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Introduction 
By 1988, our group had completed several studies on young students’ understanding 
of particular concepts before, during and after instruction. These experiences led us to 
conduct two small scale and several informal teaching experiments based on the idea 
that the teacher should pose problems to students for which they do not yet have a 
routine solution method available, and that learning would take place while the 
students were grappling with the problems. The outcomes of these experiments 
helped us to develop the following tentative model for learning and teaching 
mathematics: 

Learning occurs when students grapple with problems for which they have 
no routine methods. Problems therefore come before the teaching of the 
solution method. The teacher should not interfere with the students while 
they are trying to solve the problem, but students are encouraged to 
compare their methods with each other, discuss the problem, etc. 

In the years since 1988, we have come to realise that this naïve description actually 
represents an enormously complex series of learning situations. Some of the issues that 
we were confronted with to research further and resolve as well as we could, were: 
The role of the teacher. To what extent should the teacher be part of the problem 
solving process? Keeping in mind that the problem solving process involves 
mathematical as well as social processes, do different processes demand different 
types of support and intervention? 
The classroom culture. Although the classroom culture includes the didactical 
contract between teacher and students (their mutual expectations and obligations), it 
also includes the ways in which the learning situations are physically set up and the 
rules under which they operate. What did we have to learn about this? 
Interaction patterns among students. These interaction patterns depend on the role 
which the teacher has assumed, the classroom culture and the way in which the 
teacher sets up learning situations, reflecting her beliefs about how mathematics is 
learnt. To what extent do different interaction patterns influence learning, and might 
there be different kinds of interaction patterns for different learning situations (i.e. 
different kinds of tasks)? 
The kind of problem posed. Mathematical tasks or activities come in a variety of 
guises: investigations, projects, traditional story sums, real-life problems, abstract 
problems, puzzles, etc. Were all of these suitable for learning through solving 
problems, or were some more suitable than others? 
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The mathematical structure of the problem. Would it be a good idea if Grade 1 
students worked at addition-type problems for a long time, so as to establish strong 
understandings of the operation and its solution methods? Would it matter if Grade 1 
students never met a proportional sharing problem? 
Sustained learning. It might be possible to achieve single, successful learning 
episodes, or even the satisfactory development of a group of students over a period of 
weeks, but would such a programme maintain students’ mathematical development 
over a number of years? 
The type of response elicited from the student. Should the teacher accept verbal 
answers and explanations, or should she insist on written explanations, and if so, for 
what purpose and in what format? 
Teacher awareness, understanding and co-operation. We knew from experience that 
many teachers of the lower elementary grades were to some extent aware that young 
children invented their own methods and, provided they received sufficient 
information and some continued support, achieved significant success. We were 
concerned about large-scale implementations which necessarily implied brief training 
sessions with large groups of teachers. 
Informing the larger community. Would we be able to communicate well enough 
with the larger community (parents and other members of the public, pre-school, 
elementary and high school teachers and lecturers at local colleges and universities, 
and remedial teachers and educational psychologists) so that these different 
groupings could understand and identify with our basic principles and appreciate the 
quality of the mathematics that students were doing? 

Theoretical base 
Our present theoretical base can be described as follows:  
Contrary to an empiricist view of teaching as the transmission of knowledge and 
learning as the absorption of knowledge, research indicates that students construct their 
own mathematical knowledge irrespective of how they are taught. Cobb, Yackel and 
Wood (1992) state: “… we contend that students must necessarily construct their 
mathematical ways of knowing in any instructional setting whatsoever, including that of 
traditional direct instruction,” and “The central issue is not whether students are 
constructing, but the nature or quality of those constructions” (p. 28). 
A problem-centred learning approach to mathematics teaching (e.g. Cobb, Wood, 
Yackel, Nicholls, Wheatley, Trigatti & Perlwitz, 1991; Olivier, Murray & Human, 
1990) is based on the acceptance that students construct their own knowledge and 
therefore attempts to establish individual and social procedures to monitor and 
improve the nature and quality of those constructions. We hold the view that the 
construction of mathematical knowledge is firstly an individual and secondly a social 
activity, described as follows by Ernest (1991): 
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a) “The basis of mathematical knowledge is linguistic knowledge, conventions and 
rules, and language is a social construction. 

