Statistics

Data Handling
(using the graphing calculator)

Grades 8 and 9

Teacher document

Malati staff involved in developing these materials:

Kate Bennie
Kate Hudson
Karen Newstead

We acknowledge the valuable comments of Heleen Verhage and Donald Katz.

COPYRIGHT
All the materials developed by MALATI are in the public domain. They may be freely used and adapted, with acknowledgement to MALATI and the Open Society Foundation for South Africa.

December 1999
The following activities are included as core activities for Data Handling in Grades 8 and 9:

<table>
<thead>
<tr>
<th>Activity</th>
<th>Content</th>
<th>Context</th>
</tr>
</thead>
<tbody>
<tr>
<td>African Penguin 1</td>
<td>Describing one set of data: Frequency tables, dependent/independent variable, bar graph, mode, pie chart</td>
<td>Biology</td>
</tr>
<tr>
<td>History</td>
<td>Grouped bar graph, stacked column graph, trend</td>
<td>History</td>
</tr>
<tr>
<td>Cape of Storms</td>
<td>Summarising data, bar graph, pie chart, statistical distortion</td>
<td>History</td>
</tr>
<tr>
<td>Weather</td>
<td>Mean, line graph, range, influence of range on accuracy of predictions</td>
<td>Weather</td>
</tr>
<tr>
<td>African Penguin 2</td>
<td>Regression between two variables: Scatterplots, dependent/ independent variables, trendline, correlations</td>
<td>Biology</td>
</tr>
</tbody>
</table>

The following additional activities, in which the graphing calculator is not necessarily directly used, are available in the 4Data module:

- History: An extension of the above-mentioned ‘History’ worksheet, in which pupils are required to match a pie chart to a given historical timeline
- Tourism (Enrichment): Real data on tourists to Robben Island, and further practice in calculating means with bigger numbers, mean percentage growth.
- Another ‘African Penguin’ worksheet: Representing data (revision), bar graphs showing positive and negative values
- Water: A mini-project for determining water consumption. The concepts of sample and population are introduced, as well as survey design and reporting findings.
- Humidity (Enrichment): Relationship between two variables, using scatterplots and modelling.
- Tourism Brochure (Consolidation/Revision): A project in which pupils are required to collect and represent appropriate data.

Teaching Data Handling using the TI-82

It will take the pupils (and the teacher!) some time to become acquainted with the various keys and menus needed to record and represent data on the TI-82. The teacher should act as ‘trouble-shooter’, helping pupils when they are stuck with the calculator and helping them to identify the source of the problems when unexpected things occur on the graph screen! We enclose a useful manual with key procedures for the TI-82 graphing calculator.

It is very important that there is sufficient reflection on the statistical and graphing concepts. The use of the calculator should facilitate rather than prevent understanding and discussion. The calculator makes it possible to study concepts like regression at a level on which pupils would otherwise not be able to carry out the difficult calculations.
required. Such concepts are extremely powerful and useful in interpreting the data from many sources with which we are constantly bombarded.

Although it may seem that tedious procedures are needed on the calculator, it is not required that pupils learn these procedures by heart. Rather they should become familiar with them as they use the various options in the context of the problems provided.

Help list – essential keys:
(* indicates that the 2nd function key is required)

STAT EDIT to create or edit data lists
STAT CALC to calculate statistics (e.g. means) and equations (e.g. linear regression)
STAT ClrList followed by the names of the lists* separated by commas, to clear previous data lists

STATPLOT to create scatterplots, line graphs and bar graphs by switching the plot ON and selecting the appropriate plot type and data lists

GRAPH to draw graphs

QUIT to return to the home screen (normal calculator functions)

WINDOW to adjust the window setting – domain, range and size of category in the case of frequency data (Xscl)

Y= to enter formulae

VARS (amongst other things) to save regression lines on **Y=** in order to draw them on the graph

TRACE can be used to ‘follow’ the graph and read off the values

Trouble-shooting

Should the GRAPH look strange, check the following:

- Make sure that other graphs have been switched off by checking that all **STATPLOTS** not in use are switched OFF and that other functions in **Y=** are not selected
- Check that the appropriate data lists have been selected and that the data has been accurately entered
- Check that the **WINDOW** settings are appropriate in terms of domain, range and scale

Teachers should also take note of 'boxplot' representations as pupils may ask about this option on the **STAT PLOT** menu. Boxplots describe one set of data using a box-and-whisker plot, which shows the range and the spread of the data between the first quartile, the median and the third quartile.
“Robben Island has a harsh history as a place of banishment and dumping ground for people deemed to be a threat to the ruling society. Those imprisoned there over the centuries have included Khoikhoi leaders, exiled Muslims from the east and African chiefs opposing Dutch and British imperialism, as well as petty criminals, lepers and the mentally ill. It also served as a military base during World War II.

Then it became a prison for those fighting against Apartheid – youth leaders, MK soldiers and members of the African National Congress, the Pan Africanist Congress, the Black Consciousness Movement and other organisations. It became universally known as a place of hardship and suffering. But Robben Island is also a place that symbolises defiance, courage, perseverance and freedom. It was from here that the leaders and ideas that inspired the new South African democracy emerged. It is ultimately a place symbolising the triumph of the human spirit and the ability of humanity to transcend hardship and oppression.”

