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This paper will briefly delineate a theory for learning mathematics as a basis to reflect on (some particular) 
misconceptions of pupils in mathematics. Such a theory should enable us 

• to predict what errors pupils will typically make 
• to explain how and why children make (these) errors 
• to help pupils to resolve such misconceptions. 

1.  THE ROLE OF THEORY 

Teachers are often wary of theory - they want something practical. Yet, as Dewey has said, “in the end, there is 
nothing as practical as a good theory.”  How come? Theory is like a lens through which one views the facts; it 
influences what one sees and what one does not see. “Facts” can only be interpreted in terms of some theory. 
Without an appropriate theory, one cannot even state what the “facts” are. Let me illustrate with a story, taken 
from Davis (1984). 

It is said that in Italy in the 1640’s, the water table had receded so far that a very deep well had to be sunk in order 
to reach water. This was done. Then pumps were fitted to the pipes, and ... disaster! ... no water poured out of the 
spigot. It was clear that something was wrong, but what? Their understanding of the situation, i.e. their theory of 
pumping water, was that it was the pumps that pulled (sucked) the water to the surface. So the fault had to be with 
the pumps. New pumps were installed ... better pumps were designed, built and installed ... still no water. Then 
still better pumps, then even better ones. But the result was always the same: no water emerged from the spigot. 
They were baffled. 

Finally, in 1643, Evangelista Torricelli, who invented the barometer, presented an alternative explanation 
(theory): It was not, he said, the pumps that pulled the water up. The pumps merely evacuated air from the pipes, 
creating unequal pressures at the two ends of the column of water, after which it was the atmospheric pressure 
that pushed the water up the pipes. This explained the difficulty: the air pressure is about 1 kg/cm2, which is 
enough to support a column of water 10 m high. It follows that if the water in a well is more than 10 m deep, it 
cannot be pumped to the surface using atmospheric pumps. Building better and better atmospheric pumps would 
not resolve the issue – and that probably led to the invention of hydraulic pumps, which could do the job. 

Let us again consider the role of theory. First, one cannot even discuss the matter without using some theory to 
explain the situation. Second, the objective fact that no water came out of the pumps, like the fact that a car 
refuses to start, does not lead anywhere. Unless you can say why there is no water, or why the car will not start, 
you are unable to do anything to change the situation. And in order to say why, you must interpret the “facts” in 
terms of an appropriate theory. Third, notice how the two different theories differed in their interpretation of the 
“facts” and suggested – prescribed! – different remedies to resolve the issue:  one remedy was doomed, while the 
other offered some hope. 

Now, has this story anything to say about the subject under discussion , i.e. pupils’ misconceptions in 
mathematics?  The fact is that our pupils often make mistakes in mathematics – don`t we know it!  But unless we 
can say why they make these mistakes, we are unable to do something about it.  And in order to say why, we must 
interpret these mistakes in terms of a theory – a learning theory.  As teachers, all our interventions in the 
classroom are guided by some theory – be it conscious or subconscious – of how children learn mathematics.  
Different teachers hold different learning theories, and address pupils’ mistakes in different ways.  Could it be 
that all our frustrated efforts at eliminating errors are due to embracing an inappropriate learning theory – that we 
are trying to build better and better atmospheric pumps? 

An escapist route, which is nevertheless a theory, is to view many pupils as rather dim, that they are not capable 
of understanding, and should rather not take mathematics. In general, it is not very useful to think of children’s 
errors in terms of low intelligence, low mathematical aptitude, perceptual difficulties or learning disabilities. Of 
course these factors play a role, but if we are really concerned with helping individual children, such abstract 



ideas won’t help – it is only when we work at the level of specific detail and get to know the specific roots of 
mistakes, that we are able to help. 

The type of theory we adopt will also determine the importance of misconceptions for learning and teaching. Why 
should we care about pupils’ misconceptions? What is the role of pupils’ misconceptions in their learning? How 
will knowing what a pupil has got wrong help us to teach better? 

2.  LEARNING THEORY 

I shall briefly outline two opposing learning theories, which will, by necessity, be both simple (presenting the 
ideas in oversimplified form) and simplistic (presenting the ideas in its most radical form), but which will 
illustrate different approaches to handling pupils’ misconceptions. 

2.1  Behaviourism 

The behaviourist or connectionist theory of learning relates to an empiricist philosophy of science, that all 
knowledge originates in experience. The traditional empiricist motto is “There is nothing in the mind that was not 
first in the senses.” Hence a person can obtain direct and absolute knowledge of any reality, because, through the 
senses, the image of that reality corresponds exactly with the reality (a replica or photo-copy). 

Behaviourism therefore assumes that pupils learn what they are taught, or at least some subset of what they are 
taught, because it is assumed that knowledge can be transferred intact from one person to another.  The pupil is 
viewed as a passive recipient of knowledge, an “empty vessel” to be filled, a blank sheet (tabula rasa) on which 
the teacher can write.  Behaviourists, therefore, believe that knowledge is taken directly from experience, and that 
a pupil’s current knowledge is unnecessary to learning. 

