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This is a second report on our ongoing research into students’ thinking processes in generalisation 
situations. In this study we varied the representation of the activities we presented to children along 
several dimensions, namely in the type of function, the nature of the numbers, the format of the tables, 
and the structure of the pictures. Our results show that varying these dimensions has little effect on 
children’s thinking – as before, few children tried to find a functional relationship between the 
variables, except in two simple cases, but persisted with using the recursive relationship between 
function values. While using recursion was successful in extending number patterns to nearby values, 
students find it tedious for finding larger function values. They then mostly attempted to adapt their 
recursion strategy in some way, but made many logical errors in the process. Our biggest concern is 
not so much the fact that students make many errors, but that they do not feel the need, or do not have 
the know-how, to verify their methods or answers against the given data. 
 
 
INTRODUCTION  

Number patterns, the relationship between variables and generalisation are considered important 
components of algebra curricula reform in many countries. It is evident that South Africa shares this 
view as can be seen in the curricular changes to the Junior Secondary syllabus (Syllabus of Western 
Cape Education Department, 1996). South Africa’s new curriculum plans (Curriculum 2005) also 
emphasises the importance of generalisation as is evident from the following specific outcomes for 
Mathematical Literacy, Mathematics and Mathematical Sciences: 

“Use mathematical language to communicate mathematical ideas, concepts, generalisations and 
thought processes. 

Use various logical processes to formulate, test and justify conjectures”. 
 
There have also been suggestions to use generalised number patterns as an introduction to algebra. 
However, there is insufficient research that deals with the cognitive difficulties children encounter and 
the feasibility of such an approach. Much of the available research on children’s thinking processes in 
generalisation reports on children’s strategies in abstracting number patterns and formulating general 
relationships between the variables in the situation (e.g. Garcia-Cruz and Martinon, 1997; Orton and 
Orton, 1994; Taplin, 1995). 
 
In a previous study (Linchevski, Olivier, Sasman & Liebenberg, 1998) we presented grade 7 
students with problems like the following:  

(C3): Matches are used to build pictures like this: 

 
 Picture 1 Picture 2 Picture 3 Picture 4 
 

The table shows how many matches are used for the different pictures. Complete the table. 

Picture number 1 2 3 4 5  20  100  n 

Number of matches 3 5 7 9        

Sasman, M.C., Linchevski, L., & Olivier, A. (1999).  The influence of different representations on children’s generalisation thinking 
processes. In J. Kuiper (Ed.), Proceedings of the Seventh Annual Conference of the Southern African Association for Research in 
Mathematics and Science Education (pp. 406-415). Harare, Zimbabwe. 



We found that most students’ generalisations and justification methods were invalid, because they 
are not aware of the role of the database in the process of generalisation and validation. We also 
found that children worked nearly exclusively in the number context and did not use the structure 
of the pictures at all. Also our interviewees did not view their answers as hypotheses that should 
be validated. For example, they did not, and seemed unable, to verify their justification against the 
given data pairs (1 ; 3), (2 ; 5), (3 ; 7), (4 ; 9). 
 
Few children managed to construct a function rule to find function values. Rather, they focussed 
on recursion (e.g. f(n + 1) = f(n) + 2 in problem C3 above), which led to many mistakes as they 
tried to find a manageable method to calculate larger function values. The most common, nearly 
universal mistake was to use the proportionality property that if n2 = k × n1 , then f(n2) = k × f(n1). 
For example, in problem C3 above, from f(5)1 = 11 they deduced that f(20) = 4 × 11 = 44. 
Although this property applies only to functions of the type f(n) = an, children erroneously 
applied it to any function. It is possible that our choice of numbers might have triggered the 
proportional multiplication error, i.e. that our use of “seductive numbers” in a sequence like n = 5, 
20 and 100 stimulated the error (we regarded these numbers as seductive from a multiplicative 
point of view).  
 
Based on the above we viewed the following as questions for further research: 
• whether the use of non-seductive numbers will prevent children from making the multiplication 

error, also when they encounter seductive numbers in other  problems 
• whether  the visual impact of the table, as for example shown in problem C3  above, also 

contributed to the persistence of the proportional multiplication error 
• whether pictorial representations in which the function rule is “transparent” will encourage 

children to use the structure of the pictures to more easily find function rules. 
 
