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Introduction

Recently in a Mathematical Digest (Jul '96, no. 104:26) published by the

Mathematics Department at UCT  someone wrote the following:

" ... South Africa is the habitat of an endangered species, for Euclidean

Geometry has disappeared from the syllabuses of most other countries ..."

Such a statement is rather common amongst many mathematicians and

mathematics educators in South Africa. However, geometry is alive and well, and

experiencing an exciting rebirth in many countries; not only at school level, but

at university level as well. The geometry done at school level in many countries

may of course be not as highly formalised as in our senior secondary phase, and

their interpretation of geometry usually goes well beyond a narrow Euclidean

view. There is great danger if policy makers in mathematics education in South

Africa are unaware of these dramatic new developments.

Some developments in contemporary geometry

The only geometry most South Africans know is the Euclidean geometry they

learnt at school. Furthermore, there appears to be a belief that the old Greeks and

other civilizations before them had discovered all the geometry there is to know.

Very few realize that many exciting new results in Euclidean geometry were

discovered in the nineteenth and twentieth centuries, for example, the theorems

of Morley, Miquel, Feuerbach, Steiner, etc.

Apart from that, the previous century saw the development of the non-

Euclidean geometries of Lobachevsky-Bolyai and Riemann. The counter-intuitive

axioms for these two geometries completely revolutionized mathematicians'

understanding of the nature of axioms. Whereas many had previously believed

that axioms were "self-evident truths", they now realized that they were simply

"necessary starting points" for mathematical systems. From believing that

mathematics dealt with "absolute truths" in relation to the real world, they for the

first time realized that mathematics only dealt with "propositional truths" which

may or may not have applications in the real world, and in fact, that applicability

was not a necessary criteria for mathematics.
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In Table 1 two examples from the respective non-Euclidean geometries of

Lobachevsky-Bolyai and Riemann are given. Respective models are the so-called

Poincare' disk and the geometry of the sphere.

Lobachevsky-Bolyai Riemann

(Playfair) Axiom: Through a point P not on a

line l  at least two lines parallel to l  can be

drawn.

(Playfair) Axiom: Through a point P not on a

line l  no lines parallel to l  can be drawn.

Theorem: The angle sum of a triangle is less

than 180 degrees and its area is proportional

to the "defect" of its angle sum.

Theorem: The angle sum of a triangle is more

than 180 degrees and its area is proportional

to the "excess" of its angle sum.

Table 1

The previous century also saw the axiomatic development of projective

geometry whose origins can be traced way back to Pappus (350 AD) and Desargues

(1639). A major breakthrough was the discovery and independent proof of the

principle of duality by Poncelet, Plucker and Gergonne in 1826. Two theorems or

configurations are called dual if the one may be obtained from the other by

replacing each concept and operator by its dual concept and operator. In

projective geometry we find the following duality:

vertices (points) - sides (lines)

inscribed in a circle - circumscribed around a circle

collinear - concurrent

This duality is strikingly reflected by the projective theorems of Pascal (1623 -

1662) and Brianchon (1785 - 1864) as follows:           

           Pascal's theorem

If a hexagon is inscribed in a circle, then the

three points of intersection of the opposite

sides are collinear (lie in a straight line)

(Figure 1a).

          Brianchon's theorem

If a hexagon is circumscribed around a

circle, then the three lines (the diagonals)

connecting opposite vertices are concurrent

(meet in the same point) (Figure 1b).
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Figure 1: Pascal's & Brianchon's theorems
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Although the initial axiomatic treatment of projective geometry was purely

synthetic, gradual incorporation of analytical methods occurred in the latter part

of the previous century. Most notably was Klein's famous Erlangen-program

(1872) which described geometry as the study of those geometric properties

which remain invariant (unchanged) under the various groups of

transformations. In short, geometry could be classified according to this view as

follows:

• isometries - transformations of plane figures which preserve all distances

and angles (congruency)

• similarities - transformations of plane figures where shape (similarity) is

preserved

• affinities - transformations of plane figures where parallelism is

preserved

• projectivities - transformations of plane figures which preserve the

collinearity of points and the concurrency of lines

• topologies - transformations of plane figures which preserve closure and

orientability

Since time immemorial, one- and two-dimensional geometric patterns have been

used by human beings to adorn their dwellings, clothes and implements. Figure

2a for example shows a Moorish tiling from the Alambra in the south of Spain.

The Dutch artist Maurits Escher used tessellations extensively in the production of

his artwork in the period 1937-1971. (See Figure 2b for an Escher-like

tessellation, and also, Schattschneider, 1990)). Interestingly, the study of border

patterns and tessellations (tilings) has received unprecedented interest by

mathematicians in the twentieth century. Nevertheless, in the seventies a

housewife Marjorie Rice discovered four new convex pentagons that tessellate,

although mathematicians had thought at that stage that the list of tessellating

pentagons was complete (see Schattschneider, 1981). Most recently, Grunbaum &

Shepherd (1986) produced a systematic investigation of symmetry in tilings and

tessellations which to some degree equals Euclides' Elements.
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Figure 2: Examples of tessellations

One of the important concepts in the classification of border patterns and

tessellations is that of symmetry . Using this concept, border patterns can be

classified into seven different types and tessellations into seventeen different

types. An obvious property of any tiling is that of a repetition of the pattern.  If a

tiling has translational symmetry in two independent directions it is called

periodic. Although most common tilings are periodic, only about twenty years

ago, the British mathematician Penrose discovered a surprising set of two

quadrilaterals that tile non-periodically (eg. see Benade, 1995). In fact, it is still

an open question whether or not a single tile exists with which one can only tile

non-periodically.

Another interesting development in recent years has been fractal

geometry, which is the study of geometrical objects with fractional dimensions.

For example, a cloud is a good example of a fractal. Although it is not really quite

three-dimensional, it is certainly not two-dimensional; one could therefore say

that its dimensions lie somewhere between twee and three. In fact, many real

world objects such as coastlines, fern leaves, mountain ranges, trees, crystals, etc.

have fractal properties. Fractal image compression is also used today in a variety

of multimedia and other image-based computer applications. An important

property of fractals is that of self-similarity which loosely means that any small

subset of the figure is similar to the larger figure. Two examples of fractals are

given in Figure 3 where this property is clearly illustrated.
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Koch Snowflake                  Sierpinski Triangle

Figure 3: Examples of fractals

Recent years have also seen the development and expansion of Knot Theory and

its increased application to biology, the use of Projective Geometry in the design

of virtual reality programs, the application of Coding Theory to the design of CD

players, an investigation of the geometry involved in robotics, etc. Even Soap

Bubble Geometry is receiving new attention as illustrated by the special session

given to it at the Burlington MathsFest in 1995. In 1986 Eugene Krause wrote a

delightful little book on Taxicab Geometry, introducing a new kind of non-

Euclidean geometry. Several international conferences on geometry have been

held over the past decade. In fact, David Henderson from Cornell University, USA

recently told the author that presently they have more post-graduate students in

geometry or geometry related fields than in pure algebra.