This theory sees learning as conditioning, whereby specific responses are linked with specific stimuli. According 
to Thorndike’s (1922) law of exercise, the more times a stimulus-induced response is elicited, the longer the 
learning (response) will be retained. The law of effect states that appropriate stimulus-response bonds are 
strengthened by success and reward (positive reinforcement) and inappropriate S-R bonds are weakened by 
failure (negative reinforcement). Consequently the organisation of learning must proceed from the simple to the 
complex, short sequences of small items of knowledge and exercise of these in turn through drill and practice. 
One learns by stockpiling, by accumulation of ideas (Bouvier, 1987). 

From a behaviourist perspective, errors and misconceptions are not important, because it does not consider pupils’ 
current concepts as relevant to learning. Errors and misconceptions are seen rather like a faulty byte in a 
computer’s memory – if we don’t like what is there, it can simply be erased or written over, by telling the pupil 
the correct view of the matter (Strike, 1983). This perspective is succinctly put by Gagne (1983: 15): 

The effects of incorrect rules of computation, as exhibited in faulty performance, can most 
readily be overcome by deliberate teaching of correct rules ... This means that teachers 
would best ignore the incorrect performances and set about as directly as possible teaching 
the rules for correct ones. 

2.2  Constructivism 

A constructivist perspective on learning (e.g. Piaget, 1970; Skemp, 1979) assumes that concepts are not taken 
directly from experience, but that a person’s ability to learn from and what he learns from an experience depends 
on the quality of the ideas that he is able to bring to that experience. This is again the same idea as our 
introduction about the role of theory: observation is driven by theory, so the quality of the observation is 
determined by the quality of the pre-existing theory. Knowledge does not simply arise from experience. Rather, it 
arises from the interaction between experience and our current knowledge structures. 

The student is therefore not seen as passively receiving knowledge from the environment; it is not possible that 
knowledge can be transferred ready-made and intact from one person to another. Therefore, although instruction 
clearly affects what children learn, it does not determine it, because the child is an active participant in the 
construction of his own knowledge. This construction activity involves the interaction of a child’s existing ideas 
and new ideas, i.e. new ideas are interpreted and understood in the light of that child’s own current knowledge, 
built up out of his previous experience. Children do not only interpret knowledge, but they organise and structure 
this knowledge into large units of interrelated concepts. We shall call such a unit of interrelated ideas in the 
child`s mind a schema. Such schemas are valuable intellectual tools, stored in memory, and which can be 
retrieved and utilised. Learning then basically involves the interaction between a child’s schemas and new ideas.  
This interaction involves two interrelated processes: 
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(1) Assimilation: If some new, but recognisably familiar, idea is encountered, this new idea can be incorporated 
directly into an existing schema that is very much like the new idea, i.e. the idea is interpreted or re-cognised 
in terms of an existing (concept in a) schema.  In this process the new idea contributes to our schemas by 
expanding existing concepts, and by forming new distinctions through differentiation. 

(2) Accommodation: Sometimes a new idea may be quite different from existing schemas; we may have a 
schema which is relevant, but not adequate to assimilate the new idea. Then it is necessary to re-construct 
and re-organise our schema. Such re-construction leaves previous knowledge intact, as part or subset or 
special case of the new modified schema (i.e. previous knowledge is never erased). 

Thus to understand an idea means to incorporate it into an appropriate existing schema. However, sometimes 
some new idea may be so different from any available schema, that it is impossible to link it to any existing 
schema, i.e. assimilation or accommodation is impossible. In such a case the learner creates a new “box” and tries 
to memorise the idea. This is rote learning: because it is not linked to any previous knowledge it is not 
understood; it is isolated knowledge, therefore it is difficult to remember. Such rote learning is the cause of many 
mistakes in mathematics as pupils try to recall partially remembered and distorted rules.   

To the constructivist learning is not, as for the behaviourist, a matter of adding, of stockpiling new concepts to 
existing ones. Rather, learning leads to changes in our schemas. 

It is clear that the character of a pupil’s existing schemas will determine what he learns from experience or 
information and how it is understood. At the heart of a constructivist approach to teaching is an awareness of the 
interaction between a child’s current schemas and learning experiences, to look at learning from the perspective 
of the child, for the teacher to put himself in the child’s shoes, by considering the mental processes by which new 
knowledge is acquired. Because knowledge cannot be transferred ready-made, to support the child to construct his 
own knowledge, discussion, communication, reflection and negotiation are essential components of a 
constructivist approach to teaching. 

From a constructivist perspective misconceptions are crucially important to learning and teaching, because 
misconceptions form part of a pupil’s conceptual structure that will interact with new concepts, and influence new 
learning, mostly in a negative way, because misconceptions generate errors. 

