
HIERDIE NOTAS 
 
Hierdie is opsommende notas/bespreking van sommige probleme wat ons (amper) in die klas 
gedoen het, wat ek op  my rekenaar het … 
 
Die notas probeer ’n tipiese wiskundige werkwyse bevorder – wat dit beteken om Wiskunde te 
doen! Onthou:  Mathematics is not a spectator sport! 
 

Don't just read it; fight it! Ask your own questions, look for your own examples, discover your own 
proofs. Is the hypothesis necessary? Is the converse true? What happens in the classical special 
case? What about the degenerate cases? Where does the proof use the hypothesis?  Paul Halmos 
 

Jy sal dus hier slegs iets leer as jy aktief lees … met potlood en papier, die probleme doen … 
 
En beskikbare tegnologiese werktuie kan help, veral Excel, Sketchpad. Gebruik dit as 
ondersoekmiddel en kontrolemiddel – dit behoort ‘n natuurlike deel van jou gereedskap te 
wees, net soos potlood en papier! 
 
 

Jy moet die Wiskunde verstaan, maar terselftertyd aktief betekenis gee aan ons Wiskunde-
didaktiek konsepte wat ons nodig het om oor wiskunde-onderwys te kan kommunikeer. Ek 
merk onder andere die volgende in hierdie stuk: 
 

induksie, matematiese induksie abstraheer 
deduksie, struktuur conjecture = vermoede/hipotese 
funksie, fuksionele formule stelling 
rekursie. rekursiewe formule analities/algebraïes 
regressie, regressie-formule heuristiek 
modelleer databasis 
spesialiseer veranderlike 
veralgemeen Onbekende 
Teenvoorbeeld (counter example) parameter 

 
Die breë wiskundige fokus van al die probleme is wiskundige modellering, en dit is belangrike 
dat ons die proses en die probleemtipes begryp: 
 

There are many situations involving two variables where the 
one variable is dependent on the other variable, i.e. where a 
change in the value of one (the independent) variable causes a 
deterministic change in the value of the other (the dependent) 
variable. 

PROBLEM 
SITUATION 

OF MODEL 
MORE INFORMATION 

MODEL 
MATHEMATICAL 

Interpret 
Verify 

Mathematise 
Symbolise 

Analyse 
- find function values 

- find input values 
- behaviour of functions 

- Recognising the form 
 

Algebra is a language and a tool to study the nature of the 
relationship between specific variables in a situation. The power 
of Algebra is that it provides us with models to describe and 
analyse such situations and that it provides us with the analytical tools to obtain additional, unknown 
information about the situation. We often need such information as a basis for reasoning about problem 
situations and as a basis for decision-making. 

 

…..  The additional information we need to generate is mostly of the following five types: 
1. finding values of the dependent variable (finding function values) 
2. finding values of the independent variable (solving equations) 
3. describing and using the behaviour of function values (increasing and decreasing functions, rate of 

change, gradient, derivative, maxima and minima, periodicity, . . .) 
4. finding a function rule (formula) 
5. transforming to an equivalent expression ("manipulation" of algebraic expressions) 

 

Terwyl jy “lees” is dit belangrik dat jy identifiseer watter van hierdie vyf probleemtipes gebruik word … 



LEARNING ABOUT PROBLEM SOLVING1 
Problem-solving strategies (heuristics), specialisation and generalisation, induction and deduction 
 
In this section we illustrate some processes of problem solving and you will have 
ample opportunity to implement processes. 
 
The major contributions on problem solving was made by George Polya (1954, 1957). 
He formulated the following four-phase approach to problem solving: 
1.  Understanding the problem 
2.  Making a plan 
3.  Carrying out the plan 
4.  Looking back 
 
These phases should not be interpreted as a linear, 
step-by-step recipe for problem solving – it is a 
cyclic, dynamic process as illustrated here. 
 
Together with these phases, Polya formulated several problem solving strategies or 
heuristics to help us in problem solving.  These phases and heuristics are summarised 
in Table 1 overleaf. Much of our work will be about using and reflecting on these 
phases and strategies. 
 
Specialising and generalising 
 
Specialising means looking at special or particular cases of some general statement. It is 
passing from the consideration of a given set of objects to that of a smaller set containing 
the given one. For example, we specialise we specialise when we pass from considering 
polygons to that of a regular polygon, and we specialise further when we pass from regular 
polygons with n sides to a regular quadrilateral, i.e. a square (n = 4 is a special case). 

                                            
1 Verskillende mense gebruik dikwels dieselfde woorde soos "probleemoplossing", maar gee heel verskillende betekenisse daaraan! 

Mense kan dan maklik dink hulle praat dieselfde taal of praat oor dieselfde ding, maar eintlik praat hulle oor heel verskillende goed! 
Wat is ‘n probleem? 
Vir iets om ‘n probleem te wees, moet daar een of ander blokkasie of struikelblok wees, d.w.s ‘n wiskundige probleem is ‘n taak wat 
jy nie weet hoe om op te los nie. Anders is dit mos nie ‘n probleem vir jou nie! Ek sal dit effens aanpas: ‘n Probleem is ‘n taak 
waarvoor jy nie ‘n geroetineerde (outomatiese) oplossingsmetode het nie. 
Wat is probleemoplossing? 
Wanneer ‘n onderwyser of ‘n handboek eers die nodige wiskundige konsepte en metodes vir ‘n probleemtipe ontwikkel en dit met 5 
uitgewerkte voorbeelde illustreer, en dan leerlinge toepassings aan die einde van die hoofstuk laat doen, sê hulle dit is 
probleemoplossing. Dit kan tog nie wees nie – leerlinge weet dan reeds hoe om dit te doen! Ons noem hierdie soort take bloot oefeninge! 

Ons sou in plaas van probleme vs oefeninge, die terminologie nie-roetine probleme en roetine probleme kon gebruik. Maar wat ek 
met probleme bedoel is dus nie-roetine probleme en nie oefeninge of roetine probleme nie! 

Die volgende is ‘n nuttige raamwerk om tussen verskillende benaderings te onderskei: 
 Onderrig vir probleemoplossing: Die onderwyser onderrig eers vooraf en apart die "tools" – die nodige wiskundige konsepte en 

metodes in die abstrak, en dan word dit agterna toegepas.  
 Onderrig via (deur) probleemoplossing: Die onderrig begin met relevante probleme en die wiskundige konsepte en metodes word 

ontwikkel terwyl leerlinge die probleme oplos.  
 Onderrig omtrent/van probleemoplossing: Die onderwyser illustreer in die algemeen probleemoplossingsmetodes. 

Met probleemoplossing in die klaskamer bedoel ek dus onderrig via (deur) probleemoplossing. 

Die onderliggende perspektiewe 
Die twee benaderings onderrig vir probleemoplossing en onderrig via (deur) probleemoplossing 
 Is gebaseer op heel verskillende onderliggende teorieë oor die aard van kennis (epistemologieë), in besonder die aard van Wiskunde, 

verskillende leerteorieë (insluitend die aard van geheue) en verskillende perspektiewe oor die betekenis van "verstaan", en  
 dit lei tot totaal verskillende klaskamerkulture die onderlinge verwagtings en verantwoordelikhede van onderwysers en leerlinge), en  
 dit bepaal op sy beurt wat (en of) leerlinge leer. 
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How to Solve It  
A summary of George Polya's (1957) four phases of problem solving and heuristics. 
 
1. UNDERSTANDING THE PROBLEM  

• First. You have to understand the problem.  
• What is the unknown? What are the data? What is the condition?  
• Is it possible to satisfy the condition? Is the condition sufficient to determine the 

unknown? Or is it insufficient? Or redundant? Or contradictory?  
• Draw a figure. Introduce suitable notation.  
• Separate the various parts of the condition. Can you write them down?  

2. DEVISING A PLAN  
• Second. Find the connection between the data and the unknown. You may be 

obliged to consider auxiliary problems if an immediate connection cannot be 
found. You should obtain eventually a plan of the solution.  

• Have you seen it before? Have you seen the same problem in a slightly different form? 
• Do you know a related problem? Do you know a theorem that could be useful?  
• Look at the unknown! And try to think of a familiar problem having the same or a 

similar unknown.  
• Here is a problem related to yours and solved before. Could you use it? Could you 

use its result? Could you use its method?  
• Could you restate the problem? Could you restate it still differently? Go back to 

definitions.  
• If you cannot solve the proposed problem try to solve first some related problem. 