b) Interpersonal social processes are required to turn an individual's subjective 
mathematical knowledge, after publication, into accepted objective mathematical 
knowledge. 

c) Objectivity itself will be understood to be social.” (p. 42, our italics.) 
Social interaction serves at least the following purposes in problem-centred classrooms: 

• Social interaction creates opportunities for students to talk about their thinking, 
and this talk encourages reflection. “From the constructivist point of view, there 
can be no doubt that reflective ability is a major source of knowledge on all levels 
of mathematics … To verbalise what one is doing ensures that one is examining it. 
And it is precisely during such examination of mental operating that 
insufficiencies, contradictions, or irrelevancies are likely to be spotted.” Also, 
“… leading students to discuss their view of a problem and their own tentative 
approaches, raises their self-confidence and provides opportunities for them to 
reflect and to devise new and perhaps more viable conceptual strategies” (Von 
Glasersfeld, 1991, p. xviii, xix). 

• Through classroom social interaction, the teacher and students construct a 
consensual domain (Richards, 1991) of taken-to-be-shared mathematical 
knowledge that both makes possible communication about mathematics and serves 
to constrain individual students' mathematical activity. In the course of their 
individual construction of knowledge, students actively participate in the classroom 
community's negotiation and institutionalisation of mathematical knowledge (Cobb 
et al, 1991). 

Whereas a traditional, transmission-type approach necessarily leads to subjective 
knowledge which is largely reconstructed objective knowledge, our version of a 
problem-centred learning approach reflects the belief that subjective knowledge (even 
if only in young children) should be experienced by the students as personal 
constructions and not re-constructed objective knowledge. (When we aim at children 
creating their own knowledge, as opposed to reconstructing existing objective 
knowledge, we do not imply that children are actually creating knowledge that does 
not already exist as objective knowledge; we do state that the children in this 
approach assume that they are creating their knowledge as new.) 
We therefore regard problem-solving as the vehicle for learning.  
It is necessary to distinguish sharply between learning to solve problems and learning 
through solving problems. Davis (1992) describes the process of learning through 
solving problems as follows: “Instead of starting with ‘mathematical’ ideas, and then 
‘applying’ them, we would start with problems or tasks, and as a result of working on 
these problems the children would be left with a residue of ‘mathematics’ – we would 
argue that mathematics is what you have left over after you have worked on problems. 
We reject the notion of ‘applying’ mathematics, because of the suggestion that you start 
with mathematics and then look around for ways to use it.” (p. 237). Also: “According 
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to Dewey (1929), these relationships and understandings are what is left after the 
problem has been resolved” (Hiebert et al, 1996, p. 15). 
However, no matter how well-designed a problem or sequence of problems is, the 
amount and quality of the learning which takes place depend on the classroom culture 
and on students’ and teachers’ expectations. “Tasks are inherently neither 
problematic nor routine. Whether they become problematic depends on how teachers 
and students treat them.” (Ibid, p. 16). Neither do we imply that learning to solve 
problems is not important in its own right, nor that routine problems should never be 
posed. This is discussed again later. 

Implementation 
In 1988, one of the local Departments of Education made available to us eight 
schools of their choice as experimental sites, and identified a control school for each 
of the experimental schools. We conducted a two-day workshop for the Grade 1, 2 
and 3 teachers of the experimental schools at the end of 1988, and these teachers 
started implementing a problem-centred approach at the beginning of the school year 
in 1989. A small team of three researchers and three subject advisors from the 
Department of Education supported the process by brief visits to classrooms and 
short follow-up meetings. 
All the students involved in the project wrote two sets of tests in the course of a 
school year for evaluation purposes. It was already clear after the first test in August 
(six months after inception) that there was a marked improvement in both the 
understanding of word problems and in computational skills (Malan, 1989). 
The Department of Education accordingly requested us to provide in-service training for 
the teachers of another sixteen schools. In the years that followed, all the elementary 
schools of the Department from Grade 1 to Grade 6 eventually became involved. The 
approach also spread to four other Departments of Education. By 1993, the lower 
elementary grades of more than a thousand schools from five Departments of Education 
were involved. This very wide implementation was against our advice, because we 
support an organic model of growth with sufficient teacher support. 
The problem-centred approach was also introduced to the elementary grade teachers 
of more than 50 special schools (schools for mentally and physically handicapped 
students). In a small number of these schools teachers have adopted and are using the 
approach with success. 
In the majority of schools involved, the implementation has petered out in the sixth 
and seventh grades, partly because in-service training received by the upper 
elementary teachers was very brief, and partly because the documentation they 
received was not comparable to the extensive and detailed teachers’ guide, compiled 
by subject advisors, teachers of the first eight experimental schools and researchers, 
which the lower elementary teachers received. 
It is important to make clear that the subject advisors and teachers made immense 
contributions to the development of the approach: We really did approach the original 