Source:
Robben Island Tours Information Brochure
Robben Island is inhabited by African Penguins. Conservationists and scientists are concerned about the effect of hunting, fishing and pollution on the penguins, so they keep a careful record of the number of penguins on Robben Island.

In 1996 the scientists knew the ages of 66 African penguins on Robben Island. The information is recorded in the table below:

<table>
<thead>
<tr>
<th>Age (in years)</th>
<th>Number of penguins</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 1: Age distribution of the African penguin

1. Create a data list on your calculator as follows:
Press the **STAT** button.

To select any option, always move the cursor by using the arrow keys and press **ENTER** when your chosen option is highlighted.

First clear all previous data lists by selecting option 4.

Then enter the data lists to be cleared, for example (2nd function) L1, L2 ENTER. Don’t forget the comma!

Then press **STAT** again and choose **EDIT** to enter your data lists.

Enter the two columns of data under L1 and L2. Press **ENTER** every time to move to the next row, or use the arrow to move down.

2. We are now going to plot a graph (a *bar graph*) to show the frequencies of the African Penguins in the various age categories:
Choose the (2nd function) \textbf{STATPLOT} command. Select Plot 1 by highlighting it and pressing \textbf{ENTER}.

In a similar way, select the following options:

\textbf{Xlist}: Select the list which contains your \textit{independent variable}. This will appear on the X-axis of your graph.

\textbf{Freq}: Select the list which contains your \textit{dependent variable (frequency data)}. This will appear on the Y-axis of your graph.

Now press \textbf{GRAPH} to see your bar graph.

\textbf{Hints:}

1) If there are other graphs appearing on your screen besides the bar graph, you must make sure that all the other plots on (2nd function) \textbf{STATPLOT} are \textbf{OFF}. Also check whether any functions are highlighted on your \textbf{Y=} screen and if they are, switch the graphs off by moving the cursor (using the arrow keys) to the = sign and pressing \textbf{ENTER}.

2) You may need to adjust the screen so that the whole bar graph shows. Do this by selecting \textbf{WINDOW}. The default values may look something like this: Decide on appropriate minimum and maximum X- and Y-values which would accommodate your graph.

3) If you choose the \textbf{FORMAT} option (also obtained by choosing \textbf{WINDOW}), you can switch gridlines on or off using \textbf{GRIDOFF} and \textbf{GRIDON}.

3. Look at your bar graph, and describe in a sentence or two the age distribution of African penguins on Robben Island in 1995. Is the shape of the graph what you expected?
4. Use your graphs to answer the following questions:
 (a) Why do you think this type of graph is called a bar or column graph?

 (b) Show how you can read off the number of three-year-old penguins from the graph.

 (c) What is the most common age?

 (d) How old is the oldest penguin in this group of 66 penguins?

 (e) How many age groups have more than 10 penguins?

 (f) How could you use the graph to find the number of penguins that are less than five years old?

5. Suppose that the scientists wish to group the penguins into 4 categories:
 - Juveniles: ages 0 – 3 years
 - Young adults: ages 4 – 6 years
 - Mature adults: ages 7 – 9 years
 - Old penguins: 10 years or more

 Without changing your data list, draw a bar graph displaying these 4 categories. (HINT: Change the Xscl option on the WINDOW menu so that each category contains the THREE years instead of ONE)

 What is the most common of these age categories? Use your graph to determine how many African penguins there are in this category.
6. Below is a *pie chart* for the age distribution of the African Penguin using the new categories.

![Pie chart](image)

Graph 1: Number of penguins per age category

(a) The *key* on the right hand side is also called a *legend* – it explains what each slice of the pie chart represents. Complete the legend by describing which category is represented by 1, 2, 3 and 4 respectively.

(b) What is the most common category according to the pie chart? Does this agree with your answer in question 5?

(c) Use your pie chart to estimate what fraction of the penguins are 7 years old and older. Check your estimate by examining the data list.

7. Discuss whether you think the bar graph or the pie chart is more suitable to represent the data about the age distribution of the African Penguin. Why?
Teacher Notes: The African Penguin 1

This worksheet is designed for pupils who have not encountered any data handling before. It introduces simple **tables** of data. This data is then represented using both **bar graphs** and **pie charts**. The terms **data** and **frequencies** are also introduced. The **mode** of a set of values is also introduced, and can be compared at a later stage with the mean/average. The **mode** in this case is the age that occurs most frequently, namely 4 years old.

Pupils are required to enter the data into a data list, draw a bar graph (also called a histogram or column graph) on the calculator and then to interpret the graph. They should be encouraged to reflect on why the bar graph is particularly suited to frequency data. The construction of the graph may take some time as the pupils will be unfamiliar with the calculator options.

In the process of drawing the graphs, the teacher can encourage mathematical discussion on the difference between **independent** and **dependent variables**, and can tell the pupils about the convention of representing these on the X-axis and Y-axis respectively. The concepts of **domain** and **range** can also be discussed when adjusting the WINDOW settings, although the words do not necessarily need to be introduced.