In this paper we report on some first findings on these three questions. 
 
 

RESEARCH SETTING 
 
The activities 
We designed a series of eight generalisation activities in which we varied the representation of the 
activities. Four activities were formulated in terms of numbers only (in the form of a table of 
values), and four were formulated in terms of pictures only (in the form of a drawing of the 
situation). Each pictorial representation had a corresponding numerical representation. 
 
The numerical tables of values were presented in different formats: “continuous” (e.g. IT below, in 
which input values for which the corresponding function values had to be calculated were included) 
and “non-continuous” (e.g. IIT, where the input values were not given, but were presented verbally 
by the interviewer). The tables were presented in both vertical and horizontal format. 
 
The pictorial representations of the activities were chosen to be either “transparent”, i.e. the 
function rule is embodied in the structure of the pictures (e.g. in IP below), or “non-transparent”, i.e. 
the function rule is not easily seen in the structure of the pictures (e.g. in IIIP). As with tables, 
pictures were presented in both “continuous" and “non-continuous” format. 
 

                                                 
1 Formal functional notation was not used in the actual problems or in communications with the students. It is merely 
used here for reporting on the students. 
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The questions in each activity were basically the same, namely given the values of f(1), f(2), f(3), 
f(4), f(5) and f(6), we asked students to first find f(7) and f(8), and then the function values of 
certain further input values and to explain and justify their answers and strategies. These input 
values were both “seductive” (e.g. 20, 60) and “non-seductive” (e.g. 19, 59). Two of the functions 
were linear functions of the form f(n) = an + b, and two functions were simple quadratic functions.  
We supply below a selection of the activities.  

IP  
2

 
3

  
Blocks are packed to form pictures that form a pattern as shown below: 

 
Picture 1 Picture 2 Picture 3 Picture 4 Picture 5 Picture 6 
 
IT 
Tiles are used to build pictures to form a pattern. The table below shows the number of tiles in a 
particular picture. 
 

Picture number 1 2 3 4 5 6 7 8 … 20 … 60 … n 

Number of tiles 2 5 10 17 26 37         
 
IIT 

Shape number Number of matches 
1 4 
2 12 
3 20 
4 28 
5 36 
6 44 

Matches are used to build shapes to 
form a pattern. The table shows the 
number of matches used to build a 
particular shape. 
 

 
IIP 
Matches are used to build shapes. A different number of matches is used to build each shape. 

 

Shape 1 Shape 2 Shape 3 Shape 4 Shape 5 Shape 6 
 
IIIP 

Bea

Bea

Bea

 

Pyramid 1 Pyramid 2 Pyramid 3 Pyramid 4 Pyramid 5 Pyramid 6 

                                                 
2 The subscript P indicates that the problem was presented in a spatial context in the form of a pictorial representation of the 

situation and the subscript T indicates the problem was presented in a numerical context in the form of a table of values. 
3 All the drawings were presented to students in vertical format, but is here given horizontally due to space considerations. 
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IIIT 
 

Peter uses blocks to build pictures 
that form a pattern. The table shows 
the number of blocks he needs to 
build a particular picture. 
 

Picture number Number of blocks 
1 1 
2 4 
3 9 
4 16 
5 25 
6 36 

 
IVP 
Tiles are arranged to form pictures like this: 

 
Picture 1 Picture 2 Picture 3 Picture 4 Picture 5 Picture 6 
 
Methodology 
We interviewed ten grade 8 students at one of our project schools in a historically disadvantaged area 
of Cape Town before they had received any instruction on patterns, sequences or algebra. The 
students were selected by the teacher so that they were representative of the grade 8 class. Each 
student was interviewed three times in 45-minute sessions by either two or one of the researchers. 
The interviews of each student took place 5 to 7 days apart. In the first two interviews each student 
was presented with three activities and they were asked to explain or clarify their answers or 
strategies, but were not challenged in any way. We wanted to ascertain what they did 
spontaneously. The pictorial and numerical activities were presented to the children on different days. 
In the third interview they were given two further activities and then asked to reflect on some of 
their previous solutions and to justify their answers. Based on their responses the researcher asked 
questions to create cognitive conflict. All interviews were videotaped. In addition to the video 
protocols, written transcripts of the subjects’ verbal responses as well as their paper-and-pencil 
activities will be used in the analysis. The analysis will be used to design a teaching intervention 
aimed at addressing the cognitive difficulties children have in the processes of generalisation. 
 