group of teachers with our naïve idea of how learning through problem solving 
works, but because we were not prescriptive, we could observe how different teachers 
had made sense of their workshop experiences by initiating different practices in their 
classrooms. It was our great fortune that we could observe these different practices 
and their effects on students’ learning over time, enabling us to identify useful and 
potentially problematic practices. 

Evaluation 
All the Departments of Education involved in the project evaluated the approach 
independently by comparing second, third and fourth grade students’ performance on 
written tests with the performance of students of the same school in the previous year 
on similar tests. Two Departments also compared experimental and control schools. 
The tests included straight calculations and word problems. Students at all grade 
levels in all the project schools showed marked improvement. When the frequencies 
of the number of correct answers for a particular test are plotted, the graphs typically 
show a consistent shift to the right for project students, i.e. more students did well 
than students in traditional teaching. We give two examples from different schools.  
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After six years the Cape Education Department commissioned a large-scale 
independent evaluation which also yielded positive results (Taylor, Glover, Kriel & 
Meyer, 1995), as did the James and Tumagole (1994) and Newstead (1996, 1997) 
evaluations. 
De Wet’s study (1994) found that fourth grade remedial students in a problem-
centred approach progressed better than a matched group in a traditional approach 
(compare Thornton, Langrall & Jones, 1997). 

Concerns from the larger community 
The fears, accusations and arguments of the “California Math Wars” are very similar 
to those that arose a few years ago around the problem-centred approach in South 
Africa, giving rise to heated public debates in the letter columns of newspapers and 
magazines. 
These fears and objections have at least two distinct sources (there are more). 
Firstly, different views about what mathematics is and what is mathematically 
valuable; how children learn mathematics; and what our version of a problem-centred 
approach entails. 
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Secondly, very real concerns about the implementation of an innovative approach for 
which teachers may not have the necessary mathematical and didactical knowledge 
and skills, and for which there may be a shortage of appropriate materials. 
Here are some examples of specific questions: 

• How and when will students learn to perform the basic operations? (Implying that 
if the students do not learn the standard vertical algorithms, they have not learnt 
“the operations” for whole number arithmetic.) 

• How will students learn their bonds (number facts) and multiplication tables if 
there is no drilling and memorisation? 

• If students cannot do long division, how will they do algebraic division? 

• What about the weaker student? Weak students cannot construct their own 
methods, they need to be shown. 

• Communication plays an important part in this approach. What about students 
who receive instruction in a second language? 

These problems will be discussed later. 