Even Euclidean geometry is experiencing an exciting revival, in no small

part due to the recent development of dynamic geometry software such as Cabri

and Sketchpad. In fact, Philip Davies (1995) describes a possibly rosy future for

research in triangle geometry. Recently Adrian Oldknow (1995, 1996) for example

used Sketchpad to discover the hitherto unknown result that the Soddy center,

incenter and Gergonne point of a triangle are collinear (amongst other

interesting results). The Soddy center is named after the Nobel prizewinning

chemist, Frederick Soddy, who published the following result in 1936: If three

circles with centers at the three vertices of a triangle are drawn tangent to each

other as shown in Figure 4 (each triangle has a unique set of three such circles),

then there exists a fourth circle tangent to all three as shown. (The center of this

circle is now known as the (inner) Soddy center S - there is also an outer one).
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Figure 5: Gergonne point & Gergonne-Soddy-Incenter line

The Gergonne point G of a triangle is the point of concurrency of the three line

segments from the vertices to the points of tangency of the incircle with the

opposite sides (see Figure 5a). (The Gergonne point incidentally is just a special

degenerate case of Brianchon's theorem). Then as shown in Figure 5b, we find

the surprising result that the Gergonne point G, the Soddy center S and the

incenter I are collinear. (The outer Soddy center also lies on this line).

The author also recently discovered two interesting generalizations of Van

Aubel's theorem using dynamic geometry software. This theorem states that if

squares are constructed on the sides of any quadrilateral then the line segments

connecting the centers of the squares of opposite sides are always equal and

perpendicular (see Yaglom, 1962 or Kelly, 1966). After some experimentation, the

author managed to further generalize it for similar rectangles and rhombi on the

sides as shown in Figures 6 & 7 (proofs are given in De Villiers, 1996 & 1997). In

Figure 6, EG is always perpendicular to FH. Also KM is congruent to LN where K, L,
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M and N are the midpoints of the line segments joining adjacent vertices of the

similar rectangles as shown.
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Figure 6: Van Aubel rectangle-generalisation

In Figure 7, EG is always congruent to FH. Also KM is perpendicular to LN where

K, L, M and N are the midpoints of the linesegments joining adjacent vertices of

the similar rhombi as shown. The "intersection" of these two results therefore

provides Van Aubel's theorem.
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Figure 7: Van Aubel rhombus-generalisation

Just a brief perusal of some recent issues of mathematical journals like the

Mathematical Intelligencer, American Mathematical Monthly, The Mathematical

Gazette, Mathematics Magazine, Mathematics & Informatics Quarterly, etc. easily

testify to the increased activity and interest in traditional Euclidean geometry

involving triangles, quadrilaterals and circles. The mathematician Crelle once

said: "It is indeed wonderful that so simple a figure as the triangle is so

inexhaustible in properties". Perhaps this applies even more widely to Euclidean

geometry in general!

Some developments in geometry education

The Van Hiele theory

The Van Hiele theory originated in the respective doctoral dissertations of Dina

van Hiele-Geldof and her husband Pierre van Hiele at the University of Utrecht,

Netherlands in 1957. Dina unfortunately died shortly after the completion of her

dissertation, and Pierre was the one who developed and disseminated the theory

further in later publications.

While Pierre's dissertation mainly tried to explain why pupils experienced

problems in geometry education (in this respect it was explanatory and

descriptive), Dina's dissertation was about a teaching experiment and in that

sense is more prescriptive regarding the ordering of geometry content and
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learning activities of pupils. The most obvious characteristic of the theory is the

distinction of five discrete thought levels in respect to the development of pupils'

understanding of geometry. Four important characteristics of the theory are

summarised as follows by Usiskin (1982:4):

• fixed order - The order in which pupils progress through the thought

levels is invariant. In other words, a pupil cannot be at level n without

having passed through level n-1.

• adjacency - At each level of thought that which was intrinsic in the

preceding level becomes extrinsic in the current level.

• distinction - Each level has its own linguistic symbols and own network

of relationships connecting those symbols.

• separation - Two persons who reason at different levels cannot

understand each other.

The main reason for the failure of the traditional geometry curriculum was

attributed by the Van Hieles to the fact that the curriculum was presented at a

higher level than those of the pupils; in other words they could not understand

the teacher nor could the teacher understand why they could not understand!

Although the Van Hiele theory distinguishes between five different levels of

thought, we shall here only focus on the first four levels as they are the most

pertinent ones for our secondary school geometry. The general characteristics of

each level can be described as follows:

Level 1: Recognition

Pupils visually recognize figures by their global appearance. They recognize

triangles, squars, parallelograms, and so forth by their shape, but they do not

explicitly identify the properties of these figures.

Level 2: Analysis

Pupils start analysing the properties of figures and learn the appropriate

technical terminology for describing them, but they they do not interrelate

figures or properties of figures.

Level 3: Ordering

Pupils logically order the properties of figures by short chains of deductions and

understand the interelationships between figures (eg. class inclusions).

Level 4: Deduction

Pupils start developing longer sequences of statements and begin to understand

the significance of deduction, the role of axioms, theorems and proof.

The differences between the first three levels can be summarised as shown in

Table 2 in terms of the objects and structure of thought at each level (adapted

from Fuys et al, 1988:6).
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Level 1 Level 2 Level 3

Objects

of thought
Individual

figures

Classes of figures Definitions of

classes of figures

Structure

of thought
Visual

recognition

Naming

Visual sorting

Recognizing

properties as

characteristics of

classes

Noticing &

formulating

logical

relationships

between

properties

Examples • Parallelograms

all go together

because they

"look the same"

• Rectangles,

squares and

rhombi are not

parms because

they do "not look

like one"

A parallelogram

has:

• 4 sides

• opp. angles =

• opp. sides =

• opp. sides //

• bisecting

diagonals; etc.

A rectangle is not

a parm since a

rectangle has 90°

angles but a parm

not.

• Opposite sides =

imply opposite

sides //

• Opposite sides

// imply opposite

sides =

• opposite angles

= imply opp. sides

=

• bisecting

diagonals imply

half-turn

symmetry

Table 2

By using task-based interviews, Burger & Shaughnessy (1986) characterized

pupils' thought levels at the first four levels more fully as follows:

Level 1

(1) Often use irrelevant visual properties to identify figures, to compare, to

classify and to describe.

(2) Usually refer to visual prototypes of figures, and is easily misled by the

orientation of figures.

(3) An inability to think of an infinite variation of a particular type of figure

(eg in terms of orientation and shape).

(4) Inconsistent classifications of figures; for example, using non-common or

irrelevant properties to sort figures.