Could you imagine a more accessible related problem? A more general problem? 
A more special problem? An analogous problem? Could you solve a part of the 
problem? Keep only a part of the condition, drop the other part; how far is the 
unknown then determined, how can it vary? Could you derive something useful 
from the data? Could you think of other data appropriate to determine the 
unknown? Could you change the unknown or data, or both if necessary, so that the 
new unknown and the new data are nearer to each other?  

• Did you use all the data? Did you use the whole condition? Have you taken into 
account all essential notions involved in the problem?  

3. CARRYING OUT THE PLAN  
• Third. Carry out your plan.  
• Carrying out your plan of the solution, check each step. Can you see clearly that 

the step is correct? Can you prove that it is correct?  

4. LOOKING BACK  
• Fourth. Examine the solution obtained.  
• Can you check the result? Can you check the argument?  
• Can you derive the solution differently? Can you see it at a glance?  
• Can you use the result, or the method, for some other problem?  

 

Table 1 
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Generalising is the reverse process of specialising. Generalising is passing from 
considering a given set of objects to that of a larger set, containing the given one. For 
example, we generalise when we pass from considering any square to that of 
considering any quadrilateral, in which we do not restrict the quadrilaterals to having 
equal sides. And we generalise when we move from any quadrilateral to any polygon, 
relaxing the restriction that it should have four sides. 
 
Generalisation is the process of formulating a statement that is more general or 
inclusive, i.e. enlarging the number of cases for which a statement is true. For 
example, the cosine formula 

a2 = b2 + c2 – 2bccos A 
is a generalisation of the Theorem of Pythagoras 

a2 = b2 + c2 
because it applies to any triangle, removing the restriction that angle A = 90°. 
 
Of course, the Theorem of Pythagoras is a special case (a specialisation) of the 
cosine formula! 
 
Specialisation serves at least the following purposes in mathematical activity: 
1. It gives us a feeling for what the statement is saying 
2. It gives us a sense if the statement may be true. 
 
 

PROBLEM 1: DISCOUNT AND VAT 
In a transaction a customer receives 10% discount for cash, 
but must pay 14% Value Added Tax (VAT).  Which is 
cheaper for the customer: that the tax be calculated first or 
that the discount be calculated first? 

 
 

DISCOUNT 
10% 

It helps to look at a special case to get a feeling for what is happening. 
So suppose the purchase price is R100 and let’s calculate the final price: 
 
VAT first: Discount first: 
VAT: R100 + 14% of R100 = R100,14 Discount: R100 – 10% of R100 = R90 
Discount:   R100 – 10% of R100,14 VAT:          R90 + 0,14% of R90 
 = R100 – R11,40 = R90 + R12,60 
 = R102,60 = R102,60 
 
So, you pay the same! Are you surprised? But are you convinced? 
 
Do you think the reasoning above will convince a friend? Should it convince the 
shopkeeper? 
 
If it is correct, can you explain why the result is the same? 
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PROBLEM 2: ALL THE SAME 
Jane says it is obvious that it does not matter if you calculate the VAT or the 
discount first, because you have to pay a net 4% extra in both cases, e.g: 
R100 + 14% – 10% = R100 – 10% + 14% = R100 + 4%. 
Is Jane correct? Explain! 

 
PROBLEM 3: PETROL PRICE 
In January the petrol price is increased by 10%. Then, in February the petrol 
price is reduced by 10%. John says that the petrol price is now the same as it 
was before the first increase. Is this correct? Explain! 
 
PROBLEM 4: RENTING A CAR2 
You want to rent a car for one day. Imperial and Avis both charge a basic 
amount per day plus a rate per kilometre for the distance driven, as shown in the 
table below. Which company is the cheaper? 
 

   
Car: Per day Per km  Car: Per day Per km 
Toyota Corolla 1.6 R133 R1,08  VW Citi Golf 1600 R85 R1,48 

 

One approach is to specialise. John does it like this: he takes the distance as 100 km 
and works out the cost for each company: 
 

Imperial:  Cost = 133 + 1,08 × 100 = R241 
Avis:  Cost = 85 + 1,48 × 100 = R233 
So this shows that Avis is the cheaper. 
So this shows that for a distance of 100 km Avis is cheaper, but it says nothing about 
any other distance! Surely the costs are dependent on the distance travelled. The 
distance is a variable that can change. If we calculate and compare the costs for 
different distances, Avis is not always cheaper, as is shown in this table: 
 

Distance 90 95 100 105 110 115 120 125 130 135 
Imperial 230,20 235,60 241 246,40 251,80 257,20 262,60 268 273,40 278,80
Avis 218,20 225,60 233 240,40 247,80 255,20 262,60 270 277,40 284,80
Difference 12 10 8 6 4 2 0 -2 -4 -6 
 

A distance of 120 km is the break-even point, where the costs for the cars are the 
same, and for distances greater than 120 km, Imperial is the cheaper. (We note that 
as a real problem the differences are too small to really make a difference!) 
 

We can also easily find the break-even point algebraically or graphically, by expressing the 
cost for each car for any distance of x km and equalling the costs. Note that the algebraic 
formulation is merely a generalisation of exactly the procedure we used for our numeric 
calculations. So, first working numerically (specialising), can help us to generalise! 
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133 + 1,08x =  85 + 1,48x 

        ⇒ 0,4x = 48 

                ⇒  x = 120 
                                            
2 See this Avis Excel worksheet
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PROBLEM 5: SAVING 
In the Imperial-Avis table above: 
• Are you surprised that the differences left and right of 120 km is 

“symmetrical”? Can you explain why this is so? 
• Find a formula for the row of differences, i.e. a formula to calculate the 

difference in cost for any distance directly, without first calculating the costs 
for Imperial and Avis. Use it to calculate how much you will save by renting 
the cheaper option if you drive 400 km. 

 
Now let’s return to Problem 1. 
 
How do we know that that the one value of R100 that we chose, is not a special case? 
Will it also be the same for R80, and R75 and R217,83?  
 
The point we are trying to make is that in Renting a car, which car was cheaper 
depended on the distance travelled – for some distances Avis was cheaper and for 
other distances Imperial was cheaper. Similarly, will in our VAT-Discount problem the 
answer not depend on the purchase price, so that for some prices it is better to add 
the VAT first and for other prices it is better to deduct the discount first? Are the two 
situations not the same? 
 
One approach would be to calculate the final price for several purchase prices. 
Another approach is to work generally, i.e. with all purchase prices simultaneously. 
How can this be done? By introducing some symbol to represent any purchase price, 
e.g. let the purchase price by "PRICE" or p.  When we now use this symbol, it refers to 
any price, but not to any particular price. 
 
VAT first: Discount first: 
VAT: PRICE + 14% of PRICE Discount: PRICE – 10% of PRICE 
 = 1,14 × PRICE  = 0,9 × PRICE 
Discount: PRICE – 10% of 1,14 × PRICE VAT: PRICE + 0,14% of 0,9 × PRICE 
 = 0,9 × 1,14 × PRICE = 1,14 × 0,9 × PRICE 
 
This general statement now without doubt proves that the final prices are always 
equal, independent of the price of the purchase, because our variable "PRICE" 
represents any price.  The structure of the general statement also clearly explains why 
the final price is the same: multiplication is commutative, i.e. the order does not 
matter! 
 
Always true, sometimes true, never true 
It is vital that we should understand how the mathematics in our two problems (the 
VAT problem and the Renting a Car problem) are the same and how they are 
different.  
 
In our VAT problem the structure of the situation is symbolised by 

 0,9 × 1,14 × x = 1,14 × 0,9 × x 

This statement is always true for all values of the variable. 
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In Renting a Car the structure of the situation is symbolised by 

 133 + 1,08x = 85 + 1,48x 

This statement is sometimes true for some values of the variable (here only one value). 
 

This distinction and the different meanings of the symbol x and the equal sign in these 
two statements are some of the most powerful and simultaneously some of the most 
difficult concepts in learning and using algebra, as formulated by William Betz (1930): 
 

The symbolism of algebra is its glory. But it is also its curse. 
 
Let’s give examples of statements that are always true, sometimes true and never true 
in algebra: 
 

 Two algebraic expressions like xx 32 +  and x5  are equivalent, because they 
have the same values for any value of the variable x . 

 We can say that xx 32 +  = x5  is always true for all values of x . 
 We call an algebraic statement like xx 32 +  = x5  which is true for all values of 
the variables an algebraic identity. 

 

 The algebraic expressions 124 +x  and 37 +x  are not equivalent expressions, 
because they have different values for all values of x , except for x  = 3. 