In question 5, pupils are required to ‘collapse’ the categories. The calculator is able to do this if the Xscl is adjusted to accommodate the correct number of original categories.

The TI-82 unfortunately does not construct pie charts. In this activity, pupils are given a pie chart in which the frequencies of the new (collapsed) categories are represented, and are required to interpret this by completing the legend and by answering some questions. In order to be able to do this, they must interpret each frequency as a fraction of the total number of penguins (66).

Finally pupils are expected to compare the suitability of bar graphs and pie charts for the representation of the African Penguin data. Any justification provided by the pupils for their choice of representation should be discussed. However it would be useful to point out that as the ages are sequential, the bar graph is probably more suitable. In many cases, for example when representing eye colour or food preferences, the categories can be given in any order and we are mainly interested in what percentage of the total number of people (in these examples) each category represents. Thus a pie chart may be preferable in these cases.

There are many examples of bar graphs and pie charts in the media. The teacher should encourage learners to collect these and discuss their suitability for representing the given data. The teacher can help pupils to interpret the charts by asking suitable questions.
Since the fifteenth century, Robben Island has served as an informal settlement and a refreshment station for sailors, and has also been a military fortification, a hospital and a prison at various times. The most famous prisoner was, of course, President Nelson Mandela, who was sentenced to life imprisonment in 1964. In 1982 Mandela and other famous prisoners were transferred to Pollsmoor prison.

1. The following table contains information about prisoner statistics in the 18th century:

<table>
<thead>
<tr>
<th>Date</th>
<th>European</th>
<th>Non-European</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1728</td>
<td>26</td>
<td>16</td>
<td>42</td>
</tr>
<tr>
<td>1761</td>
<td>24</td>
<td>46</td>
<td>70</td>
</tr>
<tr>
<td>1789</td>
<td>31</td>
<td>106</td>
<td>134</td>
</tr>
</tbody>
</table>

Table 1: Prisoner data as classified in the 18th century records

The following graph can be used to represent this information:

This type of graph is called a grouped column (or bar) graph. Can you explain why?

Graph 1: Prisoner data as classified in the 18th century records

1 All information in this worksheet is from the book EsiQithini by Deacon, Penn, Odendaal & Davison; South African Museum & Mayibuye Books; 1996
(a) How many European prisoners were on the island in 1761? Where could you read this from the graph?

(b) Between what years was there a decrease in the number of European prisoners? Can you see this clearly on the graph?

(c) Redraw the grouped column graph in a way that emphasises this decrease in European prisoners. How did you change the graph?

(d) What was the increase in the number of Non-European prisoners between 1761 and 1789? How could you get this information from the graph and the table?

(e) What trend(s) can you identify in the above grouped column graph?

(f) Do you think a grouped column graph is a sensible way of representing this data? Explain your reasoning clearly.

(g) When do you think it would be more sensible to use a table to represent your data? When would you use a graph?

2. The following table contains information about patients and staff during the time that Robben Island was a hospital:

<table>
<thead>
<tr>
<th>Date</th>
<th>Patients</th>
<th>Staff</th>
<th>Staff to Patient ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1846</td>
<td>194</td>
<td>13</td>
<td>1:15</td>
</tr>
<tr>
<td>1859</td>
<td>396</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>1894</td>
<td>668</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>1905</td>
<td>1024</td>
<td>250</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Patient and staff data between 1846 and 1905
The following graph can be used to represent this information:

(a) Are there more than 1000 patients at any stage? Show how you got your answer from the table and from the graph.

(b) Can you tell from the graph when there were the most staff members at the infirmary? Explain.

(c) Between which years did the number of patients increase the quickest? Carefully explain your answer.

(d) Why do you think a stacked column graph has been chosen to represent the above data? Can you suggest an alternative way of representing the data?

(e) Complete the staff to patient ratio column in the table 2. (Round off to the nearest person – what happens when we round off?). If you were a patient at the infirmary, when would have preferred to have been there? Why?
Teacher Notes: History

This worksheet builds on the ‘The African Penguin’. Bar graphs that compare two variables are introduced. The concept of variable should be discussed and compared to the concept of constants, and the teacher can give suitable examples to help pupils understand. Two variations on the bar graph are used, namely the **grouped column (or bar) graph** and the **stacked column (or bar) graph**. Both these graph types are commonly found in the media. The naming of these graphs is in line with the computer terminology on any computer spreadsheet package.

Pupils are first given a table of data and a **grouped column (or bar) graph**. In a grouped column graph two variables are represented (in this case the number of European and Non-European prisoners). For each year that data is available, a column is drawn for each variable so that they can be compared. Pupils are required to interpret the graph. In question 1(c) they are asked how they could alter the graph to emphasise a specific change; discussion on scale should arise from this.

The term **trend** is introduced. It is important that pupils grasp the concept that a trend gives us the overall picture of how data is changing over time.

Pupils are required to state when they are more likely to use a table or a graph. Any justification provided by the pupils for their choice of representation should be discussed. However it is important to stress that graphs, if carefully labelled, convey a message more quickly, easily and visually, and make it easier to identify trends. Tables are useful when collecting and storing data and are a necessary stage in the preparation for representing the data. Pupils may be familiar with spreadsheets on the computer, which are also tables in which we store and manipulate data.