(5) Incomplete descriptions (definitions) of figures by viewing necessary

(often visual) conditions as sufficient conditions.

Level 2

(1) An explicit comparison of figures in terms of their underlying properties.
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(2) Avoidance of class inclusions between different classes of figures, eg.

squares and rectangles are considered to be disjoint.

(3) Sorting of figures only in terms of one property, for example, properties of

sides, while other properties like symmetries, angles and diagonals are

ignored.

(4) Exhibit an uneconomical use of the properties of figures to describe

(define) them, instead of just using sufficient properties.

(5) An explicit rejection of definitions supplied by other people, eg. a teacher

or textbook, in favour of their own personal definitions.

(6) An empirical approach to the establishment of the truth of a statement; eg.

the use of observation and measurement on the basis of several sketches.

Level 3

(1) The formulation of economically, correct definitions for figures.

(2) An ability to transform incomplete definitions into complete definitions

and a more spontaneous acceptance and use of definitions for new

concepts.

(3) The acceptance of different equivalent defintions for the same concept.

(4) The hierarchical classification of figures, eg. quadrilaterals.

(5) The explicit use of the logical form "if ... then' in the formulation and

handling of conjectures, as well as the implicit use of logical rules such as

modus ponens.

(6) An uncertainty  and lack of clarity regarding the respective functions of

axioms, definitions and proof.

Level 4

(1) An understanding of the respective functions (roles) of axioms, definitions

and proof.

(2) Spontaneous conjecturing and self-initiated efforts to deductively verify

them.

Russian research on geometry education

Geometry has always formed an extremely prominent part of the Russian

mathematics curriculum in the nineteenth and twentieth centuries. This proud

tradition was no doubt influenced by (and instrumental in) the achievements of

several famous Russian geometers (like Lobachevsky) in the past two centuries.

Traditionally the Russian geometry curriculum consisted of two phases, namely,

an intuitive phase for Grades 1 to 5 and a systematisation (deductive) phase from

Grade 6 (12/13 year old).

In the late sixties Russian (Soviet) researchers undertook a comprehensive

analysis of both the intuitive and the systematisation phases in order to try and

find an answer to the disturbing question of why pupils who were making good
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progress in other school subjects, showed little progress in geometry. In their

analysis, the Van Hiele theory played a major part. For example, it was found that

that at the end of Grade 5 (before the resumption of the systematisation phase

which requires at least Level 3 understanding) only 10-15% of the pupils were at

Level 2.

The main reason for this was the insufficient attention to geometry in the

primary school. For example, in the first five years, pupils were expected to

become acquainted, via mainly Level 1 activities, with only about 12-15

geometrical objects (and associated terminology). In contrast, it was expected of

pupils in the very first topic treated in the first month of Grade 6 to become

acquainted not only with about 100 new objects and terminology, but it was also

being dealt with at Level 3 understanding. (Or frequently, the teacher had to try

and introduce new content at 3 different levels simultaneously). No wonder they

described the period between Grades 1 and 5 as a "prolonged period of geometric

inactivity"!

The Russians subsequently designed a very successful experimental

geometry curriculum based on the Van Hiele theory. They found that an

important factor was the continuous sequencing and development of concepts

from Grade 1. As reported in Wirszup (1976: 75-96), the average pupil in Grade 8 of

the experimental curriculum showed the same or better geometric understanding

than their Grade 11 and 12 counterparts in the old curriculum.

The primary & middle school geometry curriculum

The parallels from the Russian experience to South Africa are obvious. We still

have a geometry curriculum heavily loaded in the senior secondary school with

formal geometry, and with relatively little content done informally in the

primary school. (Eg. how much similarity or circle geometry is done in the

primary school?) In fact, it is well known that on average, pupils' performance

in matric (Grade 12) geometry is far worse than in algebra. Why?

The Van Hiele theory supplies an important explanation. For example,

research by De Villiers & Njisane (1987) has shown that about 45% of black pupils

in Grade 12 (Std 10) in KwaZulu had only mastered Level 2 or lower, whereas the

examination assumed mastery at Level 3 and beyond! Similar low Van Hiele levels

among secondary school pupils have been found by Malan (1986), Smith & De

Villiers (1990) and Govender (1995). In particular, the transition from Level 1 to

Level 2 poses specific problems to second language learners, since it involves the

acquisition of the technical terminology by which the properties of figures need

to be described and explored. This requires sufficient time which is not available

in the presently overloaded secondary curriculum.
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It seems clear that no amount of effort and fancy teaching methods at the

secondary school will be successful, unless we embark on a major revision of the

primary school geometry curriculum along Van Hiele lines. The future of

secondary school geometry thus ultimately depends on primary school geometry!

In Japan for example pupils already start off in Grade 1 with extended

tangram, as well as other planar and spatial, investigations (eg. see Nohda, 1992).

This is followed up continuously in following years so that by Grade 5 (Std 3) they

are already dealing formally with the concepts of congruence and similarity,

concepts which are only introduced in Grades 8 and 9 (Stds 6 & 7) in South Africa.

No wonder that in international comparative studies in recent years, Japanese

school children have consistently outperformed school children from other

countries.

Although the recent introduction of tessellations in our primary schools is

to be greatly welcomed, many teachers and textbook authors do not appear to

understand its relevance in relation to the Van Hiele theory. Although

tessellations have great aesthetic attraction due to their intriguing and

artistically pleasing patterns, the fundamental reason for introducing it in the

primary school is that it provides an intuitive visual foundation (Van Hiele 1) for

a variety of geometric content which can later be treated more formally in a

deductive context.

For example, in a triangular tessellation pattern such as shown in Figure 8,

one could ask pupils the following questions:

(1) identify and colour in parallel lines

(2) what can you say about angles A, B, C , D and E and why?

(3) what can you say about angles A, 1, 2, 3 and 4 and why?

4

3

2

1

E
D

C
B

A

Figure 8: Visualisation
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In such an activity pupils will realize that angles A, B, C, D and E are all equal

since a halfturn of the grey triangle around the midpoint of the side AB maps

angle A onto angle B, etc. In this way, pupils can be introduced for the first time

to the concept of "saws" or "zig-zags" (alternate angles). Similarly, pupils should

realize that angles A, 1, 2, 3 and 4 are all equal since a translation of the grey

triangle in the direction of angles 1, 2, 3 and 4 consecutively maps angle A onto

each of these angles. In this way, pupils can be introduced for the first time to

the concept of "ladders" (corresponding angles). Pupils should further be

encouraged to find different saws and ladders in the same and other tessellation

patterns to improve their visualisation ability.

Since each tile has to be identical and can be made to fit onto each other

exactly by means of translations, rotations or reflections pupils can easily be

introduced to the concept of congruency. Pupils can also be asked to look for

different shapes in such tessellation patterns, eg. parallelograms, trapezia and

hexagons. They could also be encouraged to look for larger figures with the same

shape, thus intuitively introducing them to the concept of similarity (as shown in

Figure 8 by the shaded similar triangles and parallelograms).

