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This paper reports on the findings of an on going research study which investigates the
problems that a class of Grade 6 students experience in the process of learning about the
structural aspects of numerical expressions. The aim of this study is to see to what extent a
focus on the structural properties of numerical expressions can assist students' handling of
algebraic structures of numerical expressions. Data collected thus far shows that students are
not always able to transfer their structural knowledge of numerical expressions to new
situations. This was especially evident in situations that involved the solving of an equation or
judging the equivalence of expressions without doing a calculation. The findings support the
need to focus on tasks other than computational tasks in developing students’ structural
understanding of numerical expressions.

Introduction
This research developed in the context of a number of studies (Booth 1988, Matz 1980, Lins
1990) that investigated the difficulties that students have in algebra and more specifically the
difficulties in the manipulation of algebraic expressions. The research of Chaiklin and Lesgold
(in Kieran, 1991) provide evidence that these difficulties are rooted in a poor understanding of
the structure of numerical expressions. By the structure of an expression is meant its surface
structure in the sense of Kieran 1989. Linchevski and Livneh (1996) analysed the solution
procedures of students to different numerical versions of a particular algebraic structure. This
study revealed that the specific number combinations often shifts the focus of attention from
the structure (the rules for the order of operations) to the numerical properties of the given
expression in such a way that the meaning of the expression is changed.

In most traditional curricula, as pointed out by Kieran (1989), the emphasis in arithmetic is on
“finding the answer”, which allows the students to get by with informal, intuitive procedures.
In algebra, however, they are required to recognise the structures that they have been able to
avoid in arithmetic. We take note of research that cautions against taking too simplistic a view
of algebraic expressions and their analogous arithmetical transformations. Demby (1997), for
example, analysed the procedures used by students in simplifying or transforming algebraic
expressions. This research shows a correlation between the ability to transform algebraic
expressions and the dominant feature (semantic or syntactic) of the procedure. The most
successful students used semantic procedures more frequently. Demby (1997) uses semantic
in the sense of “algebra as generalised arithmetic.” Students who were able to use different
kinds of procedures also performed well. Of interest to us in this research is the inability of
students to use their understanding of the basic operations in explaining the validity of an
algebraic transformation. There is, however, evidence that procedures that most often lead to
the correct transformation involved a change in the surface structure of the expressions. Based
on this research we believe that a focus on the structural aspects of numerical expressions is a
necessary part in laying the foundation of algebra. Our pedagogical approach is set within a
constructivist framework taking into consideration that students' construction of knowledge
follows experiences in which they, for example, construct rules for the order of operations
through the process of generalisation of data given. Both computational and non-
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computational tasks are given to consolidate these rules. These tasks are designed with the
purpose of generating discussion on the structure of the expression and its underlying
meaning. We also take into consideration the diversity in ability and address the specific
misconceptions and difficulties of students in the process.

In this paper we will describe the experiences of students with a particular focus on:
1. The ability of students to generalise structural features of numerical expressions.
2. The ability of the students to transfer the new structural knowledge to different contexts.

Research Setting
Background of sample.
The grade 6 class of 44 students is from one of our project schools. Students in this school are
grouped heterogeneously. The four basic operations on the whole numbers are addressed in
the earlier grades. Students are formally introduced to numerical expressions involving more
than one operation for the first time in grade 6. They do, however, use informal methods in
word problems and computations, for example, 6 × 12, in which they decompose 12 (as
6 × 10; 6 × 2; and then adding 60 + 12 = 72) to obtain the total. The students do not however
structure the computation as 6 × 10 + 6 × 2.  This research started after eight months of the
project’s involvement in the school. This report is based on data collected after a period of
eight lessons of forty minutes. The teacher involved had established a culture of groupwork
with the students but was having difficulty in handling the diversity of student ability.

The Teaching Experiment
The research was conducted in a co-operative teaching environment between the researcher
and the teacher. The researcher often interacted with the students as they worked in groups, or
as individuals on tasks, asking and sometimes answering questions. The researcher also
conducted some of the whole-class discussions. The researcher assisted the teacher in
handling the diversity in the class which involved making decisions for written assessments,
the analysis of tests and the grouping of students into either heterogeneous or homogeneous
groups based on the results as well as preparing materials for the different groups (Linchevski
and Kutcher, 1998). Unstructured observational field notes were collected during every
lesson. The data collected also included the written work of the students (including
assessment) and interviews with individual students. The interviews were mostly informal,
with notes taken during the interview and expanded immediately afterwards.