Pupils are then given a table of data and a **stacked column (or bar) graph**. In a stacked column graph two variables are represented (in this case the number of patients and staff at the infirmary). For each year that data is available a single column is drawn with one variable below the other variable. The height of the column represents the total number of people at the infirmary (patients plus staff). Because each data set has a different colour you can quickly see how the total is made up from the two data sets (much in the same way that a pie chart shows you what part of the total each category is). Pupils are required to interpret the graph. In question 2(c) the rate at which the number of patients increased is discussed. The teacher should ensure that pupils note that the dates when data are available are not evenly spaced (the spaces are 11 years, 35 years and 11 years respectively).

In question 2(d) pupils are asked to suggest alternatives to the stacked column graph. Here they may suggest grouped column graphs or invent their own representation, and all suggestions should be discussed. Ensure that whichever representations they choose have suitable scales, that the information is concisely and clearly displayed, and that a key (or legend) is provided.

Question 2(e) refers back to the table. Pupils are required to calculate the staff to patient ratio. When each staff member is responsible for fewer patients we would expect the conditions to be better. Pupils should be referred to the graph at this point to determine whether or not they could also have predicted from the graph when the...
conditions would have been most favourable. Pupils are required to round off to the nearest person when calculating staff:patient ratios; encourage a discussion at this point on how this may affect any conclusions reached. In some cases, more accuracy may be required but on the other hand, with the given scale used for the graph, one would probably not notice a “fraction of a person” that has been necessarily discarded or added in the rounding-off process.

Once again, the teacher should encourage the pupils to collect examples of these types of bar graphs from the media, and to discuss the interpretation of these graphs.
The Cape coast has been treacherous over the years and many ships have been wrecked resulting in the sailors naming the Cape Peninsula as the “Cape of Storms”. Several of these shipwrecks have occurred around Robben Island. Below is a table showing most of the ships that have been wrecked around Robben Island.

<table>
<thead>
<tr>
<th>Name of Ship</th>
<th>Date of wreck</th>
<th>Nationality of ship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schaapejacht</td>
<td>15 August 1660</td>
<td>Dutch</td>
</tr>
<tr>
<td>Dageraad</td>
<td>20 January 1694</td>
<td>Dutch</td>
</tr>
<tr>
<td>Oosterland</td>
<td>24 May 1697</td>
<td>Dutch</td>
</tr>
<tr>
<td>Flora</td>
<td>17 November 1821</td>
<td>Dutch</td>
</tr>
<tr>
<td>Perseverance</td>
<td>12 March 1826</td>
<td>British</td>
</tr>
<tr>
<td>Gondolier</td>
<td>7 February 1836</td>
<td>British</td>
</tr>
<tr>
<td>Bittern</td>
<td>18 January 1848</td>
<td>British</td>
</tr>
<tr>
<td>Kingston</td>
<td>23 December 1852</td>
<td>United States</td>
</tr>
<tr>
<td>Sea Eagle</td>
<td>16 November 1856</td>
<td>United States</td>
</tr>
<tr>
<td>Timor</td>
<td>22 December 1856</td>
<td>Dutch</td>
</tr>
<tr>
<td>Bernicia</td>
<td>16 June 1861</td>
<td>British</td>
</tr>
<tr>
<td>AH Stevens</td>
<td>7 February 1862</td>
<td>United States</td>
</tr>
<tr>
<td>Forfarshire</td>
<td>15 September 1864</td>
<td>British</td>
</tr>
<tr>
<td>Il Nazerenno</td>
<td>2 December 1885</td>
<td>Italian</td>
</tr>
<tr>
<td>Tantallon Castle</td>
<td>7 May 1901</td>
<td>British</td>
</tr>
<tr>
<td>Natal</td>
<td>24 May 1914</td>
<td>Norwegian</td>
</tr>
<tr>
<td>Rangatira</td>
<td>31 March 1916</td>
<td>British</td>
</tr>
<tr>
<td>C. de Eizaguirre</td>
<td>26 May 1917</td>
<td>Spanish</td>
</tr>
<tr>
<td>Golden Crown</td>
<td>18 July 1923</td>
<td>British</td>
</tr>
<tr>
<td>Hypatia</td>
<td>29 October 1929</td>
<td>British</td>
</tr>
<tr>
<td>Solhagen</td>
<td>11 September 1936</td>
<td>British</td>
</tr>
<tr>
<td>Fong Chung # II</td>
<td>4 July 1975</td>
<td>Taiwanese</td>
</tr>
<tr>
<td>Goel No. 1</td>
<td>27 January 1976</td>
<td>Canadian</td>
</tr>
<tr>
<td>Daeyong Family</td>
<td>30 March 1986</td>
<td>Korean</td>
</tr>
<tr>
<td>Chanson de la Mer</td>
<td>6 November 1986</td>
<td>South African</td>
</tr>
<tr>
<td>The Apollo Sea</td>
<td>20 June 1994</td>
<td>Chinese</td>
</tr>
</tbody>
</table>
1. During which season would you expect there to be the most shipwrecks around Robben Island? Explain.