Research results 
The wide “forced” implementation of the approach within a relatively short time led 
to teachers receiving some quite divergent messages during and after their in-service 
training. Although this by itself is unfortunate, and caused uncertainty among 
teachers and parents, it did enable us as researchers to identify the crucial elements of 
the approach, and to research the reasons for less effective implementations. We have 
also been able to chart the development of young students’ number concept and 
multiplication and division strategies, their initial conceptions of fractions and 
division, and social interaction patterns which lead to improved learning. These 
results have been described in nine PME papers from 1989 to 1996. 
A long-term study is of value in at least three respects: It provides information on the 
long-term effects of specific interventions on students’ learning, it makes possible the 
identification of unforeseen gains in conceptual development and understanding of 
the properties of numbers and operations, and it provides information on teacher 
development (Murray, Olivier & Human, 1995). 
We now describe some issues which have emerged over the years. Some of these 
issues enabled us to clarify and refine our ideas on learning environments and the 
design of material which sustains development; other issues, notably establishing the 
link between arithmetic and algebra, are not yet resolved. 
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The social component of the learning environment 
The role of the teacher. In the effort to help teachers make the paradigm shift from 
believing themselves to be the sources of knowledge and their main responsibility to 
transmit knowledge, towards accepting that students construct their own knowledge, 
we initially gave some teachers the impression that teachers should involve them-
selves as little as possible in the learning process. Later on, when some teacher 
groups received very sketchy in-service training, this impression was wide-spread 
and caused concern in the community. 
It is necessary to clarify the role of the teacher in a problem-centred approach very 
thoroughly. We find Piaget’s classification of mathematical knowledge as physical, 
social and logico-mathematical knowledge (Kamii, 1985) to be of great use in this 
respect. Teachers then realise that they have to provide the necessary information 
(social knowledge) for students to understand the problem, to communicate with each 
other and to capture their thoughts on paper in a generally acceptable (intelligible) 
way. They also have to show students how to use tools like measuring instruments 
and calculators, and they have to lay down (or negotiate with students) the social 
norms which govern interaction and general classroom behaviour. 
It is only when student activity is mainly focused on the construction of logico-
mathematical knowledge that the teacher should not interfere, except to monitor the 
social procedures and social needs. 
The classroom culture. We suggest very tentatively that in the lower elementary 
grades at least, the classroom culture and the quality of students’ interactions when 
solving problems have a greater influence on the students’ mathematical constructions 
than the facilitatory skills of the teacher during discussions (Murray, Olivier & Human, 
1993). We have not had the opportunity to research this further, but if the hypothesis 
holds, it has important implications for the general viability of an inquiry-based 
problem-solving approach. Many experiments and projects reported on internationally 
which use similar approaches leave the impression that the teacher involved has well-
developed mathematical knowledge and didactical skills. Such reports serve as good 
examples of delicate and suitable teacher interventions, but most of our teachers, even 
the supposedly well-trained ones, do not possess similar skills. 
Interaction patterns among students. Since this topic has received much attention 
during the past few years from researchers on a descriptive as well as a theoretical 
level, we mention only the contentious (but we perceive possibly very contentious) 
idea that we hold on this issue, and that is the need for grouping students into like-
ability groups or allowing them to group themselves in such a way for tasks that are 
mainly focused on the construction of logico-mathematical knowledge (Murray, 
Olivier & Human, 1993). This must immediately be qualified as follows: 
• The streaming or tracking of students into different lower-, middle- and upper- 

ability classes is not implied. 
• Rigid groupings that are maintained for all kinds of mathematical tasks is not implied. 
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Using Piaget’s classification of different kinds of mathematical knowledge as a guide, 
we propose that the acquisition of mainly physical and social knowledge is probably 
eased by co-operating with more knowledgeable peers or with the teacher (Vygotsky, 
1978, p. 86). Logico-mathematical knowledge, however, needs to be constructed 
where the student’s thinking space is not invaded by more advanced ideas, as happens 
when weaker or slower thinkers are physically near faster thinkers. 
We therefore propose that for student interaction, the kind of mathematical knowledge 
that has to be constructed and the kind of task (e.g. routine/proble-
matic/measuring/constructing) should guide possible groupings, as well as the 
physical facilities available. We have found that where students know what is 
expected of them, they are able to choose suitable partners. 

The problem or task component of the learning environment 
The kind of problem posed. Although in no way denigrating the role that investiga-
tions and projects can play in students’ mathematical development, we base our 
learning trajectories on “problems” which present sufficiently clear structures for 
students to respond to. (Such problems need not have only one answer, but frequently 
attempt to elicit controversy as to the “best” answer.) Such “problems” may have 
realistic, abstract or imaginary contexts, although we tend to avoid contrived 
situations. This is later discussed more fully. In the discussion that follows, “problems” 
therefore mean problems and not, for example, projects or investigations. 
Such problems include situations where the development of basic skills are directly 
addressed, not through drill or memorisation, but by turning them into problematic 
situations (Hiebert, et al, 1996) and at a meta-level, discussing ways of mastering 
these facts through relationships and patterns. (For example, how many different 
ways are there to make 7 + 8 easier to calculate?) 
The mathematical structures of the problems. The mathematical structures of the 
problems posed are important for a variety of reasons. Problems cannot be posed 
simply because they are good or seem interesting – the choice of problems should be 
based on thorough content analysis and a good understanding of how students 
develop concepts and misconceptions. 
Problems also have different functions, or are used for different purposes, for example: 

• Some problems are more suitable than others for initially establishing an inquiry-
type classroom culture 