 We can say that the statement 124 +x  = 37 +x  is sometimes true for some 
values of x . 

 We call an algebraic statement like 124 +x  = 37 +x  which is sometimes true 
for some values of the variables an algebraic equation. 

 

4010 +x  = 5010 +x  for no values of x. We call this an algebraic impossibility. 
 
Remark: Exceptions 
It is merely for making some distinctions that we here talk about always true, 
sometimes true, and never true (false). In the process we are using the word "true" 
rather loosely and that creates a slight semantic problem, because in logic and in 
mathematics, if we say a statement is true, we definitely mean that it is always true. A 
statement that is sometimes true is not true! 
 
It is for this reason that mathematicians often add exceptions to "save" a beautiful 
theorem, so that it is true (i.e. always true). For example: 
 

Any prime number can be written in the form 6n – 1  or  6n + 1, n ∈ N. 
 
You may test it through specialisation, e.g. 29 = 6 × 5 – 1 and 19 = 6 × 3 + 1. We will 
give a general proof and explanation in section 4.  But you may notice that if you take 
the special case of prime numbers 2 and 3, they cannot be expressed in this form (i.e. 
2 = 6n – 1 or 2 = 6n + 1 have no solution for n ∈ N). They are counter-examples 
showing that the statement is not true (i.e. not always true). But they are the only two 
exceptions. So, rather than discarding this useful theorem, we "save" it by rather 
changing the statement: 
 

Any prime number greater than 3 can be written in the form 6n – 1 or  6n + 1, n ∈ N. 
 
Now it is a true statement, without exception!  Mmm … How do you know, for sure, it is true?? 
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Variables have explanatory power 
 

PROBLEM 6: THINK OF ANY NUMBER 
Think of any number Double it. Add 6. Halve the result. Subtract your original 
number. What is your result? 

 
It may come as a surprise to us that, although different people thought of different 
numbers, they all obtain the same result, namely 3. The mathematical attitude, and 
the attitude in an inquiry classroom, is that we naturally want to explain this 
phenomenon. There is no need to prove that it is true – we know it is true. But we 
wonder why is the result always 3, even when we all started with different numbers. 
To try to understand what is going on, we could write down different people's results 
(special cases), for example: 
 

 Thandi Sam Thuli Vusi 
Think of any number 3 7 8 12 
Double it 6 14 16 24 
Add 6 12 20 22 30 
Halve it 6 10 11 15 
Subtract original number 3 3 3 3 

It is difficult, if not impossible to deduce the underlying structure from such specific 
examples. It is exactly in such situations where the advantages of a “generalised 
number” becomes clear: In stead of taking any specific number, select a symbol such 
as ♥ or x to stand for any number. Then we have: 
 

 ♥ notation x notation 
Think of any number ♥ x 
Double it ♥♥ 2x 
Add 6 ♥♥  6 2x + 6 
Halve it ♥  3 x + 3 
Subtract original number 3 3 

The structure is now quite clear. 3
2

62
=−

+ xx

                                           

 is an identity, so for any (all) values of x 

the result is always 3. Choosing, manipulating and interpreting such generalised 
numbers (variables) is an essential part of mathematical reasoning and of the 
language of algebra. 

 
PROBLEM 7: THINK OF ANY NUMBER3 
Think of any secret number Multiply by 4. Add 6. Halve the result. Subtract your 
original number. What is your result? 
Do the calculations using Thandi, Sam, Thuli and Vusi's numbers above. 
Explain! How is this different from the situation in Problem 12? 
Explain how, if someone told you their final answer, you can immediately tell 
them their secret number (e.g. if Thandi tells you her answer is 6, you can 
surprise her by telling her that her secret number is 3!). 

 
 

 
3 See also this birthday problem and another birthday problem
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PROBLEM 20: PLAYING WITH MATCHES 
 
1. Sylvia forms triangle patterns with matches as shown below: 

 

 
 

 Complete the following table. Describe any number patterns! 
 

No of triangles 1 2 3 4 5 6 7 8 9 10 100 

No of matches 3 5 7 9        
 
 

2. On another Sylvia forms square patterns with matches as shown below: 
 

 
 

 Complete the following table. Describe any number patterns! 
 

No of squares 1 2 3 4 5 6 7 8 9 10 100 

No of matches 4 7 10 13        
 

 
3. On another day Sylvia forms pentagon patterns with matches as shown below: 

 
 

 
 

 Complete the following table. Describe any number patterns! 
 

No of pentagons 1 2 3 4 5 6 7 8 9 10 100 

No of matches 5 9          
 
 

4. What is the same and what is different in the situations in 1, 2 and 3? 
 
 
5. How many matches will Sylvia need to build 100 decagons (a polygon with 

10 sides) in the same way? 
 
 

6. How many matches will Sylvia need to build 100 n-gons (a polygon with n 
sides) in the same way? 

 
For a discussion, see Fireworks notes. 

 
 
 
PROBLEM 22: Design a short method to calculate the square of a two-digit 
number ending in 5. 
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12345678910111213141516171819202122 23242526272829303132 

INDUCTIVE AND DEDUCTIVE REASONING 
After having worked through some problems, we can now make our approach to 
problem solving more explicit. In all our work, we are basically using two different 
kinds of reasoning: 
 
Inductive reasoning is a method of using numerical pattern recognition to draw general 
conclusions. Although inductive reasoning is of great importance in developing ideas, 
it cannot prove that they are correct, because it is based on a limited set of 
observations. 
 
Deductive reasoning is a method of using structural analysis to draw conclusions from 
ideas we accept as true by using logic (Jacobs, 1982). We need deductive reasoning 
to prove that our ideas are correct. 
 
In the examples that follow, we will further analyse the processes of inductive and 
deductive reasoning. Let’s return to Problem 20: 
 

PROBLEM 20: PLAYING WITH MATCHES 
 
1. Sylvia forms triangle patterns with matches as shown below: 

 

 
 

 Complete the following table. Describe any number patterns! 
 

No of triangles 1 2 3 4 5 6 7 8 9 10 100 

No of matches 3 5 7 9        
 
Inductive reasoning consists of two sub-processes: 
1. pattern recognition in a finite set of data (abstraction) 
2. pattern extension to cases not in the present set (generalisation) 
 
One can focus on the numbers given in the table (we call this the database) and 
recognise a vertical (functional) relationship m = 2t + 1 which easily yields all the 
solutions. Or one can recognise a horizontal (recursive) pattern f(t + 1) = f(t) + 2, which 
can serve as a model to generate additional information about the situation: 
 

1 2 3 4 5

3 5 7 9

+2 +2+2+2  
 
While the inductive approach above looked at the numbers and ignored the matches 
(picture), a deductive approach focuses on the process of packing the matches and 
ignore the numbers. For example, the structure of the matches can be formulated in 
words as "you start off with 3 matches and then add another 2 matches for every 
additional triangle that you build". So, for 100 triangles we will need 3 + 99 × 2 = 201 
matches. This can be generalised  to 3 + 2(t – 1) matches for t triangles. 
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PROBLEM 23:  DOTS 
Dots are arranged to form patterns as shown below: 

 
 
 
 
 
 
 Pattern 1 Pattern 2 Pattern 3 Pattern 4 
 

How many dots are there in: 
• Pattern 200? 
• Pattern n? 

 
 
Many people prefer an inductive approach, and organise the information in a table and 
then try to identify patterns in the numbers in the table to solve the problem:  
 

Pattern no 1 2 3 4 5 6 200 n 
# dots (D) 2 6 12 20     

 
Do you see any patterns in the table? Most people recognise a recursive (horizontal) 
pattern +4; + 6; +8; … but it is not so useful in this case. It is not so easy to recognise 
a functional (vertical) relationship in the table! 
 
A deductive approach focus on the structure of the sketches. The figures are 
rectangles, and the number of dots can be seen as the area of the rectangle. So, in 
stead of counting the dots and working with the numerical answers 2, 6, 12, 20, …, 
when we work with the structure, we describe the method for calculating the number 
of dots without calculating it, i.e. 1 × 2, 2 × 3, 3 × 4, etc. Then we essentially have our 
functional rule! 
 

Pattern no 1 2 3 4 5 6 200 n 
# dots (D) 1 × 2 2 × 3 3 × 4 4 × 5 5 × 6 6 × 7   

 
Now the pattern in the numbers in the table is easy to see!  This shows the inter-
relationship between induction and deduction – deduction actually helped to make 
induction easier! We often do not use just one approach, but both.  
 