I distinguish between slips, errors and misconceptions. Slips are wrong answers due to processing; they are not 
systematic, but are sporadically carelessly made by both experts and novices; they are easily detected and are 
spontaneously corrected. I shall not consider slips in the rest of the paper. Errors are wrong answers due to 
planning; they are systematic in that they are applied regularly in the same circumstances. Errors are the 
symptoms of the underlying conceptual structures that are the cause of errors. It is these underlying beliefs and 
principles in the cognitive structure that are the cause of systematic conceptual errors that I shall call 
misconceptions. 

If we want to account for pupils’ misconceptions, we must look at pupils` current schemas and how they interact 
with each other, with instruction and with experience. 

In order to reflect on some typical misconceptions of children, it will be useful to look a little closer at cognitive 
functioning. We would think of something like the following over-simplified process in cognitive functioning 
when a pupil tries to solve a problem (Davis, 1983): 

1. Some item(s) of information in the problem is (are) selected to act as a cue to trigger the retrieval of a 
seemingly appropriate schema in the cognitive structure (memory). 

2. Specific information from the problem (“values”) are fed into appropriate “variables” in the retrieved 
schema. (If no values can be supplied, the schema will fill in values itself, from typical values in past 
experience. We call this a default evaluation.) 

3. Some evaluative judgement of the suitability (the “goodness of fit”) of steps 1 and 2 are made (and cycling 
back where necessary). 

4. If the judgement is that steps 1 and 2 have been successful, the result (i.e. the combination of cue 
information from the problem and the content of the schema) is used to continue. 

The process can be illustrated using the solution of the following equation: 

x2 − 5x + 2 = 0 

Step 1 consists of some visual cues in the equation, e.g. the exponent and the number of terms, that cause us to 
say (in effect): “Aha! It’s a quadratic equation!”, with the result that we retrieve from memory the “quadratic 
equation schema”, which has many items of information, but which also (hopefully!) contains the quadratic 
formula: 
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Step 2 involves looking at our specific problem x2 − 5x + 2 = 0 and taking from it certain specific information to 
enter into the “variables” of our memorised formula in the schema. We see that “1” should be used as a 
replacement for a, “−5” for b and “2” for c. 

Step 3 involves whatever checks we carry out in order to convince ourselves that this is all correct, after which 
use of the quadratic formula (step 4) easily produces the answer. 

A pupil can fail to solve the problem for many reasons, e.g. in step 1: 

• he may not posses the schema that is needed 
• he may posses an appropriate schema, but the retrieval mechanism cannot locate it 
• the retrieved schema is flawed or incomplete 
• an inappropriate schema is retrieved. 
It is important to realise that once step 4 has been reached, the solution of the problem is wholly determined by 
the combined information of the used cues and the content and structure of the retrieved schema, e.g. if in our 
example above the quadratic formula in the schema (memory) was flawed, our solution would be flawed. We say 
the solution is mediated by the schema. 

Let us now look at some specific misconceptions by analysing in what ways current schemas mediate new 
learning leading to misconceptions. One should acknowledge, of course, that errors are also a function of other 
variables in the education process, including the teacher, the curriculum, social factors, affective factors, 
emotional factors, motivation, attitudes, and possible interactions among these variables. For this paper, however, 
I shall concentrate only on cognitive variables. 

3. SOME MISCONCEPTIONS AND THEIR GENESIS 

3.1  Patchwork 
What order of difficulty do we expect in the following three additions for young pupils learning column addition? 

(A) 523   (B) 593   (C) 586   (D) 586 
     + 25        + 25         + 25       +325 

Traditional analysis would suggest that (A) should be the easiest, since (B) involves an extra “carry”, (C) two 
“carries” and (D) involves an extra addition. Surprisingly, (A) is the most difficult for many children! Why should 
this be, and how do we account for the following frequent responses to (A)? 

 (E) 523   (F) 523  (G) 523 
      + 25       + 25       + 25 
       748         948         48 

Maybe we may diagnose that such pupils don’t understand place-value, or don’t understand “carrying”, or that 
they don’t know their number combinations, and we may remediate the problem by teaching these “missing 
concepts”, or by teaching and reteaching the correct procedure directly. 

Yet, clinical research (e.g. Davis, 1984) suggests that the “misconception” is elsewhere, and that these errors are 
quite plausible, as seen from the perspective of the child, whose response is mediated by his existing schemas 
based on previous learning. To solve (A), the addition cue triggers the child’s addition schema, which may 
include an item to add column by column, but may also include that addition is a binary operation – to add one 
needs two numbers. But in (A) there is an isolated digit, only one number!  When the pupil is blocked in his 
progress, he does some patchwork: he distorts the column-by-column rule in order to satisfy the need for two 
numbers (E and F), or ignores the left-column (G) so as not to violate his notion of addition as a binary operation. 
This analysis also explains why many pupils are more successful in (B) than in (A). From this analysis it can also 
be expected that the same phenomenon will show itself in subtraction, and, indeed, it does (e.g. 276 – 14 = 162). 