• Problems may be used to introduce students to a valid problem area (e.g. 
calculus), so that analysis of the problem and reflection on its structure may in this 
case be more important than solving the problem 

• In general, when students solve problems, they should be provided with 
opportunities to actualise existing (but not yet explicit) knowledge and intuitions; to 
make inventions; to make sense and assign meanings; and to interact mathematically. 
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Our views on suitable problems and on learning sequences were originally based on 
the thinking of some Dutch researchers, and developed further during our classroom 
research and observations. 
The Van Hiele levels. Pierre-Marie and Dina van Hiele suggest that students should 
first be immersed in activities involving new concepts which they engage in 
informally, using what ever insights or skills they have available. “The aim is to 
acquire a rich collection of intuitive notions in which the essential aspects of concepts 
and structures are pre-formed. This, then, is laying the basis for concept formation.” 
(Treffers, 1987, p. 248). The teacher gradually introduces more generally acceptable 
terminology and more rigorous reasoning processes as the students become able to 
give meaning to these. The Van Hieles describe the next level as having constituted 
the ground level concepts as abstract entities, related to other advanced entities (Van 
Hiele, 1973). 
Progressive schematisation. Although the problem posed may remain similar over a 
period of time, the students’ solution strategies should develop towards more 
numerically-aware, more advanced strategies (Treffers, 1987, p. 200). 
The Van Hiele levels and the idea of progressive schematisation can and are 
interpreted in different ways. 
Paul Ernest mentions “accepted objective mathematical knowledge” (Ernest, 1991, p. 
42). But to what extent does the “accepted, objective” knowledge influence the learning 
trajectories of young children through the first Van Hiele level and along the path of 
progressive schematisation? In other words, what is perceived to be the desired 
objective mathematical knowledge for young children? We contend that this question is 
in fact one of the crucial points the mathematics education community should be 
debating: Where do our learning trajectories lead? The endpoint of each trajectory 
depends on a value judgement, and the learning trajectory for each topic may have a 
different goal. For example, some well-documented learning trajectories close towards 
specific algorithms or notations (e.g. Treffers, 1987, pp. 200–209). Why? 
The answer to this question lies in our perspectives on what mathematics is, what it is 
used for (the needs of society) and why children have to study mathematics. For 
example, a learning trajectory may end with a particular algorithm or conceptualisa-
tion. What was the aim of the trajectory – the (objectively substantiated) need for the 
particular algorithm, or the learning and development of general concepts or theorems 
(theorems in action) which occurred in the process? This depends on the topic, on the 
associated algorithms and techniques of the topic, and on the utilitarian value or 
societal value attached to these algorithms and techniques. 
For example, should a learning trajectory for the addition of whole numbers end in 
the vertical addition algorithm? This is debatable. We believe, for example, that the 
knowledge of properties of numbers and operations, and the flexible number sense, 
shown by Orlando’s (Grade 5) solution method for 784 ÷ 16, are more to be valued 
than the application of a (socially acceptable) version of a long division algorithm: 
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 1600 × 100 → 1600 ÷ 2 → 800 − 16 → 784 
        100      50       49 
 answer: 49. 
On the other hand, should a learning trajectory for calculating areas at Grade 6 or 7 
level end with students’ knowing (and understanding) the formula for the area of a 
circle? Most decidedly! 
Learning trajectories can also start in different ways. It now seems to be generally 
accepted that the Van Hiele first level experiences need not be concrete and need not 
be real-world problems either, but may be any experiences or tasks which make sense 
to the particular group of students, and which they are able to identify with and 
problematise. We go further than this. 
We believe that, where possible, these ground level experiences should be authentic 
in the sense that they represent situations of which the ideas or concepts we wish to 
develop are natural parts. We therefore find it useful to reflect on the situations or 
problems which initially gave rise to the development of the mathematical tool or 
concept (the genetic principle, e.g. Klein, 1924) and seldom make use of contrived 
situations, although we admit that in a way almost all school problems are contrived. 
For example, in our earlier research on young children’s understanding of directed 
numbers and operations with directed numbers, the children themselves used patterns, 
analogies with the natural numbers and logical reasoning to make sense of this novel 
environment, and showed confusion when they were confronted with contexts like 
debt to give meaning to directed numbers, even though they understood the idea of 
debt itself (Murray, 1984; Malan, 1987; Hugo, 1987). Not debt, but mathematics, 
created the need for directed numbers. Likewise, when our students learn to count 
and calculate, they do so in contexts which suggest the original situations where the 
need for counting and calculating arose. There is therefore limited use of pre-
structured counting materials, and the problem-solving situations cover a deliberate 
mix of problem structures. 
Furthermore, we have ample evidence that if the Van Hiele ground level experiences 
are aimed at developing understandings of specific cases, or mathematically stream-
lined situations, limiting constructions form very quickly. Studying special or easy 
cases first  does not make the development of concepts and skills easier; it merely 
hampers understanding. 
Limiting constructions. This is a phrase used by D’Ambrosio and Mewborn (1994) to 
denote the type of misconceptions which arise through limited exposure to a concept 
or through experiences of a particular (limited) kind. For example, the idea that 
“multiplication makes bigger” is viable in whole number arithmetic, but severely 
hampers students when they have to perform operations involving fractions. 
There were some teaching practices in our traditional lower elementary classrooms 
that we knew about, but did not address in our initial in-service training sessions, 
because we were not yet aware of the severe impact they would have in the long run. 
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Teachers did not pose a wide variety of problem types (for example, they tended to 
favour division problems of the sharing type and neglected grouping problems). They 
tended to “block” the four basic operations by starting off the school year with three 
months’ addition, followed by three months’ subtraction, then multiplication and then 
division. When teaching addition, they first dealt with the special cases where no 
“carrying” of a ten from the units to the tens is necessary, and no “borrowing” of a 
ten is necessary. Finally, many of their number concept development activities 
highlighted only the tens-structure of the decimal number system. 
What happened was that students developed strong, stable methods for addition based 
on decimal decomposition of the numbers involved. For example, for 27 + 35, the 
most popular methods constructed were 