 
There is a tradition of opposition between adherents of induction and of deduction. In 
my view it would be just as sensible for the two ends of a worm to quarrel. 

Alfred North Whitehead 
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Let’s now return to Problem 22 above: 
 

PROBLEM 22: 
Design a short method to calculate the square of a two-digit number ending in 5. 
 

To make sense of the question, i.e. to understand the problem, you must connect it to 
your previous knowledge and experiences. What is meant with a "short method"? Do 
you know the term? Maybe you recall these methods you learned in primary school: 
• To multiply a number by 25, first multiply by 100 and then divide by 4. 
• To multiply a number by 125, first multiply by 1000 and then divide by 8. 
 
A short method therefore means a method for getting the answer by not doing the 
given problem, but rather some other process which you can basically do mentally 
without much use of paper and pencil. 
 
“A two-digit number” of course is a general statement, not meaning any specific two-
digit number, but really any two-digit number. So the problem really wants us to be 
able to look at a calculation like 652 and write down the answer without really 
calculating 65 × 65 by long multiplication. 
 
How to get started? We emphasise again that there are two basic routes: induction or 
deduction. One should develop a feeling for when the one could be more accessible 
than the other. Let’s try the inductive approach: Try some special cases, be 
systematic, organise your data. Use a calculator to generate the following answers: 
 
 152 = 225 
 252 = 625 
 352 = 1225 
 452 = 2025 
 552 = 3025 
 
So it is all about seeing useful patterns that will enable us to write down such answers. It 
is easy to recognise/abstract and to conjecture that the answer will always end in 25. 
There is enough structural backing (52 = 25) to accept and believe that this is always 
true. So we already know that    852 = ??25 
 
We need more. We suggest that we ignore the 25s in the answer as noise which 
distracts us from seeing other patterns. Many times when working on this problem, 
students get very excited and say that they see  
 
  2 
 +4 ↓ 
  6 
 +6 ↓ 
  12 
 +8 ↓ 
  20 
 +10 ↓ 
  30 
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This is a recursive pattern: Tn = Tn-1 + 2n.  It is very interesting, but not very useful. If we 
want to use this pattern to calculate 852 we will first have to know the answer of 752 , i.e. 
we will have to write down the whole pattern from the beginning. Hardly a short method!  
 
What would be more useful, would be a functional relationship. Let’s remove more 
noise – the 5-part probably takes care of the 25-part on the right, so we expect  
 

 Input Output 
 1 2 
 2 6 
 3 12 
 4 20 
 5 30 
 n ? 
 
Maybe you recognise the following pattern: 
 

 Input Output 
 1 × 2 2 
 2 × 3 6 
 3 × 4 12 
 4 × 5 20 
 5 × 6 30 
 n ? 
 
To see the pattern, ignore the rest and concentrate only on the relevant data: 
 

 Input 
 1 2 
 2 3 
 3 4 
 4 5 
 5 6 
 n n+1 
 
It should be clear that we multiply the ones-digit by the next whole number. So our 
conjecture is: 
 
To square a two-digit number ending in 5: The number ends in 25 and the first digits 
are given by multiplying the tens-digit by the next whole number. 
 
Is it true? We can easily check all 9 cases, so we know it is true. But still we want to 
know why it is true. Deduction will help: 
 
Any two-digit number is of the form 10a + b. We have a special case where the units-
digit is 5, so b = 5: 
(10a + 5)2 = 100a2 + 100a + 25 
 = 100a(a + 1) +25 
 
That pretty much explains it, provided we can interpret the symbolism. The purpose of 
the 100 is to guarantee that the answer ends in 25. Understanding the function of the 
100 means that we can also understand why this method works for numbers ending in 
5 – we only get 100 in the middle term of the expression because of the 5! 
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PROBLEM 25: WIMBLEDON 
You are the sports secretary of your sports club and you need to know how 
many games will be played in your knock-out competition. The competition works 
like the Wimbledon tennis championship: two players are drawn to play against 
each other in the first round. The loser falls out and the winner plays against a 
winner of another game. This continues, with losers being eliminated and 
winners playing against winners until the champion is crowned. If there are 60 
players, how many games are played in total? And if there were 35, or 28 or 44 
players, i.e. can you develop an easy method (formula) to calculate how many 
games are played for any number of players? 

 
 
A diagram will help us to understand the situation. For example, Figure 1 is a special 
case with 4 players: Player P1 plays against P2 and the winner, W1, plays against W2, 
the winner of the game between P3 and P4. 
 

W 
W1 

P3 

P2 

P1 

W 

W2 P4 

P3 

P2 
W1 

P1  
 
 
 
 
 

 Figure 1 Figure 2 
 
We also need to understand some finer details of the structure of the competition. For 
example, Figure 2 shows what happens when there is an odd number of players: one 
player gets a bye, i.e. does not play and proceeds automatically to the next round. 
 
Thinking inductively, we can now organise our data of special cases into a table: 
 

# players 1 2 3 4 5 6 
# games 0 1 2 3 4 5 

 

We easily recognise the pattern in the table and generalise it: The number of games is 
one less than the number of players, or written in symbols: 
 

For n players there are n – 1 games. 
 
Sometimes a deductive explanation can be deceptively simple. See if you follow this 
reasoning: 
 

There can be only one champion, i.e. one player who did not lose. So, with 60 players, 
to get 1 winner, we need 59 losers. To get 59 losers we need 59 games. That is all! 
 

The reasoning is completely general: For n players, to get n – 1 losers, we need n – 1 games. 
 
 
PROBLEM 27: ROUND ROBIN 
Mr Daniels is the match secretary for the Mpumalanga soccer league. He must 
arrange the soccer schedule for next year. Each team plays each other team 
twice – one match at home, and one match away. 
How many league matches will be played if there are 9 soccer teams in the league? 
Find a formula to work out how many matches must be played if there are n teams.  
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THE PITFALLS OF INDUCTION 
 

PROBLEM 33: REGIONS  
 

1

2
3

4

1
1

2

 
If 3 points on a circle are joined, 4 regions are formed, as shown above. 
Complete the table for 4 and 5 points by using the given sketches above. 
What is the maximum number of regions into which 6 points on a circle will divide 
the circle if the points are joined? And 20 points? 

 
# points (p) 1 2 3 4 5 6 20 
# regions (R) 1 2 4     

 
You should really first solve the problem before continuing reading! 
 
You probably noticed the recursive pattern 1, 2, 4, 8, 16, … in the numbers in the table 
and then continued the pattern to predict R(6) = 32. Or you may have inductively 
deduced the formula , which also yields R(6) = 32. 12)( −= ppR
 
Unfortunately our expectation that the pattern is continued beyond the fifth case is 
wrong! In fact R(6) = 31!  You are encouraged to check for yourself by drawing a nice 
big circle and physically counting the number of regions. 
 
We will return to this problem later (see page 59). 
 
This example serves to remind us that inductive reasoning, powerful as it may be in 
discovering new patterns, is prone to error: 
 
When the mathematician says that such and such a proposition is true of one thing, it 
may be interesting, and it is surely safe. But when he tries to extend his proposition to 
everything, though it is much more interesting, it is also much more dangerous. In the 
transition from one to all, from the specific to the general, mathematics has made its 
greatest progress, and suffered its most serious setbacks.  Kasner &  Newman, 1940 
 

PROBLEM 34: ONES 
Check these patterns: 

x x2 Digit sum of x2 
1 1 1 

11 121 4 
111 12321 9 

1111 1234321 16 
11111 123454321 25 

 
Now predict the digit sum of 111111111112 (11 ones).  
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Most of us will recognise the pattern in the digit sum of x2 in the last column as 
squares, and then extend beyond the given five examples to predict that the digit sum 
of 111111111112  is 112 = 121. However, if you actually calculated it, you will see that 
the predicted answer is incorrect!  
 
Our abstraction that the numbers in the given examples are squares is correct. But 
this pattern is not continued, because the structure breaks down after 9 ones because 
of carrying. If you have not yet done it, you will want to check that this is correct and 
think about the reasons why the structure breaks down!  
 
This example again emphasises the danger of only focussing on the numbers in a situation 
and to generalise through induction without considering the structure of the situation. 
 