2. Draw a bar graph showing the number of shipwrecks that happened at different times of the year.

3. According to your bar graph, is there a particular time of the year when shipwrecks are more likely to happen?

4. There was only one shipwreck in August, which is in the middle of winter, yet there were three in December, which is in the middle of summer. Is this what you expected? Can you explain why this might have happened?

5. Is there a nationality that has had more shipwrecks than any other nationality? Does this mean that this nationality is poor at sailing? Explain.

6. Draw a pie chart to illustrate the proportion of shipwrecks that each nationality has had around Robben Island. Why do you think a pie chart is used to represent the data?

7. A lighthouse was built after the Forfarshire was wrecked and a foghorn introduced after the Tantallon Castle was wrecked. Do you think these safety measures were successful? Give reasons for your answer.
Teacher Notes: The Cape of Storms

This worksheet gives pupils further practice in constructing bar graphs and pie charts, but first they have to summarise the given data in a sensible way.

This activity is also designed to make pupils aware that statistics can be misleading. Historical data needs to be put in context. In this case the increase in shipping, the improved technology, and the seafaring history of various nations are not revealed in the statistics, but all these factors necessarily influence the number of shipwrecks.

Pupils are first given a table of data on all the shipwrecks that have occurred around Robben Island. In question 1 they are encouraged to make a prediction, which they will compare with their findings at a later stage. In question 2 the pupils must draw a bar graph showing the number of shipwrecks at different times of the year. The independent variable is the time of year, as the number of shipwrecks does not affect it. The dependent variable is the number of shipwrecks as we are trying to find out if this is affected by the time of year. The time of year can either be divided into months or seasons; pupils must justify their choice. Differences which arise in their resulting graphs must be discussed.

The teacher should allow time for discussion on various factors which may cause the bar graph to be different to that pupils predicted, for example, before the advent of modern technology, ships did not usually sail around the Cape when storms were expected (winter).

In question 6 pupils are required to draw a pie chart illustrating the proportion of shipwrecks that each nationality has had. Again it is important that pupils do not jump to conclusions about one nationality being ‘poor sailors’. In Robben Island’s early history, ships were predominantly Dutch and later they were mainly British. Clearly this will distort the statistics. In more recent times ships of various nationalities have sailed around the Cape.

Finally in question 7 pupils need to determine whether the various safety measures that were introduced were effective. Again, pupils need to think about the number of ships that sail around the Cape (more in recent times) and also the improved technology that is available today.
The weather at Robben Island affects the number of visitors at various times of the year. In 1993, the Weather Bureau established a weather station on Robben Island. The monthly rainfall and temperature data in this activity was supplied by the SA Weather Bureau.

<table>
<thead>
<tr>
<th>Year</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td></td>
<td></td>
<td>4.2</td>
<td>103.8</td>
<td>114.8</td>
<td>35.2</td>
<td>93.6</td>
<td>55.0</td>
<td>2.0</td>
<td>1.8</td>
<td>7.8</td>
<td>1.8</td>
<td>15.2</td>
</tr>
<tr>
<td>1994</td>
<td>6.0</td>
<td>0.0</td>
<td>3.2</td>
<td>14.4</td>
<td>28.0</td>
<td>162.6</td>
<td>56.8</td>
<td>9.6</td>
<td>19.2</td>
<td>5.2</td>
<td>6.6</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>7.0</td>
<td>1.6</td>
<td>4.2</td>
<td>14.8</td>
<td>44.8</td>
<td>98.4</td>
<td>77.4</td>
<td>10.8</td>
<td>14.0</td>
<td>22.0</td>
<td>6.6</td>
<td>18.0</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>1.0</td>
<td>27.8</td>
<td>16.4</td>
<td>26.2</td>
<td>33.0</td>
<td>94.8</td>
<td>48.6</td>
<td>50.0</td>
<td>50.8</td>
<td>27.8</td>
<td>22.2</td>
<td>26.4</td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>6.8</td>
<td>2.2</td>
<td>0.2</td>
<td>6.4</td>
<td>69.2</td>
<td>56.0</td>
<td>5.4</td>
<td>62.4</td>
<td>4.6</td>
<td>7.6</td>
<td>43.6</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>5.2</td>
<td>7.9</td>
<td>5.6</td>
<td>33.1</td>
<td>58.0</td>
<td>89.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Monthly rainfall figures (in mm) for Robben Island between 1993 and 1997

1. During which months would you expect the most tourists to visit the island? Use the data in the table to explain why.

2. The last row of the table contains the mean (average) monthly rainfall. This is one way of summarising the data. What does it mean?

Calculate the missing values and fill them in the last row of the table.

There are two ways of calculating the average value of a set of data using the TI-82 graphing calculator.
1) One can use the usual calculator functions: Press (2nd function) QUIT to return to the 'home screen'. Then add all the available values and divide by the number of values. For example, the monthly average for January is \(\frac{6,0 + 7,0 + 1,0 + 6,8}{4} \) while the monthly average for March is \(\frac{4,2 + 3,2 + 4,2 + 16,4 + 20,2}{5} \).