 20 + 30 → 50 + 7 → 57 + 5 → 62 
or 20 + 30 = 50; 7 + 5 = 12; 50 + 12 = 62 
In analogy with this, the following division method might then be constructed to 
calculate 79 ÷ 13: 
 70 ÷ 10 = 7 
 9 ÷ 3 = 3 
 7 + 3 = 10 
i.e. decimal decomposition, and “combining” tens-parts with tens-parts and units-
parts with units-parts. 
We therefore realised that a learning trajectory for whole number arithmetic required 
that problem types be mixed, not blocked, that the special (“easy”) cases of adding 
and subtracting are not presented first, and that number concept activities and problem 
situations emphasise multiples and factors, and not only decimal decomposition. 
These practices had immediate and long-term positive effects on students’ number 
sense, estimation abilities and especially on their construction of powerful multipli-
cation and division strategies (Murray, Olivier and Human, 1994). 
We have also reported on the limiting constructions about common fractions that 
third graders had built up as a result of teaching as opposed to first graders in the 
same school (Murray, Olivier & Human, 1996). Similarly, we observe that ninth 
graders who have studied linear functions and linear graphs for 18 months to the 
exclusion of all other functions, find even the idea of any other type of graph difficult 
to accept. 
The role of time in the development of concepts. It has been possible for us to trace 
the development of groups of students and in some cases of individual students over 
periods of time of various lengths, i.e. a single lesson (of about 35 minutes), a set of 
three lessons, several weeks, several months and for one school, six years. Our data 
show clearly that many (if not the majority) of students who seem to be mathemati-
cally weaker or slower than others can and do construct powerful mathematical 
concepts and generalisations provided the integrity of their thinking is preserved (i.e. 
somebody doesn’t decide they need help and start demonstrating methods to them), 
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the tasks they are presented with remain challenging and are not made easier, and the 
inquiry nature of the mathematics classroom is maintained. Our description of the 
development of division strategies in a third-grade classroom clearly illustrates this 
(Murray, Olivier & Human, 1992). 
Lower elementary grade teachers have found our model of number development 
(Murray & Olivier, 1989) of much practical use because it sensitised them to the fact 
that at different points in time students are at different levels of conceptual 
development and should not be forced to function at levels of abstraction which they 
have not (yet) reached, but which they will reach, given time. 
In fact, our informal observation is that students with a weaker number sense show 
great ingenuity and understanding of the properties of whole numbers and their 
operations by their (the students’) use of theorems in action to make a calculation 
easier. For example, Niel (Grade 3) calculates 470 × 7 as follows: 