Tessellations also provide a suitable context for the analysis of the

properties of geometric figures (Van Hiele 2), as well as their logical explanation

(Van Hiele 3). For example, after pupils have constructed a triangular tessellation

pattern as shown in Figure 9, one could ask them questions like the following:

(1) What can you say about angles A and B in relation to D and E? Why? What

can you therefore conclude from this?

(2) What can you say about angles F and G in relation to angles H and I? Why?

What can you therefore conclude from this?

(3) What can you say about line segment JK in relation to line segment LM?

Why? What can you therefore conclude from this?

A
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Figure 9: Analysing
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In the first case, pupils can again see that angle A = angle D due to a saw being

formed. Also angle B = angle E due to a ladder. It is then easy for them to observe

that since the three angle lie on a straight line, that the sum of the angles of

triangle ABC must be equal to a straight line. They can also observe that this is

true at any vertex, as well as for any size triangle or orientation, thus enabling

generalization. In the second case, the exterior angle theorem is introduced and

in the third case, the midpoint theorem. Such analyses are clearly just a short

step away from the standard geometric explanations (proofs); all they now need is

some formalisation. In Figure 10 the three levels are illustrated for the discovery

and explanation that the opposite angles of a parallelogram are equal.

Level 1: Recognize parms 

 

Level 2: Using ladders & 
saws discovers opp. angles = 

X

X

X Y

Y

Y

 

Level 3:
		ang. 1 = ang. 2 ... saw
    ang. 1 = ang. 3 ... ladder
=> ang. 2 = ang. 3 

1

2

3

 

Figure 10: Three levels

Another important aspect of the Van Hiele theory is that it emphasizes that

informal activities at Levels 1 and 2 should provide appropriate "conceptual

substructures" for the formal activities at the next level. I've often observed

teachers and student teachers who let pupils measure and add the angles of a

triangle for them to discover that they add up to 180°. From a Van Hiele

perspective this is totally inappropriate as it does not provide a suitable

conceptual substructure in which the formal proof is implicitly embedded. In

comparison, the earlier described tessellation activity clearly provides such a

substructure. Similarly, the activity of measuring the base angles of an isosceles

triangle is conceptually inappropriate, but folding it around its axis of symmetry

lays the foundation for a formal proof later. The same applies to the investigation

of the properties of the quadrilaterals. For example, it is conceptually

inappropriate to measure the opposite angles of a parallelogram to let pupils

discover that they are equal. It is far better to let them give the parallelogram a

half-turn to find that opposite angles (and sides) map onto each other, as this

generally applies to all parallelograms and contains the conceptual seeds for a

formal proof.

Recently I had a conversation with a teacher who quickly dismissed a

fellow teacher's introduction to tessellations who first let his pupils pack out little
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card board tiles. This teacher felt that it produced untidy patterns, was ineffective

and time consuming, and that one should just start by providing pupils with

ready-made square or triangular grids and show them how they can then easily

draw neat tessellation patterns (see Figure 11). Although such grids are a useful

and effective way of drawing neat patterns, it is conceptually extremely

important for pupils to first have had prior experience of physically packing out

tiles, ie. rotating, translating, reflecting the tiles by hand. The problem is that it

is possible to draw tessellation patterns on such grids without any clear

understanding of the underlying isometries which create them, which in turn

are conceptually important for analysing the geometric properties embedded in

the pattern.

Figure 11: Using grids

Process versus product teaching in geometry

The distinction between "processes" and "products" in mathematics education is a

relatively old one. With a product is meant here the end-result of some

mathematical activity which preceded it. As far back as 1978, the Syllabus

Proposals of MASA regarding the South African Mathematics Project, stated:

"The intrinsic value of mathematics is not only contained in the PRODUCTS

of mathematical activity (i.e. polished concepts, definitions, structures and

axiomatic systems, but also and especially in the PROCESSES of

MATHEMATICAL ACTIVITY leading to such products, e.g. generalization,

recognition of pattern, defining, axiomatising. The draft syllabi are

intended to reflect an increased emphasis on genuine mathematical

activity as opposed to the mere assimilation of the finished products of

such activity. This emphasis is particularly reflected in the various

sections on geometry."   - MASA (1978:3)
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Regrettably these good intentions, except for a few schools, were hardly

implemented on a large scale in South African schools. Most teachers and

textbook authors simply continued providing pupils with ready-made content

that they merely had to assimilate and regurgitate in tests and exams.

Traditional geometry education of this kind can be compared to a cooking

and bakery class where the teacher only shows pupils cakes (or even worse, only

pictures of cakes) without showing them what goes into the cake and how it is

made. In addition, they're not even allowed to try their own hand at baking!

The distinction between some of the main processes and products of formal

geometry can be summarised as shown in Table 3. Most formal products often

require a number of prior processes, some of which have been indicated. The

process of proving also has its own product, namely a proof, which should be

distinguished from the theorem, definition or axiom to which it refers.

Product Process

Axioms Axiomatizing

• proving

Definitions Defining

• experimenting

• proving

Algorithms Algorithm construction &

verification

Theorems Theorem finding & formulating

• Experimenting

• Refuting

• Pattern finding

• Generalizing

• Specializing

• Visualising

• Proving

Classifications Classifying

Table 3

Due to limitations of space, we shall here mainly focus on the handling of

definitions at Van Hiele Level 3. The direct teaching of geometry definitions with

no emphasis on the underlying process of defining has often been criticised by

mathematicians and mathematics educators alike. For example, already in 1908

Benchara Blandford wrote (quoted in Griffiths & Howson, 1974: 216-217):

"To me it appears a radically vicious method, certainly in geometry, if not

in other subjects, to supply a child with ready-made definitions, to be

subsequently memorized after being more or less carefully explained. To
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do this is surely to throw away deliberately one of the most valuable

agents of intellectual discipline. The evolving of a workable definition by

the child's own activity stimulated by appropriate questions, is both

interesting and highly educational."

The well-known mathematician Hans Freudenthal (1973:417-418) also strongly

criticized the traditional practice of the direct provision of geometry definitions

as follows:

" ... most definitions are not preconceived but the finishing touch of the

organizing activity. The child should not be deprived of this privilege ...

Good geometry instruction can mean much - learning to organize a

subject matter and learning what is organizing, learning to conceptualize

and what is conceptualizing, learning to define and what is a definition. It

means leading pupils to understand why some organization, some concept,

some definition is better than another. Traditional instruction is different.

Rather than giving the child the opportunity to organize spatial

experiences, the subject matter is offered as a preorganized structure. All

concepts, definitions, and deductions are preconceived by the teacher,

who knows what is its use in every detail - or rather by the textbook

author who has carefully built all his secrets into the structure."