2) The calculator has many statistical calculation options, one of which is the calculation of means. Enter each column of data (for which you want to find the mean) as a data list using the STAT EDIT commands (refer to the activity "The African Penguin" if you are stuck).

Then return to the STAT menu, but select CALC and choose option 1: 1-variable statistics which gives summary data for one set of data.

You will have to tell the calculator which data list contains your data, by choosing, for example, (2nd function) L1 and pressing ENTER.

\(\bar{x} \) is the symbol for the mean value, while \(\sum x \) refers to the sum of all the values. Other values such as \(S_x \) and \(\sigma_x \) refer to the spread or variance of the data set.

3. During which month would you expect the highest rainfall? Explain.

4. During which month does Robben Island usually get the most rain? Why is the word usually used?

5. Calculate the total annual rainfall for each of the years where there is a complete record (i.e. where no month’s figures are missing) and fill this in the final column of the table. Calculate the mean annual rainfall on Robben Island.
6. Do you think 1997 had more or less than rainfall than the mean annual rainfall? Explain.

7. Describe in your own words what a **mean** (or average) is and how one calculates it.

<table>
<thead>
<tr>
<th>Year</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>X</td>
<td>24.1</td>
<td>24.4</td>
<td>19.5</td>
<td>17.4</td>
<td>17.1</td>
<td>17.5</td>
<td>17.9</td>
<td>18.3</td>
<td>20.2</td>
<td>22.7</td>
<td>24.1</td>
</tr>
<tr>
<td>1994</td>
<td>24.8</td>
<td>25.7</td>
<td>23.4</td>
<td>22.3</td>
<td>17.4</td>
<td>16.6</td>
<td>17.0</td>
<td>17.0</td>
<td>18.4</td>
<td>21.3</td>
<td>21.8</td>
<td>24.4</td>
</tr>
<tr>
<td>1995</td>
<td>24.5</td>
<td>25.7</td>
<td>24.8</td>
<td>20.8</td>
<td>19.1</td>
<td>17.2</td>
<td>15.1</td>
<td>15.1</td>
<td>18.2</td>
<td>19.2</td>
<td>21.5</td>
<td>23.8</td>
</tr>
<tr>
<td>1996</td>
<td>24.5</td>
<td>25.0</td>
<td>22.6</td>
<td>22.9</td>
<td>19.8</td>
<td>17.5</td>
<td>16.5</td>
<td>16.5</td>
<td>17.3</td>
<td>20.1</td>
<td>20.1</td>
<td>23.4</td>
</tr>
<tr>
<td>1997</td>
<td>25.2</td>
<td>24.7</td>
<td>23.0</td>
<td>20.3</td>
<td>19.4</td>
<td>15.7</td>
<td>17.3</td>
<td>17.3</td>
<td>20.3</td>
<td>22.1</td>
<td>21.6</td>
<td>X</td>
</tr>
</tbody>
</table>

Table 2: Monthly maximum temperatures for Robben Island between 1993 and 1997

8. Summarise the information given by calculating the mean monthly maximum temperatures.

9. Is the maximum temperature at this weather station 27 °C? Explain.

10. Now plot *line graphs* on the same horizontal axis for the monthly average rainfall and temperature as follows:
Enter the data (in this case the average values for each month) into data lists. Choose new data lists or clear the existing data lists, telling the calculator which lists to clear by pressing (2nd function) L1, L2 and so on. Don’t forget the commas!

On the horizontal axis, our *independent variable* is going to be the months of the year. You will have to create a data list numbered from 1 to 12 for this.

Now choose (2nd function) STATPLOT and switch OFF any unwanted plots.

Create two separate line graphs for average rainfall data and average temperature data. In each case, you will have to select the appropriate data lists for the **Xlist** and **Ylist**. It is suggested that you MARK the data points differently in the two plots.

Now press GRAPH to see both line graphs on the same set of axes. Remember to adjust the WINDOW settings if necessary.

11. Why did you think the *line graph* is appropriate for this kind of data?

12. By looking at your graph, describe in your own words the weather (rainfall and temperature) on Robben Island.

13. Which month do you think is the most attractive to Robben Island tourists? Why?

14. Which month(s) has the greatest *range* of rainfall figures? And the smallest?

Range is the difference between the largest and smallest values.
15. Use your answers to question 14 to answer the following:
 (a) During which month in 1998 do you think you would be most likely to correctly predict the rainfall figure? Explain.
 (b) During which month in 1998 do you think you would be least likely to correctly predict the rainfall figure? Explain.

16. During which month in 1998 do you think you would be least likely to correctly predict the mean maximum temperature? Explain.

17. Was there any year between 1993 and 1997 that was much hotter than other years? Give reasons for your answer.
Teacher Notes: Weather

This worksheet introduces the concept of mean as a way of summarising the data by describing the central tendency. The term central tendency implies that the data is grouped around this central value, e.g. a mean temperature of 22°C in May in Blikkiesdorp implies that one would expect temperatures close to 22°C in Blikkiesdorp in May. At this point the difference between mean and mode could be discussed. The mean is calculated by adding all the values and dividing by the number of values. The mode is simply the most commonly occurring value. The concept of range is also introduced as another way of summarising a set of data, in this case as a measure of spread of the data set. The teacher should allow enough discussion on the difference between these two different ways of summarising a set of data, and the need for both when describing a set of data.