 10 × 470 → 4700 ÷ 2 → 2350 + 940 → 3290 
      10      5      2        7 
Claire-Anne (Grade 5) calculates 27 × 35: 
 27 × 10 = 270 
 27 × 10 = 270 
 27 × 10 = 270 
 27 × 5 = 270 ÷ 2 = 135 
 270 + 270 + 270 + 135 = 945 
(Both of these students are obviously already at what we describe as level 3 number 
concept, but it is important to realise that level 3 methods are not invented if students 
are not confronted with numbers big enough to create the need for these methods. 
However, the teacher cannot force or demonstrate such methods; students produce 
them when they are able to do so.) 
Anticipatory transformations. The above two examples clearly illustrate the ability of 
students to transform a given task into equivalent sub-tasks that they know they can 
manage. 
The essential nature of any non-counting computational algorithm is that it is a set of 
rules for transforming a calculation into a set of easier calculations the answers of 
which are already known or can easily be obtained. This process of changing the task 
to an equivalent but easier task involves three distinguishable sub-processes, 
illustrated here with reference to a procedure to calculate 17 × 28 (Murray, Olivier & 
Human, 1994): 
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• Transformation of the numbers to more convenient numbers, e.g. 

 28 = 30 − 2 
The ability to transform numbers in this way depends on the student’s number 
concept development. 

• Transformation of the given computational task to a series of easier tasks, e.g. 

 17 × 28 = 17 × 30 − 17 × 2 
The ability to transform the task to an equivalent task depends on the student’s 
awareness of certain properties of operations or theorems-in-action (here the 
distributive property of multiplication over subtraction). 

• Calculation of the parts, e.g. 

 17 × 28 = 17 × 30 − 17 × 2 
  = 510 − 34 
  = 476 
When a Grade 3 student solves the problem “Find half of 237” as follows, he has 
clearly chosen to decompose 237 into numbers that he anticipates he can halve: 
 237  100  100 
     15    15 
       3      3 
      ½     ½  answer: 118½ 
The anticipatory transformations may not always be appropriate for a variety of 
reasons. They may still prove to be too difficult, or upon reflection, uneconomical 
and tedious. In the following example Marianne (Grade 3) underestimated her 
abilities and adjusted her transformations to a more sophisticated level. 
Trying to solve 338 ÷ 13, she starts off by subtracting thirteens, then writes down 
“this will take too long” and switches to multiplying and doubling: 

 130 × 10 → 130 + 130 → 260 + 52 → 312 + 26 → 338 
    10     20     4    2   26 
 answer: 26 
The type of response elicited from the student. Davis (1992) rightly states: “Mathe-
matics sometimes employs written notations of various sorts, but these symbols are 
not the mathematics itself, any more than lines drawn on a map are actual rivers and 
highways” (p. 255). Yet we have found access to appropriate notations to be crucial 
to young students’ mathematical development. Social interaction and effective 
communication are essential to the approach and access to appropriate notations to 
capture methods so as to share them with others is a part of this. The ability to capture 
thought on paper is essential for individual reflection and analysis. In traditional 
mathematics classrooms at the elementary level, students have had no appropriate 
tools at hand to express (or capture) their thinking in writing. What they had available 
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was a number sentence to be used in a prescribed format, and computational 
algorithms to be presented in prescribed formats. In such a situation Davis’ stricture 
holds completely. 
If, however, we make available notational tools which students can match to their 
thinking processes, they find it an important aid to individual as well as social 
construction of knowledge (Skemp, 1989, p. 103). 
In mathematics, recording has different functions. It eases communication and serves 
as a thinking aid for the individual. Written explications which aim at proving 
something or convincing others also need to measure up to standards which are not 
applicable when the individual is simply trying to solve the problem. 
For these reasons, the arrow notation, which can be used when the equal to sign 
would be incorrect, was introduced, and even in the lower grades students are 
required to record their thinking clearly and logically enough so that others can also 
follow it. It was found that recording skills take time to develop, and if teachers 
simply accept verbal explanations in the lower grades, some students experience 
serious problems from the fourth grade onwards, when they need a written record as a 
personal thinking aid and then do not know how to express themselves. 