From our preceding discussion of the Van Hiele theory it should be clear that

understanding of formal definitions only develop at Level 3, and that the direct

provision of formal definitions to pupils at lower levels would be doomed to

failure. In fact, if we take the constructivist theory of learning seriously (namely

that knowledge simply cannot be transferred directly from one person to

another, and that meaningful knowledge needs to be actively (re)-constructed by

the learner), we should even at Level 3 engage pupils in the activity of defining

and allow them to choose their own definitions at each level. This implies

allowing the following kinds of meaningful definitions at each level:

Van Hiele 1

Visual definitions, eg. a rectangle is a quadrilateral with all angles 90° and two

long and two short sides.

Van Hiele 2

Uneconomical definitions, eg. a rectangle is a quadrilateral with opposite sides

parallel and equal, all angles 90°, equal diagonals, half-turn-symmetry, two axes

of symmetry through opposite sides, two long and two short sides, etc.

Van Hiele 3

Correct, economical definitions, eg. a rectangle is a quadrilateral with two axes of

symmetry though opposite sides.

As can be seen from the two examples at Van Hiele Levels 1 & 2, pupils'

spontaneous definitions would also tend to be partitional, in other words, they
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would not allow the inclusion of the squares among the rectangles (by explicitly

stating two long and two short sides). In contrast, according to the Van Hiele

theory, definitions at Level 3 are typically hierarchical, which means they allow

for the inclusion of the squares among the rectangles, and would not be

understood by pupils at lower levels.

The presentation of formal definitions in textbooks is often preceded by an

activity whereby pupils have to compare in tabular form various properties of

the quadrilaterals, eg. to see that a square, rectangle and rhombus have all the

properties of a parallelogram. The purpose clearly is to prepare them for the

formal definitions later on which are hierarchical. (In other words, the given

definitions provide for the inclusion of special cases, eg. a parallelogram is

defined so as to include squares, rhombi and rectangles). However, research

reported in De Villiers (1994) show that many pupils, even after doing tabular

comparisons and other activities, if given the opportunity, still prefer to define

quadrilaterals in partitions. (In other words, they would for example still prefer

to define a parallelogram as a quadrilateral with both pairs of opposite sides

parallel, but not all angles or sides equal).

A constructivist approach would not directly present pupils with read-

made definitions, but allow them to formulate their own definitions irrespective

of whether they are partitional or hierarchical. By then discussing and

comparing in class the relative advantages and disadvantages of these two

different ways of classifying and defining quadrilaterals (both of which are

mathematically correct), pupils may be led to realize that there are certain

advantages in accepting a hierarchical classification. For example, if pupils are

asked to compare the following two definitions for the parallellograms, they

immediately realize that the former is much more economical than the latter:

hierarchical: A parallelogram is a quadrilateral with both pairs of opposite

sides parallel.

partitional: A parallelogram is a quadrilateral with both pairs of opposite

sides parallel, but not all angles or sides equal.

Clearly in general, partitional definitions are longer since they have to include

additional properties to ensure the exclusion of special cases. Another advantage

of a hierarchical definition for a concept is that all theorems proved for that

concept then automatically apply to its special cases. For example, if we prove

that the diagonals of a parallelogram bisect each other, we can immediately

conclude that it is also true for rectangles, rhombi and squares. If however, we

classified and defined them partitionally, we would have to prove separately in

each case, for parallelograms, rectangles, rhombi and squares, that their

diagonals bisect each other. Clearly this is very uneconomical. It seems clear that

unless the role and function of a hierarchical classification is meaningfully
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discussed in class as described in De Villiers (1994), many pupils will have

difficulty in understanding why their intuitive, partitional definitions are not

used.

The USEME experiment

Is it possible to devise teaching stategies for the teaching of the processes of

defining and axiomatising at Van Hiele levels 3 and 4? This in fact was the focus

of the University of Stellenbosch Experiment with Mathematics Education

(USEME) conducted with a control group in 1977 and an experimental group in

1978 (see Human & Nel et al, 1989a). The experiment was aimed at the Grade 10 (Std

8) level and involved 19 schools in the Cape Province. Whereas the traditional

approach focusses overridingly on developing the ability of making deductive

proofs (especially for riders), the experimental approach was aimed mainly at:

• developing the ability to construct formal, economical definitions for

geometrical concepts

• developing understanding of the nature and role of axioms, definitions and

proof

The following is an example of one of the first exercises in defining used in the

experimental approach (see Human & Nel et al, 1989b:21).

EXERCISE

1(a) Make a list of all the common properties of the figures below. Look at the

angles, sides and diagonals and measure if necessary.

(b) What are these types of quadrilaterals called?

(c) How would you explain in words, without making a sketch, what these

quadrilaterals are to someone not yet acquainted with them?
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The spontaneous tendency of almost all the pupils in (c) was to make a list of all

the properties discovered in (a); thus giving a correct, but uneconomical

description (definition) of the rhombi (thus suggesting Level 2 understanding).

This led to the next two exercises which was intended to lead them to shorten

their descriptions (definitions), for example:

2. A letter is addressed as follows:

Mr. JH Nel

"Nelstevrede"

9 Venter Avenue

PO Box 48639

Stellenbosch

7600

(a) The address is unnecessarily long. Give a shortened version of the above

address so that the letter would still arrive at Mr. Nel. (Post in Stellenbosch

is delivered in post boxes as well as to street addresses.)

(b) Are there other shortened versions of the above address whereby the

letter would still reach Mr. Nel? Give as many shortened versions as you

can. Everyone must be as short as possible.

3(a) Construct three different rhombi on your own.

(b) Look again at the verbal description of rhombi you gave in 1(c). Is your

description perhaps unnecessarily long? If so, give a shorter description

of rhombi which nevertheless would still definitely give you a rhombus if

you constructed a figure according to the information contained in your

(shorter) description: ensure therefore that it will have all the properties

of a rhombus, even if all these properties are not mentioned in (your)

shorter description.

(c) Give three different short verbal descriptions of rhombi.

(d) Try to construct a quadrilateral which is not a rhombus, but complies to the

conditions of your first (shorter) descriptions in (b). If you can achieve

that, your description is not an accurate description of the rhombi! Check

your other two shorter descriptions of the rhombi in the same manner.

Clearly here pupils were led to shorten their descriptions (definitions) of rhombi

by leaving out some of its properties. For example, in 3(a) pupils found that one

does not need to use all the properties to construct a rhombus. One could for

example obtain one by constructing all sides equal. In (b) and (c) pupils typically

came up with different shorter versions, some of which were incomplete

(particularly if they're encouraged to make it as short as possible by promising a

prize!), for example: "A rhombus is a quadrilateral with perpendicular diagonals".

This provided opportunity to provide a counter-example and a discussion of the
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need to contain enough (sufficient) information in one's descriptions

(definitions) to ensure that somebody else knows exactly what figure one is

talking about.