Rainfall data is given for Robben Island from 1993 to 1997. Pupils must understand that the figures for a given month represent the total amount of rain that fell during that month. An X means that no data is available for that month (pupils may reflect on why this may be the case?). When one works with ‘real’ data, it is common that there are missing values. Pupils should be made aware that in February 1994 the 0,0 means that no rain fell during the month, not that there is no data available.

Two possible methods of calculating means using the TI-82 are suggested. It is important that pupils understand that the second method entails entering each month’s rainfall data as a data list. They should, however, use the first method to calculate at least some of the mean values, so that they become familiar with the formula for calculating means. In the case where only four values are available, the teacher should ensure that the pupils understand that in these cases they should divide by 4 and not 5 in order to compensate for the missing values.

Pupils are also required to compute annual mean rainfall for Robben Island during the period when data was recorded (Question 5) by adding the annual rainfall values and dividing by the number of years. Mean monthly or annual rainfall can be used to predict possible rainfall in the future. However, pupils must also be aware that the actual rainfall that occurs in the future is likely to be different from the mean. In question 6 the data for December is missing. Pupils will need to estimate (predict) the rainfall that is likely to fall in December then use this figure to estimate (predict) the annual rainfall for 1997.

It is important that the teacher ensures that pupils understand the concept of mean/average intuitively and not just procedurally. Questions 4, 7 and 9 can be used to diagnose problems with this. It is important that when pupils answer question 7 they do not just give a method of calculating the mean but they also give a description of their understanding of a mean. The teacher should try to ensure that the pupils have made a distinction between mean and mode. The mean is the single value that represents the combined values of a variable, while mode is the value of the variable that occurs most often, and is therefore not affected by outliers (very big or small values).

The worksheet then continues by introducing line graphs. Rainfall and temperature data (monthly means) are plotted on the same independent variable axis, in this case...
representing the 12 months of the year. Pupils should be encouraged to reflect on the two line graphs in terms of what they know about the Cape as a winter rainfall region.

The influence of range on the accuracy of predictions is introduced. If the range is large, some of the data points will be scattered far away from the mean value of the data and it is more difficult to predict future values accurately. If the range is small all the data points will be close to the mean value and it is easier to predict future values.
Researchers at the Sea Fisheries Institute have been keeping records on the breeding of the African penguins on Robben Island as well as the anchovy fish they eat in the waters around Robben Island.

Anchovy fish are too small to count individually so researchers estimate the number of tons of fish in the water using acoustic techniques. They call this the anchovy biomass.

Researchers collected the following data about the anchovy biomass and the mean number of chicks fledged (successfully raised) by each breeding pair from 1989 to 1995:

<table>
<thead>
<tr>
<th>Year</th>
<th>Anchovy biomass (in million tons)</th>
<th>Mean number of chicks fledged</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989</td>
<td>0.55</td>
<td>0.42</td>
</tr>
<tr>
<td>1990</td>
<td>0.47</td>
<td>0.32</td>
</tr>
<tr>
<td>1991</td>
<td>1.68</td>
<td>0.59</td>
</tr>
<tr>
<td>1992</td>
<td>1.50</td>
<td>0.59</td>
</tr>
<tr>
<td>1993</td>
<td>0.75</td>
<td>0.54</td>
</tr>
<tr>
<td>1994</td>
<td>0.48</td>
<td>0.46</td>
</tr>
<tr>
<td>1995</td>
<td>0.43</td>
<td>0.38</td>
</tr>
</tbody>
</table>

Table 1: Anchovy biomass and the mean number of chicks fledged per breeding year between 1989 and 1995
We are going to investigate the relationship (if any) between anchovy biomass and the mean number of chicks fledged. In order to do this we are going to draw a scatterplot of the data:

Clear at least two previous data lists (for example L1, L2) using the STAT menu.

You will have to tell the calculator which lists to clear by pressing (2nd function) L1, L2 and so on. Don’t forget the commas!

Enter the data using the STAT menu again but select EDIT.

Plot a scatter plot of the data using the (2nd) STATPLOT Menu.

Choose appropriate data lists for the Xlist and Ylist.

How did you decide which variable should be the independent variable, and which should be the dependent variable?

Remember to switch other plots OFF.

Press GRAPH to show your scatterplot. Remember to adjust the WINDOW settings if necessary.

1. Describe the relationship between the anchovy biomass and the mean number of chicks fledged per breeding pair.

2. What do you think the formula might be for the trendline or line of best fit for this data?

 The trendline gives us the overall picture: It is the line around which the data is spread.

3. Check your estimate by using the calculator to find and plot the equation for the linear regression between these two variables:
On the STAT menu, choose the following CALC option: Enter L1, L2 (if these are your correct data lists). The calculator gives you values of a and b in the linear regression equation $y=ax+b$.

4. What is the equation of the regression line? The calculator calculates this by *minimising the distance* between this line and all the datapoints.

