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1 General considerations

Since the previous recommendations for a metabolic control analysis terminology and
symbolism [1] were made, the field has developed considerably, creating an urgent need
for reconsideration and revision. In these recommendations we try to cope with the new
complexities brought to light by the analysis of ‘non-ideal’ pathways, aiming to retain
both the simplicity and the flexibility needed for use in both mathematical and biological
contexts, i.e., allowing reference to both numbered and named conversion steps, variables
and parameters. Our goal is to use a minimum number of terms and symbols, but yet to
produce a system that allows application of metabolic control analysis to any system at
any level of aggregation.

2 Distinguishing between response and control coef-

ficients

In the beginning, things were relatively simple: one could get by with only two types of
coefficient and, therefore, two symbols: (global) control coefficients C and (local) elas-
ticity coefficients ε. Nevertheless, right from the start, the response coefficient with its
own symbol, R, continued to be used, be it mostly for responses to changes in external
metabolites, not to other parameters such as enzyme concentrations. As the theory of
metabolic control analysis became more refined the need arose for a clear conceptual dis-
tinction between a response to a change in enzyme concentration (or any other parameter
that affects a step in the system) and a response to a change in the local rate of a step
(which should in principle be independent of how that change is brought about). The
main reason is that, as more complex systems were analysed with metabolic control analy-
sis, many situations were discovered where the use of response coefficients with respect to
enzyme concentrations (called enzyme control coefficients up to now) appeared to violate
the summation and connectivity theorems of control analysis. In addition, the concept
of an internal response to a variable metabolite was developed, thereby broadening the
scope of what should be classified as a response coefficient.

The entities that make up any system of coupled reactions can be divided cleanly into
two classes: (i) reactions characterised by a rate, and (ii) molecular species characterised
by a concentration (more correctly, an activity or chemical potential). Some of the molec-
ular species (the external species) must be constant for a steady state to exist, while the
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other molecular species are the variable intermediates that couple the reactions (internal
species). The external species form a part of the parameter set of a system.

The most far-reaching terminology change advocated here is to distinguish formally
between response coefficients and control coefficients on the basis of the above classifica-
tion. Control coefficients quantify systemic responses to activity changes of independent
steps of the system or of aggregates of independent steps (which correspond to indepen-
dent steps at a higher level of aggregation), while response coefficients quantify systemic
responses to changes in the concentrations of molecular species or to changes in any other
parameter of the system. In practice this means that response coefficients can be deter-
mined directly by experiment, while control coefficients have to be calculated using the
framework of metabolic control analysis. However, in ‘ideal’ pathways where aggregated
groups of independent steps form independent reaction units, the relationship between
response and control coefficients is particularly simple, often leading to an equality such
as that between the control coefficient of an enzyme-catalysed step and the response
coefficient with respect to the enzyme concentration.

2.1 Response coefficients

An external response coefficient quantifies the steady-state response to a change in any
system parameter. An internal response coefficient quantifies the steady-state response to
a change in the concentration of any variable molecular species or any functions thereof
(e.g., concentration ratios). In general, for steady-state variable y, the response coefficient
with respect to an entity q (variable concentration or parameter) is defined as

Ry
q =

(
∂ ln y

∂ ln q

)
ss

(1)

The subscript ss indicates that the whole system is allowed to relax to a new steady state
after a change in q. If the entity q affects more than one system step, the partial response
coefficient referring to the route of interaction via step i is symbolised by a pre-superscript
iRy

q , and the response coefficient is the sum of partial response coefficients [2]:

Ry
q =

∑
i

iRy
q (2)

2.2 Control coefficients

We propose the adoption of a general definition of a control coefficient based on that
given by Heinrich et al. [3, 4]. It follows from the partitioned response relationship [5]
and incorporates directly the definitions of response and elasticity coefficients:

Cy
vi

=
(∂ ln y/∂ ln p)ss

(∂ ln vi/∂ ln p)step i

(3)

where p is any parameter that acts only on step i (we explain further on why this step
must be ‘independent’). The subscript ss indicates, as above, that the entire system
relaxes to a new steady state after a change in p, and subscript step i indicates that
only the change in local rate vi of step i is considered at constant reactant, product and
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effector concentrations. This definition is in effect parameter-independent and can be
conceptualised as the steady-state response in y to a change in the local rate of step i.
Using the definitions of response (Eq. 1) and elasticity (Eq. 8) coefficients, Definition 3
can be written as

Cy
vi

=
Ry

p

εvi
p

(4)

In practice, the subscript of a control coefficient can be just the number of the step
(e.g., CJ

i ) or the name of a process, e.g., an enzyme name, the name of a pathway or part
of a pathway. The rate symbol v can be left out. For example, the control coefficient of
the enzyme hexokinase on the steady-state concentration of pyruvate should be written
as Cpyruvate

hexokinase (it is important that the enzyme name here identifies the step in question
and refers to its local activity, and not to the enzyme concentration).