It is clear that successful remediation will build on the pupil’s correct knowledge by introducing 0 as a 
placeholder in the isolated digit column, so that the child’s addition schema is extended to reconcile the 
conflicting column-by-column and two-numbers rules. Direct teaching of the correct procedure, on the other 

4 



hand, in no way eliminates the underlying cause of the erroneous behaviour and therefore does not change the 
schema. Although direct instruction may produce a change in performance, this change is often not permanent – 
before long the original schema reasserts itself, and the child’s behaviour reverts back to what it was before 
instruction.  (See also 3.6) 

Pupils often degenerate into distorting rules to allow a schema to overcome some obstacle. Here is a high school 
example: 

If  e + f = 8 

Then  e + f + g = ? 

If a pupil’s arithmetic addition schema is retrieved, it will require that numbers be added. Blocked in its progress 
because no values can be given for the letters, the schema will make a default evaluation and somehow manage to 
produce replacement numbers. In our research (Olivier, 1984), 58% of std 6 pupils supplied a numerical answer 
to the question. The most common responses were 12 (from 4 + 4 + 4), 15 (from 3 + 5 + 7, introducing a 
relationship between alphabetic order and number order) and 15 (from 8 + g, and g is the 7th letter of the 
alphabet!). This example again illustrates to what extent pupils’ attack on a “new” problem is influenced by their 
attempts to relate it to previously learned ideas, or, put differently, to what extent previously learned ideas 
actually guide or direct their response to a “new” problem. 

3.2  Ordering decimals 

The following question is from a recent std 5 mathematics competition: 

Which number is the largest? 

(A) 0,62 (B) 0,234 (C) 0,4 (D)  0,31 (E)  0,532 

Response: 
0,62 (38%) 0,532 (29%) 0,4 (25%) 

Would we expect this result, and can we explain the errors and the sources of the errors? 

Studies in Israel, the United States and France (Resnick et al, 1989; Nesher, 1987) have obtained similar results, 
and have shown that these errors are not slips, but that they are systematic errors based on children’s pre-existing 
valid knowledge. What pre-existing knowledge is at stake and how does it interfere with pupils’ attempts to order 
decimals? 

First, pupils choosing 0,532 are using their valid knowledge of ordering whole numbers, e.g. “0,532 is bigger 
than 0,62 because 532 is bigger than 62, so the longest number is the biggest.” 

Second, pupils choosing 0,4 are using their valid knowledge of ordering common fractions, e.g. “0,4 is bigger 
than 0,62 because tenths are bigger than hundredths, so the shortest number is the biggest.” 

A child newly learning about decimals must build a schema of decimal numbers and relate it to previously 
acquired whole numbers, common fractions and measurement. This prior knowledge can support (there are many 
common features), but can also interfere (there are crucial differences) with the child’s construction of a correct 
and adequate schema for decimals. From results such as those illustrated above, it is only too clear that this prior 
knowledge is interfering with many children’s decimal concepts. This can be attributed to an overgeneralization 
of the properties of whole numbers and common fractions to decimals, but mainly it means that pupils have not 
accommodated their previous schemas to include decimals; children view the new system of decimals as 
“identical” to the previous systems, ignoring the differences between the systems, i.e. they distort the concept of 
decimals so that it can conveniently be assimilated into existing schemas. Their decimal schemas are therefore 
inadequate and defective. 

I argue, however, that although children may have a defective decimal schema, they manage to cope quite well in 
the school situation. It is exactly this success that works against any attempt at accommodation, because pupils 
realise full well that they can handle decimals with their previous conceptions, so why make the effort to change? 
No accommodation is necessary. I am, in effect, saying that our limited mathematical expectations of pupils are 
partly to blame for the omnipresence of these misconceptions. First, our teaching does not emphasise conceptual 
understanding of decimals, but rather emphasises algorithmic expertise. We are satisfied if pupils can add, 
subtract, multiply and divide decimals.  The point is that these procedures are mainly taught by rules that reduce 
the operations to operations on whole numbers (e.g. to multiply two decimals, ignore the comma and multiply the 
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whole numbers ...). No conceptual understanding of decimals are required for such rules; no wonder pupils think 
they can manage with their whole number ideas. Second, pupils having the two misconceptions mentioned, will 
have a 100% success rate when initially comparing decimals of equal length, thus reinforcing their 
misconception, and neither they nor their teacher will realise that they are obtaining correct results with a 
defective strategy. Furthermore, if exercises are not intentionally designed to diagnose and discriminate such 
misconceptions (e.g. 0,4 vs. 0,32 will not discriminate the fraction rule and 0,4 vs. 0,62 will not discriminate the 
whole number rule), pupils may have a high success rate, believing their mistakes were mere slips. This identifies 
an important perspective on pupils’ misconceptions, as explicated by Lèonard and Sackur-Grisvard (1987): 

Erroneous conceptions are so stable because they are not always incorrect.  A conception 
that fails all the time cannot persist.  It is because there is a local consistency and a local 
efficiency in a limited area, that those incorrect conceptions have stability.   (p. 44) 

For what problems are those conceptions mathematically correct?  For what problems are 
they erroneous?  It is only when we know the mathematical limits of the student’s 
misconception, that we will be able to know when their conceptions will fail, to prevent 
them, and eventually to teach them to students.  (p. 45) 

I mention two further interesting snippets from Resnick’s research. Apparently the whole-number misconception 
declines with age, while the fraction misconception is more persistent and increases with age.  Different 
curriculum sequences produce different misconceptions, as illustrated by the finding that French children by and 
large avoid the fraction misconception and outperformed children in Israel and the United States; in France 
decimals are taught before common fractions. This, of course, confirms that children’s misconceptions derive 
from attempts to integrate new knowledge with already established knowledge. 

