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Mathematically and thermodynamically there are no irreversible reactions in chem-
istry, and all enzymes catalyse reversible reactions. All reactions have finite stan-
dard Gibbs energies, which is just another way of saying that they all have finite
equilibrium constants. Nonetheless, for an enzyme like pyruvate kinase, with an
equilibrium constant of the order of 105, one may feel that this is just a math-
ematical nicety and that the thermodynamic necessity for the reverse reaction
to be possible has no practical consequences for cell physiology, and in practice
many metabolic reactions are conventionally regarded as irreversible. This typi-
cally means that they have equilibrium constants of the order of 1000 or more,
though when the mass action ratio in the cell also strongly favours the forward di-
rection a reaction with a substantially smaller equilibrium constant than this can
be regarded as irreversible. For example, the hexokinase reaction has an equilib-
rium constant that is less than 250 at pH 6.5 (Gregoriou et al., 1981), but the reac-
tion is still considered irreversible because in normal physiological conditions the
concentration of glucose is always much greater than that of glucose 6-phosphate
and the concentration of ATP is usually greater than that of ADP.

In metabolic simulations the difficulty and inconvenience of using complete
reversible rate equations for all the enzymes is aggravated by the fact that for
nearly all “irreversible” enzymes virtually no kinetic measurements of the rates of
the reverse reactions, or even of the effects of products on the rates of the forward
reactions, have ever been reported. In the absence of any data, therefore, one is
forced to choose between ignoring the reverse reaction altogether or guessing
what its kinetic parameters might be on the basis of the values of the equilibrium
constant and of the kinetic parameters for the forward direction. It would hardly
be surprising if many simulators faced with such an unappealing choice preferred
the easier option of ignoring reverse reactions, apparently safe and no worse than
just guessing the parameter values.

Our view is that it is always best to use reversible equations in metabolic sim-
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ulations for all processes apart from exit fluxes, and similar sentiments are ex-
pressed in the documentation for the simulation program Gepasi (Mendes, 1993).
Even so, we were surprised how large the effect of allowing for the reverse reac-
tion of pyruvate kinase in a model of glycolysis in Trypanosoma brucei proved to
be (Eisenthal & Cornish-Bowden, 1998; Cornish-Bowden & Eisenthal, 2000). With
this step treated as strictly irreversible transport of pyruvate from the cell had
a flux control coefficient of zero, as expected for a step following an irreversible
step. What was not expected, however, was that allowing for the reverse reaction
of pyruvate kinase by assuming reasonable parameter values consistent with the
equilibrium constant of about 105 would perceptibly change all of the flux con-
trol coefficients in the system and that export of pyruvate would go from having
no flux control at all to having the second largest flux control coefficient in the
system.

The model of glycolysis in Trypanosoma brucei, developed originally by Bakker
et al. (1997), is relatively complex, with 20 steps in four compartments; many of
the steps have multiple substrates and products, and the metabolite concentra-
tions as a whole are constrained by four different conservation relationships, one
of them highly complicated and unintuitive. All of this makes it a rather unsuit-
able model for analysing the effect of allowing for the reversibility of pyruvate
kinase, and one may suspect that the unexpected behaviour observed was related
in some way to the complexity of the model. We therefore decided to investigate
the question in the context of a model simple enough for the results to be fully
understood.

We have therefore compared the results of simulating the metabolic behaviour
of the four models illustrated in Fig. 10.1. The most complete version of this
model is shown at the top-left as Fig. 10.1a. In this version there is a feedback
loop from the end-product S5 to the first step, catalysed by E1, which follows the
reversible Hill equation (Hofmeyr & Cornish-Bowden, 1997) with a Hill coefficient
of 2; in addition, E4 is represented by a reversible rate equation even though the
equilibrium constant of 5×105 might be regarded as large enough for the reverse
reaction to be neglected. In two of the variant versions of the model, 1c and 1d,
the feedback effect of S5 on E1 is absent, and in models 1b and 1d the reaction
catalysed by E4 is made strictly irreversible.

The four versions of the model thus include all possibilities necessary for de-
ciding whether taking proper account of feedback inhibition is more or less im-
portant than allowing for the small degree of reversibility in a reaction with a
very large equilibrium constant. If allowing for this small degree of reversibility is
trivial, whereas ignoring a feedback loop is crucial, we should expect the results
from models 1a and 1b to resemble one another and to differ from those from
models 1c and 1d. However, if it proves essential to allow for even a small de-
gree of reversibility, but unimportant to take full account of a feedback loop, then
we should expect models 1a and 1c to resemble one another and to differ from
models 1b and 1d.
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Fig. 10.1 A model pathway with (a,b) and without (c,d) feedback inhibition of the
first step by the end product, and taking account (a,c) or not (b,d) of a very small de-
gree of reversibility in the fourth step. The rate of the reaction catalysed by E1 was
10X0(1−S1/25X0)(X0+S1)/[1+ (X0+S1)2+S2

5]; when there was no feedback inhibition
the term in S5 was omitted from the denominator. Step 2 was treated as an equilibrium
with equilibrium constant of 1. E3 and E5 followed reversible Michaelis–Menten kinetics
with forward and reverse limiting rates of 8 and 0.5 respectively for E3 and 12 and 2
respectively for E5, and forward and reverse Michaelis constants of 2 and 3 respectively
for E2 and 0.5 and 2 respectively for E5. In models (a) and (c) E4 also followed reversible
Michaelis–Menten kinetics, with forward and reverse limiting rates of 10 and 0.001 re-
spectively, and forward and reverse Michaelis constants of 0.5 and 25 respectively; in
models (b) and (d) the ordinary irreversible Michaelis–Menten equation was used with
limiting rate 10 and Michaelis constant 0.5 (effectively setting the reverse limiting rate
to 0 and the reverse Michaelis constant to infinity). The exit flux catalysed by E6 fol-
lowed Michaelis–Menten kinetics with Michaelis constant 0.5 and a limiting rate V6 that
was varied to simulate changes in demand. The concentration of X0 was fixed at 10. All
simulations were done with Gepasi (Mendes, 1993), version 3.21, which was downloaded
from http://www.ncgr.org/software/gepasi/.