Answering the community 
Community fears which are based on a lack of knowledge about the approach should 
of course be addressed by trying to provide the community with the necessary 
information. During the period when only a few schools were involved, information 
sessions with parents were very successful. As the number of schools involved 
increased, and teacher in-service training became sketchy, parents became 
increasingly badly-informed. A very small group of university lecturers in pure 
mathematics was (and remains) opposed to the approach. We understand their oppo-
sition to be rooted in an unawareness about the substantial international and local 
results available on the effects of the traditional teaching practices on students’ 
thinking, the changed aims of mathematics education caused by the demands of a 
radically changed society and workplace, and the need for mathematics and 
mathematically related skills to be made accessible to the whole community. 
Concerns that students who receive instruction through the medium of a second 
language are at a disadvantage in an approach where communication plays an 
important part are very valid. Yet the alternative seems to be a classroom where more 
time is spent on context-free mathematics and mainly teacher-directed explanations 
and examples. Would this be better?  
In the environment of the handicapped with moderate to severe language problems, 
teachers have told us that it is necessary to stimulate children to listen and to try to 
communicate while they are doing mathematics. Simply trying to teach them 
arithmetic divorced from word problems does not equip them to handle everyday 
problems. Goodstein, himself deaf, strongly supports this view (Goodstein, 1992). 
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Also, one of the third-grade classrooms that we described (Murray, Olivier & Human, 
1993), consisted of 32 students with ten different home languages. The majority of 
these students had a very poor command of English (the medium of instruction), yet 
the teacher was able to establish one of the best implementations of the problem-
centred approach we have been able to document, and the students’ mathematical 
development was very good. 
However, the language issue remains serious and should be researched and debated 
further. 
It is, however, very possible that a problem-centred approach to learning mathematics 
may not succeed if firstly, the problems posed are not chosen for their mathematical 
structures and the sequence in which they are posed is not well-planned (we have 
discussed this, with special reference to the prevention of limiting constructions).  
Secondly, activities which are aimed at the development of routine skills should not 
be neglected. It is important, for example, that a flexible and wide-ranging knowledge 
of the multiplication tables be developed in the elementary grades, not by memorising 
the tables, which is an extremely inefficient way, but through encouraging students to 
use relationships and patterns. (Niel and Claire-Anne for example, showed flexible 
number knowledge.) 
Thys (Grade 4) solved 711 ÷ 9 mentally, explaining as follows: “720 take away 9 is 
711. So the answer is not 80, it is 79.” 
Schoenfeld (1994) states: “Some such skills are important for students, if only 
because not to be fluent at them means that one’s clumsiness at them will get in the 
way when one needs to see past them” (p. 60). The following comment by Askey 
(1997) was obtained from the Internet: “Then NCTM tried Agenda for Action and 
later the Standards. Both of these were built on the idea that if you could solve 
problems, then you could do mathematics. You can, but at too low a level. All three 
are needed – problems, technique and structure.” 
To summarise, we think it unlikely that a problem-solving approach will be effective if: 

• Progressive schematization is not encouraged, either through discussion or by the 
teacher posing the problem in such a way that more exact or more abstract 
responses are required even, and especially, for supposedly weaker students. 

• The necessary important content is not covered. 

• Useful mathematical techniques are not developed and sufficiently practised. 

• Classes of problems do not achieve coherence (e.g. the function concept, algebra, 
statistics), so that the associated concepts and relationships cannot be constituted 
at an abstract level. 
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In conclusion 
The problem-centred approach in the lower elementary grades is based on an over-
simplified model called the three pillars: 

• well-planned number concept activities, including activities which promote the 
building of patterns and relationships 

• well-planned problems 

• effective discussion 
Neglect of any of these “pillars” shows in students’ behaviour or understanding, even 
only after a few months. 
Hiebert et al (1997) identify five critical features of the very similar approach to the 
teaching and learning of mathematics they describe, and then go on to say: “The 
essential features are intertwined and work together to create classrooms for 
understanding. They define a system of instruction rather than a series of individual 
components. It makes little sense to introduce a few of the features and ignore the 
rest; their benefits come from working together as a coherent, integrated system.” 
(Hiebert et al, 1997, p. 172). 
Initiating and sustaining mathematical development through posing problems that 
students have to work on has been found to be a successful way of learning 
mathematics, but only if the problems are well-designed and well-sequenced, and the 
classroom culture in its full complexity supports learning. 
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