3.3 Generalising over numbers 

It is a well-known fact that pupils who have learned to solve quadratic equations by factoring, e.g. 

    x2 – 5x + 6 = 0 
⇒   (x – 3)(x – 2) = 0 

so, either x – 3 = 0 or x – 2 = 0, tend to make the following error: 
       x2 – 10xx + 21 = 12 
⇒   (x – 7)(x – 3) = 12 

so, either x − 7 = 12 or x – 3 = 12. 

This error is very difficult to eradicate – or is, at least, very difficult to eradicate permanently. Even with able 
pupils, receiving excellent instruction emphasising the special role of zero in the zero product principle, this error 
will continue to crop up in pupils’ work. Despite careful explanations of why it is an error and despite short-term 
elimination of the error, it keeps coming back.  How do we explain it? 

Matz (1980) presents a theory that explains the persistence of this error. There are two levels of procedures 
guiding cognitive functioning: surface level procedures, which are the ordinary rules of arithmetic and algebra, 
and deep level procedures, which create, modify, control and in general guide the surface level procedures. One 
such deep level guiding principle is the generalisation over numbers, which, in effect says that “the specific 
numbers don’t matter – you could use other numbers.” This is a very important and in most cases a very necessary 
observation, which comes naturally to children, e.g. when learning to add, say 52 + 43 by column addition, a child 
will never master arithmetic if he believed the method works only for 52 + 43. He must believe that the method 
also works for 34 + 23 and 46 + 21 or any other sum than 52 + 43, also for combinations he has never seen 
before. Thus, in order to learn arithmetic a pupil must have such a deep level procedure generalising over 
numbers. 

This works very well; as a matter of fact too well: pupils have the natural tendency to overgeneralize over 
numbers.  Because pupils are so accustomed to generalise over numbers, one can predict that errors will be made 
for any type of problem whose specific numerical values are critical. Overgeneralization of number and number 
properties may be the single most important underlying cause of pupil’s misconceptions. 

This is exactly what happens in the case of the quadratic equation. In (x – 3)(x – 2) = 0, the numbers 3 and 2 are 
not critical to the method, but the 0 is!  Pupils should therefore generalise: 
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 (x – a)(x – b) = 0 
 ⇒  x – a = 0 or x – b = 0   -----------------------------(1) 

Pupils who fail to realise the critical nature of the 0, treat it just as they do the other numbers and overgeneralize: 

 (x – a)(x – b) = c 
 ⇒  x – a = c or x – b = c   -----------------------------(2) 

Equation (2) would be a correct generalisation of equation (1) if generalising were appropriate in this case. 
Unfortunately it is not. It is probably the first important rule pupils have met where some specific number should 
not be generalised. 

We all know this. What is interesting, is our awareness of the guiding deep level procedure of generalising over 
number as the cause of the error; the surface level procedures are operating correctly. This explains why the error 
is so obstinate and resistant to change, despite our best efforts, and despite pupils’ best intentions: it is not just a 
matter of learning; it cannot simply be erased from memory, because it is continually being re-created by a 
sensible deep level guiding principle. What is lacking is a critic – a danger signal that in this particular case the 
application of the deep level procedure is wrong, which probably only comes with experience of making such 
mistakes. 

This example shows again the sensibility of pupils’ errors and how pupils’ misconceptions are not random, but 
originate in a consistent conceptual framework based on earlier acquired knowledge. 

3.4 Generalising over operations 

If you teach mathematics in primary school and probably even if you teach in high school, you will recognise the 
following as a frequent and persistent error (Van Lehn, 1982): 

  263         546 
–128       –375 
  145         231 

To remediate the error one may try direct teaching of the correct algorithm and address issues such as place-value, 
“borrowing” and number combinations. Yet we all know that this error is extremely obstinate and resistant to 
change – it will recur again and again. 

Are our diagnoses correct? If we want to account for pupils’ systematic errors from a constructivist perspective, 
analysing the procedures and their prerequisites is not sufficient. We must, especially, know how this new 
knowledge is embedded in a larger meaning system that the child already holds and from which he derives his 
guiding principles; we must analyse what knowledge in previous learning may be influencing a new idea. 

Available research (e.g. Davis, 1984) suggests that one guiding principle is children’s erroneous conception that 
subtraction is commutative, i.e. the order does not matter, so 6 – 4 and 4 – 6 are the same, or rather they have the 
same answer. 