With some encouragement, pupils came up with several different

possibilities. Also note at this stage that they were not expected to logically

check their definitions, but by accurate construction and measurement (in

other words a typical Level 2 activity). For example, pupils were expected to

construct figures as shown in Figure 12 to evaluate definitions like the following:

(1) A rhombus is a quadrilateral with all sides equal.

(2) A rhombus is a quadrilateral with perpendicular, bisecting diagonals.

(3) A  rhombus is a quadrilateral with bisecting diagonals.

(4) A rhombus is a quadrilateral with one pair of opposite sides parallel and

one pair of adjacent sides equal.

(5) A rhombus is a quadrilateral with perpendicular  diagonals and one pair of

adjacent sides equal.

(6) A rhombus is a quadrilateral with both pairs of opposite sides parallel and

one pair of adjacent sides equal.

Figure 12: Construction & measurement

Psychologically, constructions like these are extremely important for the

transition from Level 2 to Level 3. It helps to develop an understanding of the

difference between a premisse and conclusion and their causal relationship; in

other words, of the logical structure of an "if-then" statement. Logically each of

the above statements can be rewritten in this form. For example, the last

statement could be rewritten as: "If a quadrilateral has both pairs of opposite

sides parallel and one pair of adjacent sides equal, then it is a rhombus (ie. has

all sides equal, perpendicular bisecting diagonals, etc)". Smith (1940) reported

marked improvement in pupils' understanding of "if-then" statements by letting

them make constructions to evaluate geometric statements as follows:
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"Pupils saw that when they did certain things in making a figure, certain

other things resulted. They learned to feel the difference in category

between the relationships they put into a figure - the things over which

they had control - and the relationships which resulted without any

action on their part. Finally the difference in these two categories was

associated with the difference between the given conditions and

conclusion, between the if-part and the then-part of a sentence."

After some experimental exploration of different alternative definitions for the

rhombi as described above, the pupils were then led into a deductive phase where

starting from one definition they had to logically check whether all the other

properties could be derived from it (as theorems). The same exercises were then

repeated for the parallelograms. Eventually, it was explained to pupils that it

would be confusing if everyone used different definitions for the rhombi and

parallelograms, and it was agreed to henceforth use one definition only for each

concept. (Note that the role and function of a hierarchical classification for the

quadrilaterals was not adequately addressed at the time of the USEME experiment,

and was one of the reasons for the subsequent study reported in De Villiers

(1994)).  

A common misconception among pupils (and even some of their teachers

and textbook authors) is that axioms are self-evident truths, instead of necessary

starting points for a mathematical system. An important objective of the USEME

project was to let pupils understand the necessity of definitions and axioms by

providing them with the experience that not all propositions within a formal

system can be proved without getting a circularity, and that one consequently

had to accept certain propositions as starting points (Van Hiele Level 4). Instead

of presenting a finished axiomatic system to pupils, they were first engaged in

the process of systematization as follows (see Human & Nel et al, 1989b: 43). (Note:

Although pupils at this point knew the properties of parallel lines from informal

exploration, they had not been given a formal definition for parallel lines nor

logically derived any of the properties. They had also earlier been introduced to

proof as a means of explanation of several  interesting riders).

EXERCISE

1. Try to prove that if two parallel lines are cut by a transversal, then

alternate angles are equal. You may make use of our other assumptions

about parallel lines (corresponding angles equal, co-interior angles

supplementary), as well as the theorem that when two straight lines

intersect, vertically opposite angles are equal.

2. In your proof in no. 1 you made use of certain assumptions. Now try to

prove these assumptions too.
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3. Once again, in your proofs in no. 2, you made use of assumptions. Now make

an attempt to prove these assumptions as well and to carry on in this way

until you have proved all your assumptions.

In attempting to answer questions 1, 2 and 3, pupils inevitably argued circularly.

The following is an example:

1.

A
B

C D

P 2

1

1

Q

∠Q1 = ∠P2       (corresponding angles, AB / /CD)

∠P1 = ∠P2        (directly opposite angles)

∴∠Q1 = ∠P1

Alternate angles are therefore equal.

2.

A
B

C D

P

1

Q

3

2

∠Q1 + ∠P2 = 180°     (co-interior angles, AB / /CD)

∠P3 + ∠P2 =180°     (QP extended forms straight line)

∴∠Q1 = ∠P3

Corresponding angles are therefore equal.

3.

A
B

C D

P

1

Q

3 2

∠P3 + ∠P2 =180°    (APB is straight line)

∠P3 = ∠Q1     (alternate angles, AB / /CD)

∴∠Q1 + ∠P2 = 180°

The sum of the co-interior angles on the same side of the transversal are

therefore 180°.
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corresponding angles equal

alternate angles equal

sum of co-interior angles is 180

Figure 13: A circular argument

These series of proofs can be schematically represented as shown in Figure 13

and clearly illustrate the underlying circular argument. The problem is that no

matter how much they try, they inevitably land up with some kind of circularity.

Although many pupils did not at first recognize the problem, some subsequent

exercises alerted them to the underlying problem and the realization that it is

impossible to prove all mathematical statements or properties of mathematical

objects without obtaining a circular argument. They then realized that one had to

accept one of these properties as a statement without proof (ie. as a definition or

axiom) to avoid a circularity.

Comparative research at the conclusion of the USEME experiment indicated

that not only had the experimental groups gained substantially in their ability to

define known and unknown geometric objects (economically correct), but that

they had developed a deeper understanding of the nature of axioms, as well as an

ability to recognize circular and other invalid arguments (see Human, Nel et al,

1989a).

Dynamic Geometry Software

The development of dynamic geometry software in recent years is certainly the

most exciting development in geometry since Euclid. Besides rekindling interest

in some basic research in geometry, it has revitalized the teaching of geometry

in many countries where Euclidean geometry was in danger of being thrown into

the trashcan of history. For example, someone recently made the claim at the

International Congress on Mathematical Education (ICME) in Spain (July 1996)

that dynamic geometry had saved the geometry curriculum in the United States.

As we have seen earlier, one of the main reasons for the poor performance

of pupils in geometry can be found in terms of the Van Hiele theory. For example,

many pupils have undeveloped visualisation skills which are an important
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prerequisite for success in geometry. Furthermore, pupils are introduced too

early to formal geometry without allowing sufficient experimental exploration of

the properties of figures and the gradual introduction of appropriate formal

terminology.

In the past, many teachers have simply avoided the informal

exploration of geometric relationships by construction and measurement with

paper-and-pencil, since  they are so time-consuming (and relatively inaccurate).

(Of course, there are also those teachers who from an extreme formalist

philosohical position, disregard any form of experimental work in mathematics).

Another problem is that such constructed figures are "static", one either has to

redraw the figure or be able to visualise how it might chance shape.