 

PROBLEM 35: PRIMES 
Investigate the nature of   Nn,nn)n(P ∈+−=   112

 
Let’s approach the problem inductively by generating the following special cases: 

101)10(
83)9(
67)8(
53)7(
41)6(
31)5(
23)4(
17)3(
13)2(
11)1(

=
=
=
=
=
=
=
=
=
=

P
P
P
P
P
P
P
P
P
P

 

 

These numbers are all prime. Would you agree that we can conclude that the answer 
is always a prime number? 
 
Unfortunately, the very next case, i.e. P(11) = 121 = 112 is not prime! Although our 
observed pattern of primes is true for the given 10 cases, it is not correct to extend 
(generalise) the pattern beyond these 10 cases. 

 
 
PROBLEM 36: ODD NUMBERS 
The examples of numbers P(n) in Problem 35 are all odd. Would you agree that 
we can conclude that the answer is always an odd number? How can you be 
sure? 
 
 
PROBLEM 37: EVEN NUMBERS 
The difference between consecutive numbers P(n) in Problem 35 is even.  
Would you agree that we can conclude that the difference is always an even 
number? How can you be sure? 
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PROBLEM 38: MORE PRIMES 
Show that  is prime for n = 0 to 40 but not prime for n = 41. 41)( 2 +−= nnnP
Show that  is prime for n = 0 to 79 but not prime for n = 80. 160179)( 2 +−= nnnP
Show that n2 – pn + q cannot be prime for n = q. 

 
 

PROBLEM 39: IQ PROBLEM 
What is the next number in this sequence:   2; 4; 6; 8; ? 

 

We would probably all opt for 10. Are you sure? This is based on an implicit function 
rule 2n. But as the table below shows, the next value may as well be 34, based on 
another valid function rule: 
 

n 1 2 3 4 5 6 
2n 2 4 6 8 10 12 
2n + (n – 1)(n – 2)(n – 3)(n – 4) 2 4 6 8 34 132 

 
 

PROBLEM 40: IQ TEST 
What is the next number in this number pattern: 

1, 4, 9, 16 ? 
 

Surely, we will all answer 25! It is a sequence we all know very well, namely the 
sequence of square numbers, i.e. n2. But other formulae also generate these values, 
but then complete the pattern differently: 
 

n 1 2 3 4 5 
n2 1 4 9 16 25 
n2+ (n – 1)(n – 2)(n – 3)(n – 4) 1 4 9 16 ? 

2n – n(n – 2)(n – 4)
3   1 4 9 16 ? 

 
 

PROBLEM 41: WHOLE NUMBER 
Check some special cases for the conjecture that for 11141  , 2 +=Ν∈ yxy  is 
never a whole number. 
 

The conjecture is true for all values of y up to 30 693 385 322 765 657 197 397 207, 
but for the next, x is a whole number! 
Can you find the value of x? 
 

This means that the conjecture is true for 30 693 385 322 765 657 197 397 207 
consecutive cases, yet the conjecture turns out to be false! 
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PROBLEM 42: REMAINDER 
Investigate the remainder when the square of an odd number is divided by 8. Are 
you sure? 

 
An inductive approach yields: 

 32 = 9 and 9 ÷ 8 = 1 rem 1 
 52 = 25 and 25 ÷ 8 = 3 rem 1 
 72 = 49 and 49 ÷ 8 = 6 rem 1 
 112 = 121 and 121 ÷ 8 = 15 rem 1 
 
A conjecture that the remainder is always 1 seems reasonable. But how can we be 
sure that it will always be 1?  Considering our previous examples of the pitfalls of 
induction, how can you be sure that suddenly after a million cases a remainder of 2 
will not appear? As someone said: 
 

Absence of evidence does not mean evidence of absence! 
 

In order to be sure the conjecture is always true, we must check all the cases, not just 
a few, and not just a few million! It is impossible to check all because the natural 
numbers are infinite!  But we can check all by using the power of algebraic symbols, 
representing any case or all cases. 
 
In order to explain why  the remainder is only 1, it is necessary that we analyse the 
structure of the situation. As we have mentioned before (see, for example page 15), 
we can only explain the structure of a situation when we work with the general case, 
i.e. use deductive reasoning, as follows: 
 
We can express any odd number and all odd number as 2n + 1, n ∈ N0.4 Make sure 
that you understand the meaning and structure of this statement! Check it for special 
cases. Can 731 be written in the form 2n + 1, n ∈N0 ? Now we have 
 

 
( ) ( )2 1

8
4 4 1

8
4 1

8

2 2n n n n n+
= + + =

+ + 1
 

 

Now it is necessary to know that if n is odd, n + 1 is even and the other way around, 
so n(n + 1) is even and therefore 4n(n + 1) is divisible by 4 and by 2, i.e. 8. From the 
right distributive property of division over addition, i.e.  
 a b

c
a
c

b
c

+ = +  

we can now deduce that the remainder is 1. 
 
You should note the power of deductive reasoning: While in Problem 41 we may have 
felt sure that for n ∈Ν ,   1141 12n +

                                           

  is never a whole number, it turned out to be false 
for n equal to 30 693 385 322 765 657 197 397 208.  But in problem 45, after our 
deductive analysis, we are absolutely certain that no matter what odd number we 
take – take 30 693 385 322 765 657 197 397 209 if you like! – if we square it and we 

 
4 Note that we are using the notation N for the natural numbers, i.e. {1, 2, 3, 4, …} and N0 for the whole 

numbers. i.e. {0, 1, 2, 3, …}. If we wrote any odd number as 2n + 1, n ∈ N, i.e. started with n = 1, the 
first odd number would be 3, but starting with n = 0, the first odd number is 1. Of course we can also 
write any odd number as 2n – 1, n ∈ N, but the form 2n + 1 is often more convenient. 
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then divide by 8, the remainder will definitely be 1. In fact, we can predict it with 
certainty, without having to actually do the calculations. That is the power of 
mathematics, and that power lies in the generality of algebraic symbols and in 
deductive thinking! 
 
Looking back 
Let us repeat: inductive reasoning is a powerful method to discover new relationships. 
But we can never be sure that an inductive pattern will not somewhere break down, 
even after millions of cases. To be sure that it is always true (validity), and to explain 
why it is true – why the pattern has this form and not another, we must use deductive 
reasoning, i.e. reason using the structure of the situation. 
 
This means that in mathematical activity there are two approaches: 
• One can work deductively, or 
• One can work inductively, but to make sure, it should be followed by deduction. 
 
But just induction on its own is not adequate! When we use induction we cannot be 
sure our conclusion is correct, no matter how many cases we check. 
 
The following diagram depicts the relationship between induction and deduction and 
the status of knowledge (a conjecture is not yet proved; a theorem is a proved 
conjecture): 
 

PROBLEM 
SITUATION 

CONJECTURE

Deduction

Deduction:Induction
THEOREM 
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MORE INDUCTION AND DEDUCTION 
After seeing the pitfalls of inductive reasoning, our attitude towards problem solving 
should now be different.  We should be sceptical about each result! It does not mean 
that we should not use inductive reasoning. To the contrary! Inductive reasoning is 
very powerful – most discoveries in mathematics are probably made through inductive 
reasoning. But we should be sceptical, doubt every result and insist on proof before 
we are convinced. But we must realise that certainty, proof, can only be reached 
through deductive reasoning, and it should become part and parcel of all our work. 
 
Let’s return to Problems 35-37. We again give the first 10 cases of : Nn,nn)n(P ∈+−=   112

101)10(
83)9(
67)8(
53)7(
41)6(
31)5(
23)4(
17)3(
13)2(
11)1(

=
=
=
=
=
=
=
=
=
=

P
P
P
P
P
P
P
P
P
P

 

 
Thabo says that he thinks the answer is always an odd number. Is this correct? 
Surely, it is correct for all the cases above. If we try more cases, we find that they are 
all also odd. No matter what number we choose for n, we get an odd number every 
time. Can we conclude that the answer is always odd for all n ∈N?  
 
No ways! Not until we have checked all cases, and that we can only do through 
deduction. Look at this: 
 

11)1(
11)( 2

+−=
+−=

nn
nnnP

 

(n-1) and n are consecutive natural numbers. So if one is even, the other one is odd. So 
n(n – 1) is the product of an even and an odd number. Are you happy that it always is an 
even number? How do you know? So P(n) is an even number plus 11, i.e. an even 
number plus an odd number, which always is an odd number. Are you happy with that? 
 