Why would pupils think that subtraction is commutative? Again, it is an outcome of their experience influenced 
by correct previous learning. In the system of whole numbers in primary school children work only with 6 – 4; 4 – 6 
only arises when we introduce negative numbers in std 6, so the need to discriminate between the two forms never 
really arises. We also know that children – and humans in general – generally do not discriminate any finer than is 
needed in a given situation, i.e. discriminations are not made where they are not presently needed (Davis, 1984). 

The commutativity of subtraction is further reinforced by word problems containing phrases such as “the 
difference between Bill’s age and Mary’s age is 2 years”, without specifying who is older, so presumably 6 – 4 
and 4 – 6 both produce 2 as result (actually, this is an early conception of absolute value!). Also, have pupils not 
often heard to always “take the smaller from the larger”, which is exactly what they are doing in the beginning 
examples? The point is that although children know 6 – 4 and 4 – 6 have different meanings, they may reason that 
the method to get the answer of 4 – 6 is to calculate 6 – 4, which is the only physical meaning they have available; 
so 6 – 4 and 4 – 6 are, by definition, equal in value. Even high school teachers will frequently find that pupils 
write (30° + 40°) – 180° for an angle in a triangle, but calculate 70° – 180° = 110°. 

But the main contributory influence for seeing subtraction as commutative is probably that pupils have extensive 
experience of the commutativity of addition and multiplication when learning their tables, and, in lieu of any 
contradictory evidence, they have no reason to expect that subtraction will behave otherwise. They are 
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overgeneralizing over operations. We can predict that the same misconception will show itself in division, and, 
indeed, it often does (although other misconceptions are induced by the intuitive meanings of the operations – see 
next paragraph). It is possible that the early introduction of calculators in the primary school may alleviate this 
particular misconception. 

One of the largest and most frequently occurring class of errors in the high school, which Matz (1980) calls linear 
extrapolation errors, is illustrated by the following examples: 

 √(a + b) = √a + √b 
 (a + b)2  = a2 + b2  
 a(bc) = (ab)(ac) 
 log (a + b) = log a + log b 
 sin (a + b) = sin a + sin b 

I shall not delve into the problem here, except to say that these errors are probably grounded in an 
overgeneralization of the “distributive property”, which children encounter often in arithmetic and in introductory 
algebra, and where it is natural to work with each part independently, e.g. 

a(b + c) = ab + bc 
a(b – c) = ab – ac 

b c
a

b
a

c
a

+ = +   

(ab)n = an bn  
A B C A B A C∪ ∩ = ∪ ∩ ∪( ) ( ) ( )  

Putting it differently, these errors are an overgeneralization of the property f(a + b) = f(a) + f(b), which applies 
only when f is a linear function, to the form  f(a * b) = f(a) * f(b), where f is any function and * any operation. 
This super-formula now acts as another deep level procedure, saying “work the parts separately”, so that the 
indicated errors are continually being re-created, which explains its obstinate recurrence. 

As mentioned before, the error will probably only be resolved if the pupil develops (from experience of errors!) a 
critic that will recognize the deep level construction as an error. In this regard it is important to be aware of the 
conditions under which the deep level procedure may be applied. 

3.5  Meanings 

The following two problems differ markedly in difficulty to pupils (Bell et al, 1981; 1984).  Why should this be?  
Can we predict and explain the difficulty? 

(A) 1 liter of petrol costs R1,12. How much will it cost to fill a tank holding 3 litres? 
(B) 1 liter of petrol costs R1,12. How much will it cost to fill a small tank which holds 0,53 litres? 

Would we be surprised at a success rate of 27% for 13-year-olds for (B)? Ah, we would say, it is because pupils 
find decimals difficult! This explains nothing. What is it about decimals that pupils find difficult? Note that pupils 
were not required to perform the actual calculation, but only to indicate what operation was needed to solve the 
problem.  So the difficulty does not lie in the calculation, but in the choice of operation. In Bell’s study, 63% of 
pupils erroneously chose division in (B).  Can we explain that? 

The mediating or driving misconception causing the error is that “multiplication makes bigger and division makes 
smaller”. So in (B) pupils reasoned that 0,53  is less that 1 , so it should cost less than R1,12. So to make it 
smaller they are driven by their misconception to choose division as operation. 

What are the origins, the roots of these misconceptions? Well, as you have come to expect at this stage – in 
experience of successful previous learning.  When working with whole numbers, multiplication always makes 
bigger (except for 0 and 1, which may be discarded as special cases). So it is, again, a case of an 
overgeneralization from whole numbers (where it is true) to decimal numbers (and probably fractions and 
integers, where it is not generally true). 