 
RESULTS AND ANALYSIS 
Most students had no difficulty finding f(7) and f(8) in any of the activities – they either found and 
used the function rule correctly, or used recursion correctly for these nearby values. However, in 
trying to find a manageable strategy for finding further-lying function values, children invented a 
variety of different strategies, both correct and incorrect. These strategies and their frequency are 
summarised in Table 1. We will refer back to the table in our analysis. 
 
The nature of the function 
Finding function rules 
It is interesting to note from the data in Table 1 that more than half of the students found and 
used the function rules in activities IP and IIT. These both represent simple quadratic functions. 
One could be tempted to conclude that students easily recognise such simple quadratic function 
rules. 
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Table 1 

Number of students using each strategy per activity 

 
 

Activity number and representation format 

 
Recursion, 

counting-on

Proportional 
multiplication 

error 

Decomposition of input value, 
e.g. f(n) = f(a) + f(b) + f(c) 

where a + b +c = n 

 
Difference method

f(n) = n × d 

Extended recursion: 
f(n) = (n – k)d + f(k)  

(d is common difference)

 
 

Function rule 

 
 

Other 

IP 

 

Transparent picture, continuous 
Seductive input values (20, 60, n) 
Quadratic function (f(n) = n2 + 1) 

 
2 

    
1 2 wrong variations 

 
5 

 

IT Horizontal continuous table 
Seductive input values (20, 60, n) 
Quadratic function (f(n) = n2 + 1) 

    
4 1 

 
1 wrong variation 

 
3 

 
1 

IIP 

 

Transparent picture, continuous 
Non-seductive input values (19, 59, n) 
Linear function (f(n) = 8n – 4) 

 
1 

  
1 

 
3 

 
1 

2 wrong variations 

 
2 

 

 

IIT 

 

Vertical non-continuous table 
Seductive input values (20, 60, n) 
Linear function (f(n) = 8n – 4) 

    
4 3 

 
1 

2 wrong variations 

  

IIIP Non-transparent picture, non-continuous 
Non-seductive input values (23, 79, n) 
Quadratic function (f(n) = n2) 

 
3 

  
1 

 
1 

 
2 wrong variations 

 
2 

 
1 

IIIT 

 

Vertical non-continuous table 
Seductive input values (29, 87, n) 
Quadratic function (f(n) = n2) 

 
1 

 
1 

   
1 wrong variation 

 
6 

 
1 

IVP Transparent picture, non-continuous 
Seductive input values (20, 60, n) 
Linear function (f(n) = 4n + 1) 

 
1 

 
2 

  
2 

 
2 

2 wrong variations 

 
1 

 

IVT 

 

Horizontal continuous table  
Non-seductive input values (23, 117, n) 
Linear function (f(n) = 4n + 1) 

 
1 

  
3 

 
1 

 
2 

2 wrong variations 

 
1 
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One immediately, however, also notices the marked differences in students’ responses for the same 
functions in the picture and the table contexts. I activity IP the picture is transparent, but students 
find it much more difficult to recognise the same function rule from the equivalent table in 
activity IT. In activity III on the other hand, children easily find the rule in the table, but not in the 
non-transparent picture. 
 
It is clear that students found it much more difficult to formulate function rules for linear functions. 
From our interviews it seems that children try to construct simple multiplication (proportional) 
structures, but when it does not fit the database, they quickly give up and then invent all kinds of 
error-prone recursion strategies.  
 
Recursion 
When students focus on recursion patterns, however, they find the constant difference between 
consecutive terms in linear functions much easier to handle than the changing (increasing) 
difference in quadratic functions, leading to many errors. We describe these strategies and errors in 
the following sections. 
 