5. Plot this line together with the scatterplot:

You can either make a note of the (rounded off) values for a and b and enter the equation using Y=, making sure that the = is highlighted so that the graph is selected:

OR you can get the calculator to do enter the equation: While the linear regression equation shows on your home screen, press Y= and position your cursor so that an equation can be entered.

Then press VARS and select 5: Statistics. Select EQ. Choose 7: Reg EQ.

Plot the line by pressing GRAPH.

6. Use your graph to estimate the mean number of chicks fledged per breeding pair if the anchovy biomass was 1 million tons.

7. Use your graph to estimate the anchovy biomass if the mean number of chicks fledged per breeding pair is 0.5.
8. What would the mean number of chicks fledged per breeding pair be if there were no anchovies?

9. What would the mean number of chicks fledged per breeding pair be if the anchovy biomass were to increase to 20 million tons?

10. African Penguins also eat sardines. The following data is available for the sardine biomass in the waters surrounding Robben Island:

<table>
<thead>
<tr>
<th>Year</th>
<th>Sardine biomass (million t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989</td>
<td>0,36</td>
</tr>
<tr>
<td>1990</td>
<td>0,27</td>
</tr>
<tr>
<td>1991</td>
<td>0,45</td>
</tr>
<tr>
<td>1992</td>
<td>0,32</td>
</tr>
<tr>
<td>1993</td>
<td>0,47</td>
</tr>
<tr>
<td>1994</td>
<td>0,60</td>
</tr>
<tr>
<td>1995</td>
<td>0,58</td>
</tr>
</tbody>
</table>

Table 2: Sardine biomass between 1989 and 1995

Is there a relationship between the anchovy biomass and the sardine biomass?

Plot the data (without deleting the existing data lists) and determine and plot the equation of linear regression.

Describe the relationship between the anchovy biomass and the sardine biomass.

11. Return to your linear regression values which you found using the STAT CALC menu and selecting 5: LinReg (ax+b).

The ‘r’ value refers to the correlation between the two variables.

If two variables are related we say that they are correlated. In the case of the anchovy biomass and the mean number of chicks fledged, a linear (straight-line) regression line was drawn. We saw that if the anchovy biomass was high the number of fledged chicks per breeding pair was high, and similarly low biomass was associated with a low number of chicks fledged. Thus the correlation was a positive correlation \((r > 0)\).

If the one variable increases while the other one decreases, then we say that is a negative correlation \((r < 0)\).
Describe the correlation between the sardine biomass and the anchovy biomass. Is it positive or negative, weak or strong? Motivate your answer by describing the graph AND by examining the r-value given by the calculator.

We can also say that the relationship between the anchovy biomass and the mean number of chicks fledged per breeding pair is a **strong linear correlation** because all the points are quite close to the regression line (the value of the correlation coefficient r is then close to 1 or, in the case of a negative correlation, -1).

If the data points are widely scattered away from the regression line then they have a **weak linear correlation**.

If it is impossible to draw a regression line through the data points because they are so scattered then there is **no linear correlation** ($r = 0$).

If all the data points fall on the regression line, then it is a **perfect correlation** ($r = 1$ or -1).

Is it positive or negative, weak or strong? Motivate your answer by describing the graph AND by examining the r-value given by the calculator.
Teacher Notes: The African Penguin 2

This worksheet introduces the concepts of **regression** and **correlation** between two variables. **Scatter plots** and **lines of best fit (trendlines)** are introduced.

A **scatter plot** is drawn by making one of the variables (the anchovy biomass) the independent variable (or x-axis) and the other variable (the number of chicks fledged per breeding pair) the dependent variable. From the given scatter plot pupils should be able to see that when the anchovy biomass is small, less chicks are fledged and when the biomass is large, more chicks are fledged (Question 1). It is important that the pupils predict the equation of the **trendline** before plotting the **line of best fit** using the calculator. Pupils should have an intuitive feel for this line as ‘going through the middle of the points’ or more accurately, minimising the distance from all the points.

Questions 6 and 7 encourage pupils to interpret and read off the graph, while questions 8 and 9 are designed to encourage pupils to reflect on the situation. If there were no anchovies there would still be other food so we would expect the penguins to continue breeding even if their success rate was not as high. If there were 20 million tons of anchovies we could not expect the number of successfully raised chicks to increase proportionally as we know that they usually only lay two eggs. Thus it is highly unlikely that the number of fledged chicks will ever exceed 2.

Question 10 requires pupils to practise by doing a similar regression analysis using data about sardine biomass and anchovy biomass. It is important that pupils realise that although there is a relationship between anchovy biomass and the mean number of chicks fledged and (we can assume) between sardine biomass and the mean number of chicks fledged, it **DOES NOT NECESSARILY FOLLOW** that there is a relationship between anchovy biomass and sardine biomass. In fact the latter relationship is weak and negative - pupils should suggest possible reasons for this, e.g. if anchovies and sardines eat the same food then they are competing against each other. Thus when there are lots of sardines you would expect a drop in the number of anchovies and vice-versa.

The terminology regarding **correlations** is social knowledge and is therefore given to the pupils. However, they should be given many examples from the media on the basis of which they can describe correlations by examining graphs and predict correlations by examining data, for example in table form.