The Teaching Materials
The activities designed for the rules for the order of the operations was set in the context of
finding the value of numerical expressions using both the scientific and non-scientific
calculator as computational tools. The students were presented with numerical expressions
whose structure created conflict, for example, 4 × 6 + 7 × 9, produced the answer 87 for the
scientific calculator while the non-scientific calculator produced the answer 279. Numerical
expressions that did not create conflict, for example, 4 × 7 × 9 + 5 were also given. The first
activity, for example, only included expressions containing multiplication and addition.
Expressions with either only multiplication or addition were also included for students to
reflect on structures that they were familiar with. The students were asked to complete the
table (taken form the first activity) below:
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Number Expression Scientific Calculator “Sequential”  Calculator
4+5 × 17

12 × 9 + 28

14 × 1 + 11

4 × 6 + 7 × 9

12 + 9 + 7

15 + 8 × 9 + 12

4 × 7 × 9 + 5

4 × 7 × 12 × 9

14 + 7 + 23 × 7

12 + 15 × 3 × 9

Table 1

Students were told that when the two calculators give different values, the scientific calculator
gives the correct answer. The students were then expected to analyse the data in the table and
to formulate rules about the order of operations to produce correct answers, i.e. to "discover"
the rules used by the scientific calculator.

Activities were then given in which the students focussed on the rules which were set in
different contexts. Here we distinguish between two kinds of contexts, one that involves doing
calculations and another that focuses on the recognition of the structure without the need to
calculate.
Below is an example of tasks focusing on the structure without the need to calculate:

1. Find an order in which the operations have to be done in the following number
sentences.
In each case find two ways in which it can be done if possible.

Example:

3 + 8 ×××× 7 + 5

3 1 2
3 + 8 ×××× 7 + 5

2 1 3
3 + 8 ×××× 7 + 5

1a.     4 × 5 + 6 × 2 1b.       4 × 5 + 6 × 2

2. Find numbers to put in the following structure that gives an answer of 124:

      +        ××××
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The teaching sequence and class-setting
The first activity was given to all the students who worked in heterogeneous groups. Based on
the nature of the observed group discussions and the whole-class discussion it was decided to
give the whole class a short diagnostic test to probe the source of the difficulties that the
students had in dealing with these numerical expressions. The students were asked to calculate
the value of eight numerical expressions without the use of a calculator. The test items where
designed to see whether the nature of the operations in the expressions as well as the nature of
the numbers played any significant role as distracters. This is illustrated by the following three
items taken from the test:

1. 4 × 3 + 5 × 2 × 6
2. 4 × 3 + 5 + 2 × 6
3. 4 × 5 + 5 × 2 × 6

Based on the analysis of the test results the students were re-grouped according to their
misconceptions or difficulties identified. Students worked in these homogenous groups on
various activities designed to address their specific problem. The students were then given
another assessment to see whether they could transfer their structural knowledge to situations
that required determining whether numerical expressions were equivalent. The students were
at this stage not familiar with the term equivalence and were simply asked in the test to
identify expressions that would give the same answer. Based on the previous assessment and
observations in the lessons there appeared to be definite interference of the structural
properties of expressions involving only one operation. Students intuitively understood the
commutativity of addition (3 + 4 + 5 = 3 + 5 + 4) and generalised this to structures involving
more than one operation, for example, 3 + 4 + 5 × 6 being equal to 3 + 5 + 4 × 6. The test
items were designed once again on the basis of the nature of the operations to check for this
kind of overgeneralisation. The students were not allowed to use calculators and the numbers
chosen forced them to focus on the structure rather than calculating. Here are three of the six
items given in the test:

1. Which of the following has the same answer as 302 + 79 + 128 × 29?
a. 302 + 128 + 79 × 29

 b. 128 + 79 + 302 × 29
c. 302 + 79 + 29 × 128
d. 79 + 302 + 128 × 29
e. 79 + 302 + 29 × 128

2. Which of the following has the same answer as 47 + 302 × 58 × 894?
a. 47 + 58 × 302 × 894

 b. 47 + 894 × 58 × 302
c. 302 + 47 × 58 × 894
d. 47 + 302 × 894 × 58
e. 47 + 302 × 894 × 58

3. Which of the following has the same answer as 302 + 79 × 128 + 29?
a. 302 + 128 × 79 + 29

 b. 79 + 302 × 128 + 29
c. 302 + 79 × 29 + 128
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Results
On Formulating A Rule
The following question by one student in a group after having completed the data in Table 1of
the first activity sums up the problem for nearly all of the students:

S1: “I know what a rule is, but how are we going to find it?”