Seductive vs. non-seductive numbers 
The proportional multiplication error 
In our earlier work with grade 7 students we found a persistence with the erroneous proportional 
multiplication error. In this study six of the ten students interviewed used it at least once in the 
series of activities.  For example: 

Interviewer: How many tiles in Picture 20? (in IVP) 
Peter: OK, I am using 5 (meaning n = 5; f(5) = 21 in the picture) to get to 20. So 21 

times 4 is 84, because 5 times 4 is 20. 
Interviewer: How many tiles do you think we’ll use for Picture 60? 
Peter: (Pause ... looking at the numerical “table” he had prepared from the given  

database) ... Picture 10 is 41 tiles, so 41 times 6 … the answer is 246. 
 
This erroneous strategy was used only with what we call “seductive numbers”. Vergnaud (1983) 
argues that this is an over-generalisation of the many direct proportional relationships that students 
are intuitively aware of from an early age. Fischbein et al (1985) posit that children generalise the 
way they were initially taught in school before they develop a critical attitude and that some mental 
behaviours tend to act beyond any formal control because these behaviours shape the ideas and the 
facts at hand in a meaningful way.  
 
When students could easily find the function rule the nature of the input values was immaterial, i.e. 
they did not make the multiplication error, even for seductive numbers. 
 
Extending recursion 
A few students managed to adapt their focus on recursion to a manageable strategy for finding 
further-lying function values. This extended recursion method is symbolised by f(n) = (n – k)d + f(k), 
where (d is the common difference between consecutive terms. Here is an example: 

Interviewer: OK, Shape 59? (How many matches in Shape 59 in IIP?) 
Hamid: So first I subtract 19 (he had previously calculated f(19) = 148) by 59 and then 

you get your answer of 40 and then I times it by 8 (the common difference 
between terms) and then I get my answer and then I add it by 148, that is 
Shape 19’s answer. 

 
Some children used this method also in the case of seductive numbers. 
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Some children also worked with this method, but they often seemed to lose track of all the details. 
This was mostly because they worked verbally, and did not write down information or their 
strategy. In this example Voda correctly calculates (n – k) × d, but then does not add f(k): 

Interviewer: Shape 60? (how many matches in Shape 60 in IIT) 
Voda:  (works on calculator) 320 
Interviewer: Please explain to us 
Voda:  I subtracted 20 by 60 (he means 60 – 20) and then I times 40 by 8. 

 

While the extended recursion method is correct for linear functions, many students also erroneously 
applied it to or adapted it for the quadratic functions. For example: 

Interviewer: Ok, and then Picture 20? (How many matches in Picture 20 in IT?) 
Harold: I subtract 20 by 8 (he had previously calculated f(8) = 65) . . . I subtract 8 by 

20, then I get 12 … with that 12 I times by 2 is equal to 24 … then I add 24 by 
15, is equal to 39 then I add 39 to 65, is equal to 104. 

Interviewer: Just explain the 15 please  
Harold: That’s the 15 I added by 50 (f(7)) to get 65 (f(8)). 

 
Decomposition of input value 
The introduction of “non-seductive numbers” gave rise to other inappropriate strategies when students 
could not find a multiplicative relationship between the non-seductive numbers. For example: 

Interviewer: How many cans do we need to build Pyramid 23? (activity IIIP)  
Errol: [Long pause … staring at the database. In the previous problem (activity IP) he 

prepared a “table" of values using recursion up to f(20) and then used the 
proportional multiplication method to predict f(60). He presses on the 
calculator 64 + 64 + 49 + 30]…ya  .. it’s ..207.  

Interviewer: Can you explain how you got your answer please? 
Errol: Ya, … 8 (referring to Pyramid 8) is 64 and 7(referring to Pyramid 7) is 49 … 

so I add 64 + 64 + 49 and then another 30. 
Interviewer: Why did you add those numbers? 
Errol: … Uhmm … because if I take … 8 + 8 + 7 = 23 … so I take the number by 8 

(referring to f(8) ), then I add it to itself  and then I add the number by 7 to it. 
Interviewer: Okay I understand, but where does the 30 come from? 
Errol: I minus the 8 by 23 (he means 23 minus 8), so I get 15 … so I multiply by 2, 

then I get 30. 
Interviewer: Can you explain to me why you did that? 
Errol: … the difference in between is growing by 2 every time … 