The question is: why do pupils not make the necessary accommodation after working with fractions and decimals 
for some time; why do they not notice that it is not valid for decimals and fractions? The answer probably lies in 
our emphasis on the procedures for the operations, where any checking is done, not by estimation, but by 
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repeating the same process.  We therefore never focus our attention on the relative sizes of the factors and product 
in the multiplication of decimals. The misconception has no apparent detrimental effect on calculation, so we may 
not even notice it or be overly concerned about it. So the misconception is alive and well and influencing 
children’s problem solving! 

But the roots of the misconception lies deeper. Consider the following two problems used by Fischbein et al 
(1985): 

(A) From 1 quintal of wheat you get 0,75 quintal of flour. How much flour do you get from 15 quintals of 
wheat? 

(B) 1 kg of a detergent is used in making 15 kg of soap. How much soap can be made from 0,75 kg of 
detergent? 

The numbers in both problems are the same, yet (A) yielded 79% success and (B) only 27% (with 45% choosing 
division). How can that be explained?  The difference can be ascribed to pupils’ implicit intuitive meaning of 
multiplication, namely repeated addition. In the repeated addition model of multiplication, multiplication 
necessarily makes bigger: 

3 × 5 = 5 + 5 + 5 

and multiplication is not commutative (or rather, the forms have different meanings): 

5 × 3 = 3 + 3 + 3 + 3 + 3 

In a repeated multiplication model 3 × 0,47 has a meaning, but 0,47 × 3 cannot be interpreted as repeated addition. 
Now notice that in (A) the model is 15 × 0,75, which can be understood as repeated addition and therefore cannot 
be related to pupils’ intuitive meaning of multiplication. It is clear that pupils’ choice of operation is mediated by 
their original implicit model of multiplication. 

It is again clear that senior pupils have not progressed, have not accommodated their understanding of the 
meaning of multiplication beyond their first ideas. To be able to cope with area of a rectangle, and problems 
relating to speed, price, etc. the meaning of multiplication must be extended to include other models of 
multiplication, e.g. the idea of rate. Do we try to teach it at all? 

Here is an example where children’s interpretation of the meaning of symbols lead them astray: 

In a certain college there are six times as many students as there are professors. Use S for 
the number of students and P for the numbers of professors to write an equation for the 
situation. 

In our research (Olivier, 1984), 58% of std 8 pupils erroneously responded with P = 6S, which means they are 
interpreting S as an abbreviation for “students” and P for “professors”. In essence, they are using letter symbols as 
labels, or as abbreviations for units as in 6 gram = 6 g, which is probably children’s first encounter with letter 
symbols. Pupils often carry this prior meaning into algebra, with disastrous results, as the example shows. This 
misconception of the meaning of letter symbols in algebra is reinforced when we treat 2x + 3x as mere abstract 
“letters” and a + b as apples and bananas. Pupils need to construct meaning for letters as numerical variables in 
order to cope with algebra. 

3.6  Interference 

Davis (1984) offers an alternative explanation for the students-professors error. He suggests that pupils may 
indeed have a numerical-variable schema available. But a schema such as the letter-as-label, which is acquired 
early and developed well may prove to be extremely persistent, so much that it may sometimes continue to be 
retrieved inappropriately long after one has become fully cognisant of the conditions under which it is or is not 
used. Put differently: a new appropriate schema may be available, but the old schema continues to exist. The 
source of such misconceptions lies in retrieving the wrong schema and not recognising the retrieval error. As for 
remediating the misconception, Davis advocates making sure that pupils are aware of both schemas and of the 
likelihood of incorrect choice. 

This issue of the retrieval of an inappropriate schema is further illustrated by the following well-known teacher-
pupil dialogue: 

Teacher:  What is four times four? 
Pupil:  Eight 
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Teacher:  How much is four plus four? 
Pupil:  Oh!  It should be sixteen! 

How is this sequence to be explained? The addition schema is constructed first and is well developed. Thus, when 
a question is asked about multiplication, which is a more recent (and maybe less secure) piece of learning, the 
pupil replaces it with a question dealing with earlier (and presumably more securely learned) material. This 
replacement is also common in other cases, and we notice that it is nearly always the case that the replacement is 
with an earlier idea: 

4 × 4 becomes 4 + 4 
23 becomes 2 × 3 
6 ÷  ½ becomes 6 × ½ or 6 – 2 
3x
x  becomes 2x 

We notice also that the visual cues for the pairs of questions are very similar in nature. Maybe pupils are not 
discriminating the visual cues? 

However, it is not always the case that previously learned skills interfere with new skills, but often also the other 
way around, e.g. x + x = 2x until pupils learn multiplication, then x + x suddenly becomes x2 . 

Byers and Erlwanger (1985) suggest that this confusion should be sought in memory transformations and 
subjective organisation during retention. They suggest that many errors are due to attempts by students to simplify 
mathematical material. The student tries to introduce his own unity, coherence and consistency into material he 
has learned at different times, and to do so on the basis of hypotheses which appear to him to be both simple and 
sensible. Because in the event old and new concepts, strategies and algorithms tend to be confused and substituted 
for each other, the resulting errors are usually ascribed to “interference”. 