In the activity the students were told that the scientific calculator produced the correct answers
in situation were there was conflict. The rules formulated by the students was based on this:

S2: “ The scientific calculator gives the correct answer”

The student reverted back to this kind of reasoning even after being challenged to find out
how the scientific calculator gets the correct answer:

S2: “It takes in the number expression and then works out the answer right”

Only one student made a suggestion of how the scientific calculator might work in a specific
numerical expression:

S3: “The number 17 in 4 + 5 × 17 is broken down to 10 and 7 first"

The students were clearly not reflecting on how the two calculators produced the answers. We
realised that if we had perhaps asked the students to work out the answers to the numerical
expressions first before introducing the two calculators the students would maybe have
reflected on how they obtained their answers.

The students were then given the following calculation to do without the calculator:

762 + 5 × 4

The students arrived at three different answers as shown by their methods:

1.    762 + 5 × 4
 = 5 × 4 + 762
 = 20 + 762
 = 782
 

2.   762 + 5 × 4
 = 767 × 4
 = 3068

 

3. 762 + 5 × 4

700 × 4    = 2800
60 × 4      = 240
2 × 4        = 8
3048 + 5 = 3053
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The students returned to the activity trying to find the rule by calculating the values of the
numerical expressions to see if they could get the answer of the scientific calculator. The
range of expressions presented to the students provided valuable discussion in trying to
formulate the rule. Students who, for example, initially generalised the rule as “when the
multiplication is first in the expression, the answers are the same” were immediately
challenged by others who pointed out that this was not true in the case of expressions like
a × b + c × d.  The rule was formulated in two slightly different ways:

R1: “Break it up into parts, do the multiplication and then add”
R2: “Put brackets around the multiplication sums first, then add”

Both of these formulations led to misinterpretations. For example, in calculating the value of
5 × 3 + 2 × 4 × 6 + 7 × 9, a student explained that he used brackets “to break it up into parts”
and then multiplied:

(5 × 3) + (2 × 4) × 6 + (7 × 9)

15 + 8 + 63 = 86

86 × 6

The rest of the students immediately disagreed with this strategy indicating that “he was not
supposed to multiply at the end”. A student went on to explain that the six should have been
added to eighty-six:

S4:    4 × 6 + 7 × 9

= (4 × 6 × 9) + 7

S4 explained his method: “I did the multiplication sums, I put a bracket around it and then
added.”  The identification of the multiplication as a unit is clearly the problem. A possible
cause for this could be the emphasis on doing the multiplication first or interference of
previous knowledge of the commutativity of multiplication in structures like
a × b × c × d = a × b × d × c  which is overgeneralised to the structure  a × b + c × d.

This emphasis on “doing the multiplication first” also prevented students from accepting that
it was possible to add first, for example in the expression 7 × 3 + 9 + 10.

On Applying A Rule in Computational Contexts
The analysis of the first assessment confirmed that the recognition of the multiplication as a
unit in the expressions was a problem for the students. Four groups of students were identified
on the basis of this ability to recognise the multiplication as a unit:

Group 1. Recognises the unit and applies the rule correctly in all expressions (23
students)

Group 2. Recognises the unit but gives up the rule in certain expressions (3 students)
Group 3. Does not recognise the unit in all expressions (14 students)
Group 4. Does not recognise the unit in expressions where two or more consecutive

multiplication operations (2 students)



7

Students in the first group often produced incorrect answers due to overgeneralisations of
previous rules. In the following example, 4 × 3 + 5 × 2 × 6, many students showed their
method of calculation as 12 + 10 + 12. In an interview one student explained:

S: “We did this in grade 5.”
The student writes down her own example, 6 × 12 + 30 and proceeds to explain:
S: “Six times ten is sixty plus the six times two is twelve”

It is evident here that the student applies the distributive law intuitively:
6 × (10 + 2) = 6 × 10 + 6 × 2

and then overgeneralises incorrectly to 5 × 2 × 6 = 5 × 2 + 6 × 2. This overgeneralisation is
only induced in expressions that contained the addition and not in those that contained only
multiplication.

Students in the second group often gave up the rule where the expression had more than one
multiplication unit, for example, 4 + 3 + 6 × 2 + 3 × 5, as shown in a student’s method:

4 + 3 + (6 × 2) + (3 × 5)

12 + 3 = 15 × 5 = 75 + 4 = 79 + 3 = 81

From the interviews it became evident that students misinterpreted the rule “first multiply and
then add” to mean that once a multiplication was carried out the rule was applied. Here we see
conflict between the recognition of the multiplication units and the interpretation of the rule.