 

This method, generally symbolized by f(n) = f(a) + f(b) + f(c) where a + b + c = n, was also used by 
other students. It seems that this strategy is born out of students’ inability to find factors for 
numbers such as 19, 23, 59, 117. One student calculated f(60) = f(20) + f(20) +f(20). This method 
could be seen as a variation of the proportional multiplication error, rooted in the close relationship 
between repeated addition and multiplication 
 
The difference method 
The erroneous difference method, symbolised by f(n) = n × d was invoked with both “seductive” 
and “non-seductive” numbers.: 

Interviewer: Ok, how many in Picture 23? (How many tiles in Picture 23 in IVT?) 
Linda: (works on calculator) . . . 92 
Interviewer: Just explain please? 
Linda: It will take too long to add 4 every time (she previously found a constant 

difference of 4 between the terms of the sequence). So I just said 23 times 4. 
It could be argued that the inclusion of a direct proportional example where f(n) = an would have 
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presented children with the conflict situation which would then perhaps limit both the proportional 
multiplication and difference method errors. However, Orton and Orton (1994) included such an 
example, but these errors still persisted. 
 
The visual impact of tables 
From Table 1 it is clear that the visual presentation of the numbers in a table format for the function 
did not impact on the errors children made. The table in activity IT was horizontal and “continuous” 
whereas the table in IIT was vertical and “non-continuous”. Four children made the proportional 
multiplication error in both these examples. One student committed the difference method error in 
IT whilst 3 students committed the error in IIT. The way we presented the questions as “continuous” 
or “non-continuous” in the picture activities also did not effect children’s strategies. This can 
probably be explained by the fact that when the input numbers were not presented in writing, 
children made their own “continuous” “tables”, so the visual distraction remained. 
 
“Transparent” vs. “non-transparant” pictures  
In IP five students successfully recognised the function rule from the structure of the picture. Two 
other children, when counting the number of tiles in each picture aloud, used the structure of the 
picture : “ … 4×4 + 1 = 17 , … 5×5 + 1 = 26 , … 6×6 + 1 = 37 …” but did not reflect on the 
structure they had verbalised and thus could not find the function rule. 
 
In IIP most students recognised that 2 squares (8 matches) were being added but then converted to 
numerical mode, constructing their own “table” of values, e.g. “ … 1 = 4, 2 = 12, 3 = 20, etc.”. Only 
two children described the function rule from the structure of the pictures, namely as (n + n – 1) × 4 
and n × 4 + (n – 1) × 4 respectively. 
 
No child could recognise the function rule of using the picture as the database in IIIP. Two students 
found the function rule once they reverted to the number context.  
 
Only one student used the structure of the picture in IVP to identify the function rule. 
 
It seems that these students do not have the necessary know-how of how to use the structure of a 
picture to find a functional relationship. If one wants to find a function rule in a table, one 
necessarily takes some specific value of the independent variable (input number) and tries to 
construct a relationship between this input-output pair. In the case of pictures, few children seem to 
intentionally take a specific input number and try to see this number in the structure of the picture, 
as illustrated in the following diagram: 

 
Shape 3 Shape 4 

II 

 Picture 2 Picture 3 

IV 

 
Of course, it further requires a rich number sense, e.g. in II to see a further relationship in the 
numbers (2 is one less than 3, and 3 is one less than 4) before one can formulate the function rule 
[n + (n – 1)] × 4. In IV one must see the multiplication or equal addition structure before one can 
formulate the rule 4 × n + 1. A weak number sense will therefore also contribute to students’ 
difficulties in using the structure of pictures to see the general in the particular required to formulate 
function rules.  
 
Most students could see and use the structure of the pictures in a recursive way, e.g. in II students 
used the structure that 2 squares (8 matches) are added each time, and in IV they used the structure 
that 4 tiles are added to each successive picture. However, this did not help them to find the 
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function rule, and students mostly then constructed a table of these values and then used the 
numbers in the table inductively. Of course, one could use the extended recursion method to use 
this recursive structure to formulate the function rules as 4 + 8(n – 1) and 5 + 4(n – 1) respectively. 
It is interesting that all cases of the use of the extended recursion method were in the context of 
tables and none in the context of pictures. 
 