Note that we have in this deduction assumed several statements without trying to 
prove them (e.g. any even number plus any odd number is always an odd), assuming 
that it is accepted background knowledge. But if someone does not agree, one should 
prove it. So, is an even number plus an odd number always odd? How do we know? 
We probably developed this knowledge through generalisation from special cases: 

2 + 5 = 7 
4 + 7 = 11 

 8 + 9 = 17 
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A deductive proof and explanation would be something like: 
If n ∈ N0, 2n is any even number;  if k ∈ N0, 2k + 1 is an odd number 
2n + 2k + 1 = 2(n + k) + 1, which is an even number plus one, which is odd. 
Now we have proved it for any even number and any odd number! 
 
In Problem 37 we noted that the difference between consecutive numbers is even. 
How can we be sure this is correct? The following argument works generally with any 
number of the form n2 – n + 11, i.e. P(n) and the next number, i.e. P(n+1) and 
therefore leads to a general result for all such pairs: 
 

n
nnnnn
nnnn

nPnP

2
1111112

)11(11)1()1(
)()1(  

22

22

=
−+−+−−++=

+−−++−+=

−+

 

 

2n, n ∈ N is a general description for any even number … 
 

PROBLEM 43: 
Take any two-digit number, then subtract the sum of the digits. What do you find? 

 
First specialise, for two reasons. 
 

First, to understand what is going on.  
So take 34. What we must do is 34 – (3 + 4) = 27 
 

Second, to get a sense of pattern – there seems nothing special in this number, so if 
there is an underlying pattern we need to list several cases: 
34 – (3 + 4) = 27 
35 – (3 + 5) = 27 
36 – (3 + 6) = 27 
37 – (3 + 7) = 27 
 
Can it be that the answer is always 27? Hardly. Maybe it is true that for numbers in the 
thirties the answer is always 27. As a matter of fact the statement is definitely true, 
because we can easily test it for all the cases – if we also 30, 31, 32, 33, 38 and 39 we 
know for sure that the answer is always 27. But what about other decades? Let’s try 
the sixties: 
64 – (6 + 4) = 54 
65 – (6 + 5) = 54 
64 – (6 + 6) = 54 
So, for the sixties, the answer seems to be always 54. We make up conjectures about 
the structure as we go along – we guess an underlying pattern and then we check it. . 
Different people will guess different patterns. For example, I notice that 54 is double 
27, and then I get excited as I notice that the sixties is double the thirties. So I can now 
predict that , for example, the answer in the forties will be double the answer in the 
twenties. I check: 
21 – (2 + 1) = 18 44 – (4 + 4) = 36 
25 – (2 + 5) = 18 42 – (4 + 2) = 36 
28 – (2 + 8) = 18 47 – (4 + 7) = 36 

 20



So I was correct! I even see a "bigger" pattern: the sixties is three times the twenties, 
and 3 × 18 = 54.  
 
I also notice that the sum of the digits of the answer is always 9! See what I mean? So 
far we have the following answers: 
18 and 1 + 8 = 9 
27 and 2 + 7 = 9 
36 and 3 + 6 = 9 
54 and 5 + 4 = 9 
 
But why will this be? 
 
I also begin to notice that the answer is always a multiple of 9. We have already tested 
nearly all 99 cases and we can if we want to. There can be no doubt – I am confident 
that the answer always is a multiple of 9. But why is it true, meaning why a multiple of 
9, why not 7 or 8 or something else? 
 
Can you explain why by looking at all our special cases above? I cannot. So lets go general. 
 
Any two-digit number can be written as 10a + b, where a, b ∈N0 and a, b < 10. 
 

So the number subtract the sum of its digits is  10a + b – (a + b) 
 

Again we have no clear idea where we are going. We 
want to prove that it is a multiple of 9. What is the 
structure of a multiple of 9? How will we recognise it? 
Let’s for the moment simply simplify: 

This was my matchbox problem!

 

   10a + b – (a + b) 
= 10a + b – a – b 
= 9a 

 
Surely, 9a is a multiple of 9! Do you agree? If not, you can understand it by 
specialising: 
 

a 1 2 3 4 5 6 7 8 9 
9a 9 18 27 36 45 54 63 72 81 

 
We get more out of the deduction. The answer is not only a multiple of 9, it also tells 
us which multiple of 9! How did I miss it in recognising the inductive pattern? 
 
We must interpret the meaning of the expression and of the variable. There is the 
syntactical meaning: 9a means 9×a. a is not just any number. It is the tens-digit in 
10a + b. Therefore, if I have 57, I can predict that the answer is 9 × 5 = 45 without 
doing the subtraction calculation! 
 
 

PROBLEM 44: 
Try to generalise the result in the previous activity: 
Take any three-digit number, then subtract the sum of the digits … 
What about a four-digit number? 
What about an n-digit number? 
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PROBLEM #: CIRCLES, REGIONS AND CORDS 
 

1. 
1

2 3

4
 

 

 2 chords divide a circle into 4 regions. 
 What is the maximum number of regions into which 6 chords will divide a circle? 
 And 20 chords? 
 

# chords (n) 0 1 2 3 4 5 6 20 
# regions (R) 1 2 4      

 
 

2. 
1

2
3

4

1 
1

2 

 
 

 If 3 points on a circle are joined 4 regions are formed. 
 What is the maximum number of regions into which 6 points on a circle will divide 

the circle if the points are joined? 
 And 20 points? 
 

# points (p) 1 2 3 4 5 6 20 
# regions (R) 1 2 4     

 
 
 

3. (a) In this figure, there are 18 points on the circle, 
and every point is connected to every other point 
on the circle. 

 How many connecting lines (chords) are 
there all together? 

 
 
(b) In another circle there are 465 connecting 

lines. How many points are there on the 
circle? 

 
 
 
 
 
We discuss these three problems on the next pages … 
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1. Chords and regions 
First understand the situation! Maximum number of regions implies that the chords 
cannot be drawn like these below; each new chord must cut every other chord and no 
three chords should be concurrent (cut in one point). 
 
 
 
 
 

An inductive attack tries to find a pattern in the numbers.  
 

# chords (n) 0 1 2 3 4 5 6 20 
# regions (R) 1 2 4 7 11 16   

 
If you want to find a functional (here vertical) relationship by inspection (i.e. by just 
“looking”) you will have to systematically ask – is it maybe +1?, is it ×2 – 2?, is it …??, 
i.e. the only way of “seeing” a pattern is to first beforehand formulate a conjecture (an 
unproven theorem) and use it as a lense to look at the data and to test/check each 
conjecture  …. and do not stop trying different alternatives until you find one that fits!! 
 
It may help if you represent the data graphically and then use your knowledge of the 
relationship between the shape of a graph and its formula! Here is an Excel scatterplot 
of the data. What kind of a formula do you think may fit the points? 
 

0
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4
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8
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16

18

0 1 2 3 4 5
# chords (n )

# Regions (R )
 
 
 
 
 
 
 
 
 
 
If you are using a technology tool like Excel, you may as well go all the way and let it 
find the regression formula5 (the “curve of best fit”) for you! 
 

                                            
5 Click here to see Excel’s Trendline. There is also a How to … file. 
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If you want to find a formula analytically (i.e. algebraically) you have to bring certain 
resources (knowledge) to the situation. For example, knowledge of recursive (horizontal) 
differences may be helpful here: 
 

# chords (n) 0 1 2 3 4 5 6 20 
# regions (R) 1 2 4 7 11 16   
Differences:  +1 +2 +3 +4 +5  
Second differences:   +1 +1 +1 +1   

 
Maybe you know:  if the second differences are constant, then the formula is quadratic. 
 
Do you know this theorem? If not, click here for a brief discussion in the appendix.
 
Now that we know the formula is quadratic, we merely have to solve for the 
parameters a, b and c in  R(n) = an2 + bn + c.  The values in the database satisfy the 
equation, so substituting them makes the equation true, and this leads to three 
equations in three unknowns: 
 

(0) 0 0 1  .....  (1)
(1) 1 1 2  ......  (2)
(2) 2 4 4  ....  (3)

R a b c
R a b c
R a b c

= + + =
= + + =
= + + =

 

 
 
Here is yet another inductive, recursive method:  Look at R and the differences with 
different eyes: 
R(0) = 1 
R(1) = 1 + 1 
R(2) = 1 + 1 + 2 
R(3) = 1 + 1 + 2 + 3 
R(n) = 1 + (1 + 2 + 3 + … + n) 
 

If you know that 
1

( 11 2 3 ...
2

n

i

n nn i
=

)+
+ + + + = =∑  …. 

or if you do not, maybe you can deduce it from your knowledge of the sum of an 
arithmetic series:  2 {2 ( 1) }n

nS a n d= + −   … 
 

Anyway, 0
1

( 1) ( 1) 2( ) 1 1 ,  0,1, 2, 3, ...
2 2

n

i

n n n nR n i n N
=

+ + +
= + = + = ∈ =∑  

 
You should check it against the known database so that at least you are sure the 
formula is valid for n = 1 to 5!! 
 
