helped by the computer (Dreyfus and Halevi, 1988; 
Waits and Demana, 1988; Schwartz et al., 1990; Breidenbach et al., 1992). (This 
does not suggest that the early introduction of the functional approach is the only 
culprit, or that teaching functional algebra from the very start cannot be successful 
in any circumstances. For example, it is fairly possible that the massive use of 
computer graphics in teaching functions will reverse the 'natural' order of learning 
so that the structural approach to algebra will become accessible even to young 
children. Also, one should remember that no alterations in the organization or 
presentation of subject matter can suffice to significantly enhance learning. A real 
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change for the better will not come until the teachers find ways to boost students' 
willingness to struggle for meaning.) 

We hope that there is much potential in the suggested didactic ideas and we are 
now engaged in a teaching experiment in which they are systematically put to test. 
Notwithstanding our belief that the method may work, there is a question that keeps 
bothering us: even if our students succeed in acquiring a versatile and adaptable 
assortment of perspectives, how durable and robust will their flexible knowledge 
be in the long run? The chances are that pseudostructural thinking may sometimes 
be compared to secondary illiteracy. After all, the mechanical mode has so much 
to offer to intellectual sluggards: it exempts the problem-solver from the need for 
constant alertness, from the strain which inevitably accompanies going back and 
forth from one perspective to another. As testified by Souriau, mathematicians 
themselves yield to the charm of mechanized symbolic manipulations: 

Does [the algebraist] follow [the original meaning of symbols] through every 
stage of the operations he performs? Undoubtedly not: he immediately loses 
sight of them. His only concern is to put in order and combine, according to 
known rules, the signs which he has before him; and he accepts with confidence 
the results thus obtained. [quoted by Hadamard, 1949,p. 641 

The problem is that unlike the mathematician, the student may easily become 
addicted to the automatic symbolic manipulations. If not challenged, the pupil 
may soon reach the point of no return, beyond which what is acceptable only as 
a temporary way of looking at things will freeze into a permanent perspective. 
When it happens, there is not much chance that the student will be able to explain 
his or her decisions. If asked for justification, he or she may become as confused 
as a centipede who has been required to tell how it moves its legs. Thus, to fight 
pseudostructural conceptions it may be not enough to reform the teaching method 
in the ways proposed above. It seems very important that we try to motivate 
our students to actively struggle for meaning at every stage of the learning. We 
must make them active sense-seekers who, as Davis (1988,p. 10) put it, would 
'habitually' "interpret situations, interpret their actions, think of the meanings of 
symbols and meanings of symbols and operations". 
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