Jerome Bruner has also noticed this confusion: 

... when children give wrong numbers it is not so often that they are wrong, as that they are 
answering a different question.  The teacher’s job is to find out what question they are in 
fact answering. 

Teachers must help pupils to differentiate between such cases and stress the conditions under which each is 
applicable. 

4. DISCUSSION 

(1) The most essential message of this paper is that we should have sympathy – more: empathy, with children 
for their errors and misconceptions in mathematics. If we understand the general principles of cognitive 
functioning from a constructivist perspective, we will realise that, for the most part, children do not make 
mistakes because they are stupid – their mistakes are rational and meaningful efforts to cope with 
mathematics. These mistakes are derivations from what they have been taught. Of course, these derivations 
are objectively illogical and wrong, but, psychologically, from the child’s perspective, they make a lot of 
sense (Ginsburg, 1977). 

(2) We would probably all agree that mathematics is a cumulative subject, and that any new learning depends 
on previous learning. We would also agree that 

• correct new learning depends on previous correct learning, 

 and also that 

• incorrect new learning is often the result of previous incorrect learning. 

 What I have tried to show, is that 

• incorrect new learning is mostly the result of previous correct learning. 

 Every misconception we have discussed had a legitimate origin in previous correct learning − each 
misconception was correct for some earlier task, as performed in some earlier domain of the curriculum. 

(3) The source of misconceptions is mostly an overgeneralization of previous knowledge (that was correct in an 
earlier domain), to an extended domain (where it is not valid). 

10 



(4) A schema acquired early and developed well is highly resistant to change. 

(5) Children do not easily accommodate new ideas when necessary, i.e. change their present schemas, but rather 
assimilate new ideas into existing schemas, which means that the new idea must to a certain extent be 
distorted to be “like” a previous idea. 

(6) Traditionally, the university blames the high school for poor teaching, the high school blames senior 
primary, who blames junior primary, who blames the home ... In our examples of misconceptions we have 
seen that pupils’ early learning is correct, but that it is exactly this correct learning that is eventually the 
source of later misconceptions. Where does the problem really lie? Either earlier learning must be changed 
so that pupils’ ideas will not later have to be changed (i.e. teach the “correct” notion from the start), or we 
must later make a special effort to prevent or remediate children’s misconceptions. Neither is easy. For early 
learning, take “multiplication makes bigger” as an example, which we have shown, originates from the early 
teaching of multiplication as repeated addition. This leaves us with a fundamental didactical dilemma. If we 
continue to introduce multiplication via repeated addition, we create a strong, and resistant, but incomplete 
meaning of multiplication that will come to conflict with later meanings of multiplication. On the other 
hand, repeated addition is probably the best introductory meaning available for multiplication, so we have 
little choice but to continue in this way. The notion of decimals before fractions is an interesting possibility. 
But it is not possible to teach decimals before whole numbers, or algebra before arithmetic! There is little to 
change, we must accept the possibility that early learning may, through overgeneralization, lead to 
misconceptions. 

Can we prevent or remediate misconceptions later? Yes and no. Yes, later teaching is presently not adequately 
aware of the major cognitive leaps pupils must make in e.g. the transition from whole numbers to decimals and 
fractions, and from arithmetic to algebra. Our later teaching emphasises computational and manipulative dexterity 
at symbolic level, rather than conceptual understanding.  This dexterity does not require pupils to accommodate 
their existing schemas – many pupils` misconceptions are masked by adequate performance in mathematics. So, if 
later teaching really addressed the issues, we could prevent or remediate the mentioned misconceptions by 
helping pupils to integrate the new and the previous knowledge. No, because misconceptions may develop 
naturally as a product of typical human mental processing. Research shows that the initial intuitive ideas become 
so deeply rooted in the child’s mind that they continue to exert an unconscious control over mental behaviour 
even after the child has acquired formal mathematical notions of the idea that are solid and correct (e.g. Fischbein 
et al, 1985). 

(7) From a constructivist perspective the teacher cannot transmit knowledge ready-made and intact to the pupil. 
Errors and misconceptions are seen as the natural result of children’s efforts to construct their own 
knowledge, and these misconceptions are intelligent constructions based on correct or incomplete (but not 
wrong) previous knowledge. Misconceptions, therefore, cannot be avoided. Such errors and misconceptions 
should not be treated as terrible things to be uprooted, since this may confuse the child and shake his 
confidence in his previous knowledge. Instead, making errors is best regarded as part of the process of 
learning. We should create a classroom atmosphere that is tolerant of errors and misconceptions and exploit 
them as opportunities to enhance learning. In this regard direct teaching (“telling”) of missing concepts will 
not do. Rather teachers should help pupils to connect new knowledge to previous learning. Swan (1983), 
Nesher (1987) and Olivier (1988) describe a teaching approach that is designed to expose children’s 
misconceptions and provide a feedback mechanism that leads to cognitive conflict. Discussion, 
communication, reflection, and negotiation of meaning are essential features of a successful approach to 
resolve pupils’ misconceptions. 
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