But, of course, although we here used algebraic reasoning to deduce the formula, it is 
nevertheless based on an inductive analysis of the numbers in the table, not on the 
structure of the situation! 
 

So you can only pray that the generalisation is valid after n = 5!!! But how can you be 
sure??  
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2. Points and regions 
You probably noticed the recursive pattern 1, 2, 4, 8, 16, … in the numbers in the table 
and then continued the recursive doubling pattern to predict R(6) = 32. Or you may have 
inductively deduced the functional formula , which also yields R(6) = 32. 12)( −= ppR
 
A reminder: Induction consists of two processes: 
1. Abstraction (finding the pattern in the known set of numbers or database) – here the pattern 

in the 6 known pairs (1, 1), (2, 2), (3, 4), (4, 8), (5, 16) is 1( ) 2 ,  1 5,  pR p p p N−= ≤ ≤ ∈ . 
2. Generalisation (extending the pattern beyond the known database) – here 

assuming that the next pair is (6, 32) and 1( ) 2 ,   pR p p N−= ∈ . 
 
In this case the abstraction (1) is correct but the generalisation (2) is not! Unfortunately 
our expectation that the pattern is continued beyond the fifth case is wrong!  
 
In fact R(6) = 31! Check for yourself by physically counting the 
number of regions in this sketch. Understand the problem! The 
prerequisite of maximum number of regions implies that no three 
chords should be concurrent (cut in one point). 
 
 
 
This example serves to remind us that inductive reasoning, powerful as it may be in 
discovering new patterns, is prone to error: 
 
When the mathematician says that such and such a proposition is true of one thing, it 
may be interesting, and it is surely safe. But when he tries to extend his proposition to 
everything, though it is much more interesting, it is also much more dangerous. In the 
transition from one to all, from the specific to the general, mathematics has made its 
greatest progress, and suffered its most serious setbacks.  Kasner &  Newman, 1940 
 
But can we find the correct formula? Let’s try differences again: 
 

# points (p) 1 2 3 4 5 6  20 
# regions (R) 1 2 4 8 16 31   
First differences:  1 2 4 8 15  
Second differences:   1 2 4 7   
Third differences:   1 2 3   
Fourth differences:    1 1    

 
The fourth differences are equal, so the generating formula is a fourth degree 
polynomial. So the formula is of the form R(p) = ap4 + bp3 + cp2 + dp + e. So we must 
find a, b, c, d and e. But R(0) = 1,  so e = 1. So we must find a, b, c, d, i.e. solve four 
unknowns and so we need four equations: 
R(1) = 1a +  1b +  1c + 1d = 0  ……….  (1) 
R(2) = 16a +  8b +  4c + 2d = 1  ……...  (2) 
R(3) = 81a + 27b +  9c + 3d = 3  ….….  (3) 
R(4) = 256a + 64b + 16c + 4d = 7  …...  (4) 
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Solving these four simultaneous equations, we get:  
 

4 3 2

4 3 2

1 1 23 2( ) 1
24 8 24 3

6 23 18 24
24

R p p p p p

p p p p

= − + −

= − + − +

+

                                           

 

 
Or you could use the known database in a technology software package to easily find 
the regression formula for you6.  Do you agree that the technology formula is the same 
as above? 
 
You may want to check that this formula generates the correct values, i.e. 
1, 2, 4, 8, 16, 31. 
 
This formula produces the next value R(7) = 57. But is it correct?  Remember, this 
formula is generalised from the number pattern, i.e. through induction, so we must 
wonder if induction will get us into trouble yet again! To check R(7) = 57, i.e. to check 
if 7 points on a circle yield 57 regions, you have no choice but to draw and count! You 
cannot trust this formula as a model of the situation, you cannot be sure! 
 
You can only be sure if you reasoned with the structure of the situation! 
 
 
3. Mystic rose 
Students often simply formulate a guess like "It's 18 × 18", or "it’s 18 × 17" and then 
cannot justify it, expecting the lecturer to tell them if they are right or wrong.  This is 
not what mathematical thinking is about! We must learn to see our efforts not as 
answers, but as conjectures, as public statements that should be discussed, 
explained, verified and justified through logical argument. And we should learn to 
value logical arguments, and not accept mere authority of someone like the lecturer as 
support or justification for our solutions! 
 
Now let’s try again!  Of course you can 
count, but that will be a rather daunting 
task and it will be prone to error! The 
essence of mathematics is to construct 
mathematical models that mimic the real 
situation, and then we manipulate 
mathematical objects in stead of real-life 
objects to predict unknown information. 

Analyse
-

-
-

  find function values
  find input values    behaviour of functionsInterpret

 Verify

PROBLEM
SITUATION

Mathematise 
Symbolise

  
MODEL   

MATHEMATICAL

  
OF MODEL  

MORE INFORMATION 

 

Let’s begin with an inductive approach and let’s use some heuristics: Let’s investigate 
some special cases, let’s do it systematically, let’s organise our resulting data in a table, 
try to find a pattern in the data and then use the pattern as a model to solve the original 
problems. Here are some special cases, where it is very easy to count the cords: 

 
6 Use a curve-fitting programme like CurveExpert (on our software page). 
  Or click here to see the use of Excel’s Trendline …

 26



 
 
 
 
 
 
# points (n) 2 3 4 5 6 7 18 n 
# chords (C) 1 3 6 10     

 

What we want is a functional (vertical) formula expressing C in terms of n. But it is not 
always so easy to find a formula through inspection (just by “looking”). In the table 
below I identify some easily observed patterns, suggesting a relationship: 
 

 # points (n) 2 3 4 5 6 7 18 n 
 ×1 ×2 ×3   
 # chords (C) 1 3 6 10 15 21   

 
I now "fill in the gaps" using the pattern: 
 

 # points (n) 2 3 4 5 6 7 18 n 
 × 

1
2 ×1 ×1

1
2 ×2 ×2

1
2 ×3   

 # chords (C) 1 3 6 10 15 21   
 
I now write the numbers in an equivalent, but more useful form: 
 

 # points (n) 2 3 4 5 6 7 18 n 
 × 

1
2 ×

2
2 ×

3
2 ×

4
2 ×

5
2 ×

6
2   

 # chords (C) 1 3 6 10 15 21   
 

Please notice that for the purpose of “seeing” the structure in this context, 3
2  is 

“simpler” than 11
2  and 6

2  is simpler than 3!!! The conventions you learned in primary 
school about “always writing in simplest form” are totally irrelevant in context! 
 
To generalise our pattern, we must observe what is unchanging (invariant) and what 
changes. The invariant part is clear: every value is multiplied by something and 
divided by 2. It is this invariant structure that must be continued and generalised to 
C(18) and C(n): 
 

 # points (n) 2 3 4 5 6 7 18 n 
 × 

1
2 ×

2
2 ×

3
2 ×

4
2 ×

5
2 ×

6
2 ×

?
2 ×

?
2 

 # chords (C) 1 3 6 10 15 21   
 
We must now remove the noise and concentrate only on the variable part, so that we 
can more easily identify the structure: 
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 # points (n) 2 3 4 5 6 7 18 n 
 

numerator 1 2 3 4 5 6   
 

The functional (vertical) relationship is easily seen as –1and extended to 18 and n: 
 

 # points (n) 2 3 4 5 6 7 18 n 
–1 –1 –1 –1 –1 –1 –1 –1

numerator 1 2 3 4 5 6 17 n – 1 
 

We can now answer our original question: C(18) = 
2

1718×  and  C(n) = 
2

)1( −× nn . 
 
We have our solution, but it was not so easy to find the functional formula! To 
emphasize that different people see the same situation differently because they bring 
different background knowledge (resources) as lenses to the situation, let’s investigate 
the recursive (horizontal) pattern of differences +2, +3, +4, …  
# points (n) 2 3 4 5 6 7 18 n 
# chords (C) 1 3 6 10 15 21   
Differences:  2 3 4 5 6  
Second differences:   1 1 1 1   

 

So the second difference is constant, so the formula is quadratic of the form  
C(n) = an2 + bn + c and we merely have to solve for the parameters a, b and c: 
 

1 1
2 2

(1) 1 1 0  .... (1)
(2) 4 2 1  ... (2)
(3) 9 3 3 .... (3)

(2) (1) : 3 1 ......... (4)
(3) (2) : 5 2  ........ (5)
(5) (4) : 2 1 , - , 0

C a b c
C a b c
C a b c

a b
a b
a a b c

= + + =
= + + =
= + + =

− + =
− + =
− = ⇒ = = =

 

So 21 1
2 2

( 1)( ) ,    
2

n nC n n n n N−
= − = ∈  

 
This formula generates C(18) = 153. But is it correct?  You cannot trust this inductively 
generated formula as a model of the situation, you cannot be sure! Do you really want 
to check by actually physically counting C(18)?? 
 