This however has now all changed with the development of sophisticated

software packages for geometry. One of the first such "state of the art" packages

to be produced was Cabri-Geometre, a French program that was first introduced to

the international Mathematics Education community at a conference in Budapest

in 1988. Since then other similar packages have been developed, for example,

Geometer's Sketchpad by an American company and with assistance from the

National Science Foundation and the Visual Geometry Project at Swarthmore

College, USA.

These geometric software packages were designed with the specific

intention of putting at the disposal of the pupil or student a micro-world type

environment for the experimental exploration of elementary plane geometry. In

the past one either had to draw the geometric configurations on a sheet of paper,

thereby obtaining a more or less exact, but fixed representation, thus severely

limiting exploration. In these software packages the geometric figures can be

constructed through actions and in a language which are very close to those in

use in the familiar ''paper-and-pencil'' universe. In contrast to paper-and-pencil

construction, dynamic geometry is accurate and is it extremely quick and easy to

carry out complex constructions, and to vary them afterwards.

Once created, these figures can be redrawn by "grasping" their basic

elements directly on the screen and moving them, while keeping the properties

which had been explicitly given to them. In this way one can "continuously"

change a triangle, and for instance notice that its altitudes always stay

concurrent during the transformation. The software therefore allows one to

easily repeat experiments in many different orientations and thereby checking

which geometric properties stay invariant. In fact, Cabri has a property

checking facility (only Macintosh version) that can check whether certain

properties (eg. parallelism, concurrency, collinearity, orthogonality, etc) are

true in general, and if they're not, it can construct counter-examples.
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Probably the most welcome facility of dynamic geometry is its potential to

encourage (re-introduce) experimentation and the kind of pupil oriented

"research" in geometry described by Luthuli (1996) and others. In such a

research-type approach, students are inducted early into the art of problem

posing and allowed sufficient opportunity for exploration, conjecturing,

refuting, reformulating and explaining as outlined in Figure 14 (compare

Chazan, 1990). Dynamic geometry software strongly encourages this kind of

thinking as they are not only powerful means of verifying true conjectures, but

also extremely valuable in constructing counter-examples for false conjectures.

Conjecture

Testing

Confirmation

Proof

Successful

STOP

Counter-example

Reformulation or 
rejection

Reformulation or 
rejection

Unsuccessful

Figure 14: Pupil research in geometry

However, the development of dynamic geometry has also necessitated a radical

change to the teaching of proof. Traditionally, the typical approach to geometry

has always been to try and create doubts in the minds of pupils about the validity

of their empirical observations, and thereby attempting to motivate a need for

deductive proof. From experience, these strategies of attempting to raise doubts in

order to create a need for proof are simply not successful when geometric

conjectures have been thoroughly investigated through their continuous

variation with dynamic software like Cabri orSketchpad. When pupils are able to

produce numerous corresponding configurations easily and rapidly, they then

simply have no (or very little) need for further conviction/verification.

Although pupils may exhibit no further need for conviction in such

situations, the author has found it relatively easy to solicit further curiosity by

asking them why they think a particular result is true; i.e. to challenge them to
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try and explain it (also see De Villiers, 1990; 1991; Schumann & De Villiers, 1993).

Pupils quickly admit that inductive verification merely confirms; it gives no

satisfactory sense of illumination; i.e. an insight or understanding into how it is a

consequence of other familiar results. Pupils therefore find it quite satisfactory

to then view a deductive argument as an attempt at  explanation, rather than

verification.

Particularly effective appears to be to present pupils early on with results

where the provision of explanations (proofs) enable surprising further

generalizations (using proof as a means of discovery). Rather than one-sidedly

focussing only on proof as a means of verification in geometry, it therefore

appears that other functions of proof such as explanation and discovery should

be effectively utilized to introduce proof as a meaningful activity to pupils.

The following is an example of a possible worksheet in this regard from De

Villiers (1995a):

WORKSHEET

(a) Construct a dynamic kite using the properties of kites explored and

discussed in our previous lessons.

(b) Check to ensure that you have a dynamic kite, i.e. does it always remain a

kite no matter how you transform the figure? Compare your

construction(s) with those of your neighbours - is it the same or different?

(c) Next construct the midpoints of the sides and connect the midpoints of

adjacent sides to form an inscribed quadrilateral.

(d) What do you notice about the inscribed quadrilateral formed in this way?

(Make some measurements to check your observation).

(e) State your conjecture.

(f) Grab any vertex of your kite and drag it to a new position. Does it confirm

your conjecture? If not, can you modify your conjecture?

(g) Repeat the previous step a number of times.

(h) Is your conjecture also true when your kite is concave?

(i) Use the property checker of Cabri to check whether your conjecture is

true in general.

(j) State your final conclusion. Compare with your neighbours - is it the same

or different?

(k) Can you explain why it is true? (Try to explain it in terms of other well-

known geometric results. Hint: construct the diagonals of your kite. What

do you notice?)

(l) Compare your explanation(s) with those of your neighbours. Do you agree

or disagree with their explanations? Why? Which explanations are the

most satisfactory? Why?
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Figure 15: Explanation & discovery

Formulation

The line segments consecutively connecting the midpoints of the adjacent sides

of a kite form a rectangle.

Deductive explanation

A deductive analysis shows that the inscribed quadrilateral is always a rectangle,

because of the perpendicularity of the diagonals of a kite. For example, according

to an earlier discussed property of triangles, we have EF//AC in triangle ABC and

HG//AC in triangle ADC (see Figure 15a). Therefore EF//HG. Similarly,

EH//BD//FG and therefore EFGH is a parallelogram. Since BD ⊥  AC (property of

kite) we also have for instance EF ⊥  EH, but this implies that EFGH is a rectangle

(a parallelogram with a right angle is a rectangle).

Looking back

Notice that the property of equal adjacent sides (or an axis of symmetry through

one pair of opposite angles) was not used at all. In other words, we can

immediately generalize the result to a perpendicular quad as shown in Figure

15b. (Note that it is also true for concave and crossed cases). This shows the value

of understanding why something is true. Furthermore, note that the general

result was not suggested by the purely empirical verification of the original

conjecture. Even a systematic empirical investigation of various types of

quadrilaterals would probably not have helped to discover the general case, since

most people would probably have restricted their investigation to the more

familiar quadrilaterals such as parallelograms, rectangles, rhombi, squares and

rectangles. (Note that from the above explanation we can also immediately see

that EFGH will always be a parallelogram in any quadrilateral. Check on Cabri or

Sketchpad if you like!).

The teacher's language is particularly crucial in this introductory phase to proof.

Instead of saying the usual: "We cannot be sure that this result is true for all
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possible variations, and we therefore have to (deductively) prove it to make

absolutely sure", pupils (and students) find it much more meaningful if the

teacher says: "We now know this result to be true from our extensive

experimental investigation. Let us however now see if we can EXPLAIN WHY it is

true in terms of other well-known geometric results . In other words, how it is a

logical consequence of these other results."