In the third and fourth groups students either worked sequentially or paired off the numbers,
for example: 4 + 5 + 5 × 2 × 6 + 4

= (4 + 5) + (5 × 2) × (6 + 4)
=   9   +   10 × 10
=  190

On Applying A Rule in Non-Computational Contexts
The strategies of students working on the task where numbers had to be placed in a given
expression to produce a given number indicated that they were not using the agreed structure
of the expressions. This was also evident in the numbers that the students chose to put into the
expressions. Students who were able to find the numbers in the structure a + b × c =1241, had
difficulty with the specific example 5 + 5 × c = 124. Most of the students worked sequentially,
first adding to get 10 × c. The trial and error method was then used to find c. It is interesting to
note that many of the students who resorted to the sequential method started by saying
“5 times what?”. This suggests that they did recognise the multiplication as a unit but viewed
it procedurally, from left to right i.e. they did not handle it as 5 + 5 × c = 5 + x where x = 5 × c.
It is also possible that students were distracted from the structure by the nature of the specific
seductive numbers (5 + 5), as reported by Linchevski and Livneh (1996).

The students did not go back to the original structure to check their solution. When checking
their solution most of the students worked sequentially, including students from Group 1 in
the first assessment. This did not help in creating conflict and we had to ask the students to

                                           
1 Letters were not used in the tasks. It is merely used here for reporting on the students.
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reflect on the rule for the order of operation (compare Herscovics and Linchevski, 1994). We
encouraged these students to use the calculators to find c. Students entered various
computations into the calculator, for example, 124 ÷ 5 and 124 × 5. It is evident from this that
they were not using the structure correctly. One of the students from Group 1 determined the
value of c = 23,8 by trial and error and the correct application of the rule. In his method he
used the commutative property of addition but from his explanation it is evident that this is
based on the rule for the order of operation:

S: “I know that it cannot be 24, the answer will be 125. So I started with 23,4 and I must
multiply first and then add”
    Method written on the board by the student: 23,4 × 5 + 5 = 122

23,6 × 5 + 5 = 123
23,8 × 5 + 5 = 124

The students were then asked how they could determine the answer of 5 × 23,8 without
multiplying. Only one student, worked with the structure, stating that it has to be 119 because
5 + 119 = 124.

In the second assessment on judging the equivalence of numerical expressions, only four
students (all from Group 1 of the first assessment) were able to judge the equivalence of all
the expressions given. These students determined the equivalence by checking to see whether
the numbers in the multiplication unit were the same: For example, in the item

Which of the following has the same answer as 302 + (79 × 128) + 29?
a. 302 + (128 × 79) + 29
b. 79 + (302 × 128) + 29
c. 302 + (79 × 29) + 128

one student explained his choice of  302 + (128 × 79) + 29  “because that one only had the
same numbers in the brackets as the one given”.
The most common strategy used by students to judge the equivalence of the expressions was
that of pairing off the numbers from left to right. This strategy enabled the students to
establish the equivalence without an understanding of the structures in certain of the test
items, for example:

Which of the following has the same answer as 302 + 79 + 128 × 29?

a. 302 + 128 + 79 × 29
 b. 128 + 79 + 302 × 29

c. 302 + 79 + 29 × 128
d. 79 + 302 + 128 × 29
e. 79 + 302 + 29 × 128

This following test item helped to expose those students who used this strategy:

Which of the following has the same answer as 302 + 79 × 128 + 29?

a. 302 + 128 × 79 + 29
 b. 79 + 302 × 128 + 29

c. 302 + 79 × 29 + 128
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Another strategy was the incorrect application of the commutative property in parts of the
expression, for example 302 + 128 + 79 × 29 was considered equivalent to
302 + 79 + 128 × 29, since 128 + 79 is equivalent to  79 + 128.

Conclusions
The initial responses of the students in their attempts in trying to formulate a rule from the
data presented in Table 1 suggests that they are not familiar with the process of analysing data
in tables. None of the students considered looking at the expressions in the table, for example,
in which both calculators produced the same answer and then trying to see what their
structures had in common. In fact, this strategy had to be suggested to them to initiate
progress. In the whole-class discussion it became evident too that the students did not see the
need for a rule. Finding the general rule for the structure of the expressions was very difficult
for the students. It is significant to note that the students were not able to generalise the
information from a structural perspective. By this we mean that the students were not able to
see the relationship between the nature of the operations in the structures and the outputs of
the calculators. The students needed to calculate the value of the expressions first and only
then on reflecting how they calculated were they able to formulate the rule. The inability of
the students to transfer their structural knowledge to non-computational contexts provides
evidence of how deeply ingrained and powerful the sequential processing of information is. It
has also confirmed various research findings on how difficult it is for students to develop a
structural view. In the context of solving equations the students relied on procedural
conceptions. In those contexts where the students had to establish numerical equivalence it is
evident that they are not aware of how to judge the equivalence of two expressions. Their
previous experiences are based only on doing a calculation. It is also clear that the students did
not relate their knowledge acquired to the new task.  As part of our ongoing research we will
monitor whether the ability to handle numerical expressions structurally improves after
experiences in which they focus on the structural aspects.
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