Solving the question C(n) = 465 is very difficult without the formula, but with formula it 
becomes very easy, illustrating the power of Algebra: 

2

       ( ) 465
( 1) 465

2
930 0

( 31)( 30) 0
31

C n
n n

n n
n n

n

=
−

⇒ =

⇒ − − =
⇒ − + =
⇒ =
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Deduction 
All the previous work was induction, i.e. deducing patterns from numbers, which are 
special cases. But inductive conclusions may be wrong! And induction does not 
explain the form of the result.   
 
To prove a statement (to show that it is true) and to explain why it is true, we need to 
reason deductively, i.e. generally, using the structure of the situation. 
 
We can prove that a statement is true using complete mathematical induction7. For 
example: 
 
Chords and regions8: 

To prove that 0
( 1)( ) 1 ,   

2
n nR n n+

= + ∈ N  by mathematical induction, we have to prove: 

1. ( 1) ( 1)( 2)( ) 1 ( 1) 1
2

k k k kR k R k
k
+ +

= + ⇒ + = +
+  

2. 0(0 1)(0) is true, i.e. (0) 1 1
2

R R +
= + =  

 
Suppose there are already k chords drawn in the circle. Then the next, i.e. the (k+1)st 
chord will cut each of the previous k chords and therefore pass through (k+1) regions, 
therefore adding an additional (k+1) regions.  

So, if ( 1)( ) 1
2

k kR k +
= +  

  then ( 1) ( 1)[( 1 1)]( 1) 1 ( 1) 1
2 2

k k k kR k k+ +
+ = + + + = +

+ +  

which proves the implication in (1) and the rest is obvious … 
 
Mystic rose 
A deductive approach will use the structure of the situation, not the 
number answers for specific cases! Analyse the special case when we 
have 7 points on the circle, and try to develop some clever way of 
counting the chords that will bring out the structure of the situation. 
 
It should be clear that there should be 6 chords at every point on the circle, because 
we are connecting every point with every other point, except itself. So for 7 points 
there are 7 × 6 chords altogether. However, this is still not correct – we have counted 
every chord twice! Therefore, the number of chords in a 7-point Mystic Rose is 

2
67 × , 

which of course confirms the answer we previously obtained for C(7) through recursion. 
 
In deduction, and generally in mathematical thinking, we are not concerned with the 
numerical answer, but with the method or structure. So if we understand the structure 
in the one example C(7) = 

2
67 × , we can generalise the structure – we must be able to 

                                            
7 What we are calling “induction”, i.e. generalising from a few special cases, is really better named 

“incomplete induction”, in contrast to the method of Mathematical induction, which is “complete 
induction”, because it considers all cases! 

8 Compare Michael de Villiers 
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see the general in the particular. So it should be clear that for 18 points, there will be 
17 chords at each point, so 18 × 17 in total, except that we counted each chord twice, 
so C(18) = 

2
1718 × . In general, if we have n points, each point is connected to n – 1 

points, so C(n) = 
2

)1( −× nn . So deduction confirms and proves our previous result. 

 
Looking back, or discussing the problem with others, we may realise that there are 
other ways of looking at the structure. Our approach was to count the chords at each 
point. This counted each chord twice, that is why we divided by 2. Now look at it 
differently: 

5 new chords

4 new chords

5 6

 

6 chords 

 
 
 
 
 6
 

It is clear that at the first point there are 6 chords. At the second point there are 5 new 
chords, because the chord to the first point has already been counted at the first point. 
Similarly, at the third point there are 4 new chords, etc. 
 

So we have C(7) = 6 + 5 + 4 + 3 + 2 + 1 
 

Again we emphasise that we do not want the numerical answer, but want to 
understand the structure of the situation. The result is not simply the sum of arbitrary 
numbers – the structure is clear: it is a decreasing sequence because we are not 
double-counting chords; 6 is not just any number, but is one less than 7 because we 
are drawing chords to every other point except itself. This means that we can see the 
structure of the situation in this one example. We say we see the general in the 
particular. 
 
We can now without further ado say that C(18) = 17 + 16 + 15 + 14 + … + 3 + 2 + 1. 
Please notice that you can find C(18) by adding this sequence manually, but it is 
nearly impossible to solve (b), i.e. solve the equation C(n) = 465 without a formula!! 
 

When you do Mathematics, problems always lead to new problems! 
 
 

 
PROBLEM ##: SHORT CUT 
Develop a short method to calculate  17 + 16 + 15 + 14 + … + 3 + 2 + 1. 
Use your method to calculate  1 + 2 + 3 + 4 + 5 + … + 99 + 100 
Generalise! 
Can you use your method to calculate 1 + 3 + 5 + 7 + 9 + … + 97 + 99? 
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APPENDIX: VERSKILLE 
 

Voltooi die tabelle9 in die volgende spesiale gevalle om jou intuïtief te oortuig dat: 

As die nde verskil konstant is, is die model ‘n polinoom van die nde graad  …  (1) 
 

n  1 2 3 4 5 6   
2 3y n= +  5 7 9 11 13 15   

Eerste verskille:  2 2 2 2 2  
Tweede verskille:         

 

n  1 2 3 4 5 6   
2y n=  1 4 9 16 25 36   

Eerste verskille:  3 5 7 9 11  
Tweede verskille:         

 

n  1 2 3 4 5 6   
3y n=  1 8 27 64 125 216   

Eerste verskille:  7 19 37 61 91  
Tweede verskille:         
Derde verskille:        

 

x  1 2 3 4 5 6   
2ny =  2 4 8 16 32 64   

Eerste verskilles:  2 4 8 16 32  
Tweede verskille:         
Derde verskille:        

 
Ons kan byvoorbeld vir enige kwadratiese funksie f(n) = an2 + bn + c sê: 

2 2( 1) ( ) ( 1) ( 1) (
2 ( )

)f k f k a k b k c ak bk c
ak a b

+ − = + + + + − + +
= + +

 

dit wil sê die verskille tussen opeenvolgende terme is ‘n eerste-graadse funksie. 
 
Netso is die verskille tussen opeenvolgende terme van ‘n 3de graadse funksie ‘n 2de graadse 
funksie, die tweede verskille ‘n 1ste graadse funksie en die derde verskille dus konstant. 
 
Wat bostaande toon is dat : 

As die model ‘n nde graadse polinoom is, is die nde verskil konstant  … (2) 
Dit is nie wat ons moes bewys nie - (1) is in werklikheid die omgekeerde van hierdie stelling! 
Maar omdat bostaande redenasie omkeerbaar is, het ons dus albei stellings bewys! 
 

Let op: 
o Hierdie is ‘n eienskap slegs van polinoomfunksies. ‘n Funskie soos 2n, d.w.s 1, 2, 4, 8, … 

kan nooit ‘n konstante verskil lewer nie. Dus weet ons dat is die verskil nie konstant is nie, 
die model nie ‘n polinoom kan wees nie! 

o As die eerste verkil konstant is, is die formule 1ste-graads, d.i. y = mx + c. 
Algebraïes is hierdie konstante verskil die gradient m van die funksie en dit is die rede 
waarom die grafiek ‘n reguit lyn is !  
Natuurlik is ‘n konstante verskil vir diskrete waardes die definisie van ‘n Rekenkundige ry !  
Maak ons die konneksies tussen rye en funksies, tussen Tn = a + (n – 1)d en f(x) = mx + c? 

o Die verskille verteenwoordig natuurlik die afgeleide, ons weet dat f’(xn) = nxn-1, dus is dit 
nie verrassend dat die verskille-polinoomfunksies van afnemende graad is nie!! 

o Hierdie stelling is belangrik in die kurrikulum bv. in modellering en om die vergelyking van die 
reguit lyn deur twee punte en die vergelyking van die parabool deur drie punte te bepaal! 

                                            
9 Kyk hierdie Excel werkvel
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