In all activities where students identified a function rule, most of them described their rule in words 
rather than using symbols. A distinction can also be made between those who could verbalise the 
rule using general language (e.g. in IP “..times the number by itself and add 1”) and those who could 
only verbalise the rule in terms of a specific number (e.g. “…if I know the number, say if it is 
100,.then I times 100 by itself and add 1).  
 
Verification of strategies 
Consider the following protocol: 

Interviewer: Ok, Shape 19? (How many matches in Shape 19 in IIP?) 
Peter: (Peter successfully found f(7) and f(8) by counting the number of squares and 

then multiplying by 4 to get the number of matches. Now he starts making a 
systematic table of the number of squares in each Shape, using a recursive 
pattern: 

7 8 9 10 11 12 13 14 15 16 
13 15 17 19 21 23 25 27 29 31 

 He then stops and goes back to looking at the pictures again.) 
 OK, I realised if I do this it is a bit of a hassle, so I looked at the pattern (in his 

database) and I figured the difference  (between f(n) and n) 
 I took here  (pointing at f(5)) . . . the difference between 9 (f(5)) and 5 (n) is 4 

and by number 6 it is 5 . . .  yes (he checks again) . . . 5. And by number 7 it is 
6 and by number 8 it is 7. So I just tried it out. So I said to myself OK it is 
right and it will take too long to do it like this (referring to his table of values). 
So Shape 19 is 19 + 18, is 37, so 37 blocks times 4 gives you . . . 148 (using 
the calculator). 

Interviewer: OK, and in Shape 59? 
Peter: OK, its 59 + 58 is equal to 117, that is the number of blocks and then I take 

117 (enters on the calculator) times 4 which gives the number 468, that is the 
number of matches in Shape 59. 

 
Clearly, Peter has constructed an efficient rule, which we can symbolise as [n + (n – 1)] × 4, based on 
a sound analysis of patterns in the given and extended database, and he verified that his pattern holds 
against the database several times. He was convinced and he could use the method with assurance. 
 
However, this style of working stands in stark contrast to most students’ approach to such 
generalisations. While the students who used a function rule necessarily deduced the rule from the 
database, the other strategies reported in this paper are mostly not based on the database – students 
did not find the methods in the database, nor did they check it against the database. This applies to 
correct as well as to incorrect strategies. Students seem not to realise the need to validate their 
generalisations, and seem not to have the know-how of how to validate a generalisation against the 
database. 
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DISCUSSION 
As in our previous study, students worked nearly exclusively in the number context and not with 
the pictures, favoured recursion methods, had difficulty in finding function rules and made many 
errors, including the proportional multiplication error. There is, however, one marked difference, 
namely the variety of strategies used by the students in the present study in comparison to the 
previous study. Of course this could be attributable to the differences in the subjects, who are at a 
different grade level, and from a different socio-economic background. We would argue, however, 
that the difference is mainly attributable to the introduction of non-seductive numbers in our 
activities. 
 
It is for this reason (the greater variety of strategies), that we plan to extensively use non-seductive 
numbers in our planned intervention. However, as is evident from the examples in this paper, the 
use of non-seductive numbers will probably not prevent the ubiquitous proportional multiplication 
error when students encounter seductive numbers, nor will it prevent the other erroneous strategies 
reported here. For that we believe we should address two more fundamental issues, viz. 

1. The development of an awareness of the need to view any strategy as an hypothesis that should 
be validated against the database, and a focus on skills of how to do it. 

 When one looks at the variety of strategies used by children, one can probably safely say that 
they have the ability and flexibility to find many patterns and relationships between numbers. 
The problem, however, is that most children are finding random relationships between the 
numbers without reference to the given database. We are struck not so much by the frequency 
and persistence of children’s errors, but by their lack of an essential aspect of "mathematical 
culture", namely to view any strategy as an hypotheses that should be justified or verified 
against the given database. It seems that students lack simple strategic knowledge, e.g. to test an 
hypothesis against special cases. 

2. A more explicit study of the properties of different function types, and a comparison of such 
properties to become aware which properties apply to which function types. 
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