It is usually necessary to discuss in some detail what is meant by an

"explanation". For example, the regular observation that the sun rises every

morning clearly does not constitute an explanation; it only reconfirms the

validity of the observation. To explain something, one therefore has to explain it

in terms of something else, e.g. the rotation of the earth around the polar axis.

Similarly, the regular observation that say the sum of the angles of a triangle is

180° does not constitute any explanation; in order to explain it, we need to show

how (why) it is a logical consequence of some other results that we know.

Of course, proof has many other functions, e.g. verification,

systematization, communication, discovery, intellectual challenge, etc. which also

have to be communicated to pupils to make proof a meaningful activity for them.

In fact, it seems meaningful to use a spiral approach as in De Villiers (1999) to

introduce the various functions of proof more or less as given in Figure 16. It is

important not to delay the first introduction to proof as a means of explanation

unduly, as pupils might become accustomed to seeing geometry as just an

accumulation of empirically discovered facts, and in which explanation plays no

role. For example, even pupils at Van Hiele Level 1 could easily use symmetry to

explain why certain results are true (e.g. why base angles of isosceles triangle

are equal). Although the other functions can be introduced gradually as pupils

progress through the levels from Level 1 to 3, the function of systematization

should however be delayed until pupils have reached at least Van Hiele Level 3 or

4. (Examples of activities aimed at some different functions are given in De

Villiers (1995b)). The function of communication is of course present all the time

as the teacher needs to continuously negotiate with pupils the criteria for what

constitutes an explanation, proof, etc.

Explanation Discovery Intellectual 
challenge

Verification Systematization

Figure 16: Teaching functions of proof

The dynamic nature of geometric figures constructed in Sketchpad or Cabri may

also make the acceptance of a hierachical classification of the quadrilaterals far

less problematic than it is at the moment. For example, if pupils construct a
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quadrilateral with opposite sides parallel, then they will notice that they could

easily drag it into the shape of a rectangle, rhombus or square as shown in Figure

17. In fact, it seems quite possible that pupils would be able to accept and

understand this even at Van Hiele Level 1 (Visualization), but further research

into this particular area is needed.

A B

D C

A B

D C

A B

D C

A B

D C

Figure 17: Dynamic transformation of parallelogram

The ability to quickly and efficiently transform geometric configurations with

dynamic geometry software also allows one to effectively model real world

situations and problems by dynamic scale drawings. It therefore becomes possible

to give much more complicated real world problems to pupils to solve than is

currently the case. Some examples are given in De Villiers (1994b). These

software programs also have facilities for tracing the loci of certain objects, eg.

points. This facility could easily be used, not only in many real world contexts, but

also makes it feasible to introduce and study the conics as loci (in the classical

Greek way - see Scher, 1995) instead of treating it purely algebraically as in the

present syllabus.

As described in the previous section, construction and measurement is

extremely important from a learning psychological point of view (ie. in

developing an understanding of the "if-then" nature of propositions and the

inter-relationship between properties, and therefore in the transition from Van

Hiele Level 2 to 3). Traditionally, many teachers have simply avoided paper-and-

pencil constructions because it is tedious and rather inaccurate. The availibility

of dynamic geometry however changes all of that since it is quick, efficient and

accurate. With dynamic geometry, one does not have to redraw for example

several different triangles, repeating the same constructions and checking each
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case individually, as the dragging facility of dynamic geometry allows one to

continuously transform one triangle into another, but still maintaining the

initial constructions one carried out on it.

It should also be pointed out that certain kinds of construction activities

(on Sketchpad or otherwise) are completely inappropriate at Van Hiele Level 1.

For example, at a recent PME conference someone commented that she was

unpleasantly dismayed at how difficult young children found the task of

constructing a "dynamic" square with Sketchpad. However, if the children were

still at Van Hiele Level 1, then it is not surprising at all - how can they construct

it if they do not yet know its properties (Level 2) and that some properties are

sufficient and others not (i.e. the relationships between the properties - Level 3)?

In fact, at Van Hiele Level 1 it would appear to be far more appropriate to

provide children with ready-made sketches of quadrilaterals which they can

easily manipulate and first investigate visually. Next they could start using the

measure features of the software to analyse the properties to enable them to

reach Level 2. Only then would it be appropriate to ask them how they would

construct such dynamic figures themselves, thus assisting the transition to Level

3.

Concluding comments

So what are some of the crucial changes necessary in secondary school geometry

as we approach the year 2000? Basically the changes can be summed up as

changes in content, process and teacher education. In terms of content there is a

need to contemporize by including possible content such as fractals, graph

theory, transformations, non-Euclidean geometry, etc. at various grades and at

various levels of formality. In particular, the study of transformations could form

a valuable golden thread through the entire curriculum, and in the high school

show the powerful integration of algebra and geometry (see De Villiers, 1993). 

However, even before any changes in the high school, many changes are

necessary to our primary school geometry curriculum. Apart from content such

as tessellations, vision- and 3D-geometry as described by Van Niekerk (1995, 1996)

and Witterholt & Heinneman (1995) is absolutely essential for developing

visualisation and spatial orientation skills, not only for formal geometry later on,

but also for further study in woodwork, metalwork, architecture, art, computer

graphics, engineering design, etc. More use could also be made of accurate scale

drawings to solve complicated real world problems, and to develop an intuitive

understanding of the process of modelling. These changes also have to be

contextualised meaningfully in different contexts geographically, culturally,

linguistically, etc.
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However, perhaps even more important than changes in geometrical

content, we need to focus far more on teaching and developing the process

aspects of mathematics. It needs to be acknowledged that geometry content should

not be presented in a ready-made form to pupils, but that they should actively

(re)construct it in the class. In order to realize such a radical change in

objectives, it is also necessary to change our evaluation procedures. Joubert

(1980) and De Vries (1980) have for example developed several examples of how

one could evaluate pupils' abilities to conjecture, define, axiomatize, classify, read

critically, refute, etc. (For example see Joubert, 1988 & 1989).

Lastly, it is important to point out that none of the above would be

realizable unless radical changes are made to teacher education programs around

the country; both in pre-service and in-service. In particular, most high school

teachers, even those with good qualifications, know hardly any more geometry

than the pupils they have to teach. The reason is simple: most tertiary institutions

(with the exception of UPE) do not teach any further geometry in their

undergraduate courses. It is therefore important to seriously consider the

(re)introduction of geometry in tertiary courses for secondary teachers, not only

Euclidean, but different kinds of geometry (compare with Baart, 1992). However,

the geometry education of primary school teachers also needs urgent attention.

Burger (1992) for example has proposed an interesting geometry curriculum for

primary mathematics teachers based on the Van Hiele model that could provide

the basis for the development of a new college geometry curriculum.
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