So far as the flux and the flux control coefficients are concerned it turns out
that neither of these expectations is fulfilled. As illustrated in Fig. 10.2, three
models give qualitatively very similar behaviour but the fourth, model 1d, is very
different. In other words one can ignore either feedback loops or reversibility with
relatively little effect on the flux properties, but one cannot ignore both. Although
at first sight perhaps surprising, both aspects of this result are consistent with
what was known before. The contribution of feedback inhibition to metabolic reg-
ulation has been previously analysed in several models without any internal irre-
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Fig. 10.2 Variation of the distribution of flux control as a function of demand for the
four models illustrated in Fig. 10.1. The layout is the same as in Fig. 10.1, and the letters
(a–d) refer to the same four cases. The variation of the flux J with the demand is shown
in the inset to each plot.

versible steps but of varying degrees of complexity (Hofmeyr & Cornish-Bowden,
1991; Cornish-Bowden et al., 1994, 1995), with consistent results: in all cases
the importance of feedback inhibition (and the degree of cooperativity of such
inhibition) has been found to lie not in more effective flux regulation but in al-
lowing metabolite concentrations to remain relatively little changed when the flux
changes. Similarly, the finding that a step that is isolated from the rest of the
system by an irreversible step cannot exert any flux control is a classical result in
control analysis.

Model 1b gives results that resemble those from the complete system much
more than they resemble those from model 1d, even though it interposes a com-
pletely irreversible step between the last two enzymes and the rest of the pathway.
The explanation is that even though E5 and E6 follow an irreversible step they are
not isolated by it from the rest of the pathway because they can communicate
with it through the feedback loop. So far as flux control is concerned, therefore,
what is important is that the end product can communicate with the early steps
in a pathway; it does not matter whether this communication is along the chain
or via a feedback loop. A practical illustration is provided by serine biosynthesis
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Fig. 10.3 Variation of metabolite concentrations as a function of demand for the four
models illustrated in Fig. 10.1. The layout is the same as in Figs. 10.1–10.2, and the letters
(a–d) refer to the same four cases.

in bacteria and mammals (Fell & Snell, 1988): in bacteria the end product serine
acts as a feedback inhibitor, but in mammals it does not, acting only as an ordi-
nary product inhibitor; in both cases, however, it regulates its own synthesis quite
effectively. Moreover, in the case of an almost irreversible reaction it is not the
near-zero term in the numerator of the rate expression that is essential for com-
munication with the earlier steps but the terms in product concentration in the
denominator. In other words it is not reversibility as such that is important but
the possibility of product inhibition.

As in previous studies of feedback inhibition (Hofmeyr & Cornish-Bowden,
1991; Cornish-Bowden et al., 1994, 1995), the crucial difference between models
with and without such inhibition is not in the flux behaviour but in the changes
in metabolite concentration that accompany changes in flux. In the present case,
illustrated in Fig. 10.3, the concentration patterns for models with feedback inhi-
bition are virtually identical whether or not the reversibility of the fourth reaction
is allowed for (Fig. 10.3ab). The two cases without feedback inhibition (Fig. 10.3cd)
are not identical but are still much more similar than the corresponding patterns
for the flux (Fig. 10.2cd) might lead one to expect. In the fully irreversible case
(Fig. 10.3d) lowering the demand to below the flux delivered by E1 causes the con-
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centrations of the intermediates that follow the irreversible step to rise to infinity,
so that no steady state is possible; in the almost-irreversible case (Fig. 10.3c) these
concentrations also rise to very high values, albeit not to infinity.

If flux regulation were the only consideration, one might consider Fig. 10.2c to
represent the ideal, with flux strictly equal to demand until the limit that the sys-
tem can deliver. In contrast, in Fig. 10.2ab the proportionality is only approximate
and the flux is always a little less than the demand. However, this imperfection is
very slight, and the “perfection” of Fig. 10.2c is bought at the very heavy price of
complete loss of concentration regulation (Fig. 10.3c).

Gaining insight into the design of metabolic regulation has been only part of
our objective in this investigation. We have also been concerned to determine
when it is safe in a metabolic simulation to treat reactions with very large equilib-
rium constants as strictly irreversible. The conclusion is that no matter how large
the equilibrium constant one must not allow a step to completely isolate one part
of a pathway from the rest. If there is a feedback loop that allows communica-
tion around an irreversible step then the behaviour is virtually identical whether
the reversibility of the nearly irreversible step is allowed for or not. Similarly, if
terms for product inhibition are included in the denominator of the rate expres-
sion then it will make little or no difference whether the small negative term is
included in the numerator or not. Considered in these terms the initially puzzling
observation in the model of glycolysis in Trypanosoma brucei makes good sense
and does not require any explanation in terms of obscure properties arising from
the complexity of the model. In the original model with pyruvate kinase treated
as strictly irreversible (Bakker et al., 1997) there was no feedback loop around this
enzyme, and no possibility of product inhibition was allowed for. Consequently
pyruvate transport was completely isolated from the rest of the pathway and any
effects that it could have had on the regulatory structure were concealed; they
were only revealed when communication between pyruvate and the earlier steps
was permitted.
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