A great advantage of this definition is that it can be applied at any level of aggregation
of the reaction network under consideration, step i in Definition 3 referring to anything
from an elementary step in a reaction mechanism to an enzyme-catalysed reaction to a
group of linked reactions, provided that it is independent [6]. Another advantage is that,
when p is an enzyme concentration that has a linear effect on vi, it reduces to the often-
used definition of control coefficients in terms of modulation of enzyme concentration
[1].

However, it has been shown [6] that this definition must not be applied uncritically at
any level of aggregation; its use depends on the ‘ideality’ of the reaction system. Fig. 1
illustrates the difference between ideal and non-ideal pathways, a difference which becomes
clear only when the mechanistic details of each reaction are considered. The pathway
under consideration is the 2-step enzyme-catalysed pathway in Fig. 1A. In the ‘ideal’
form depicted in Fig. 1B the two enzyme-catalysed steps are independent because they
are only linked by an unconstrained variable metabolite S1. In the dynamically channelled
mechanism depicted in Fig. 1C the existence of the intermediate complex E1S1E2 destroys
the independence of steps 1 and 2. This invalidates the use of Definition 3 at the level
of aggregation used in Fig. 1A, i.e., defining control coefficients for the enzymes by Eq. 3
alone. To select a parameter p for Definition 3 in this case, we must descend to the level
of elementary steps of the enzyme mechanism [6] (elementary steps are either binding,
dissociation, or isomerisation processes that have well-defined forward rate constants, ki,
and reverse rate constants, k−i, which are independent of other rate constants in the
system). The rate equation of an elementary step i can be written as vi = p · (ki ·
[reactant(s)] − k−i · [product(s)]), where the parameter p is introduced to modulate the
activity of the elementary step without changing its equilibrium constant; increasing p
has the same effect as increasing both ki and k−i by the same factor.

It is possible to calculate the control coefficient of any aggregated group of independent
steps in the system as the sum of the control coefficients of the independent steps. For
example, in the system of coupled enzyme-catalysed reactions depicted in Fig. 1A, the unit
steps 1 and 2 can be decomposed into the elementary steps of the catalytic mechanisms
(Fig. 1B). A y-control coefficient of, say, step 1 will then be

Cy
v1

= Cy
v1a

+ Cy
v1b

(5)

In the ideal system the summation properties of metabolic control analysis hold equally
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Fig. 1. A simple system of two coupled enzyme-catalysed reactions.
A. Each enzyme-catalysed reaction is aggregated into a unit step. B. An ideal form of the
system in (A) where each enzyme-catalysed reaction is decomposed into elementary reactions.
C. A non-ideal dynamically channelled form of the system in (A) decomposed into elementary
reactions.

for control coefficients of the four elementary steps (Fig. 1B) and for the two aggregated
steps (Fig. 1A).

In the non-ideal pathway of Fig. 1C one would write a control coefficient of enzyme 1
as

Cy
1 = Cy

1a + Cy
1b + Cy

3a + Cy
3b, (6)

summing the control coefficients of all steps in which E1 is involved1. Similarly,

Cy
2 = Cy

2a + Cy
2b + Cy

3a + Cy
3b. (7)

While the summation theorems still hold for the six elementary steps, this is no longer
true for summation of Cy

1 and Cy
2 , as they share elementary steps [8].

2.3 Elasticity coefficients

An elasticity coefficient quantifies the effect of any molecular species or parameter that
affects a unit step directly on the local rate through that step in isolation. The original
definition remains unchanged:

εv
s =

∂ ln v

∂ ln s
(8)

1This entity has also been called the ‘impact control coefficient’ of enzyme 1 [7].
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where v is the local rate of any unit step in the system and s the concentration of any
molecular species or parameter that affects the unit step directly.

A symbolic distinction has sometimes been made between elasticity coefficients with
respect to internal variable metabolites (ε) and with respect to constant concentrations
of external metabolites (κε) or enzymes (π). However, there is no conceptual difference
between these elasticity coefficients; because the subscript uniquely specifies the molecular
species or parameter to which an elasticity coefficient refers, the use of different symbols is
unnecessary (matrices of the different types of elasticity coefficients can be distinguished
by a subscript, e.g. εs or εp; see also Section 6).

2.4 Relationship between response and control coefficients

In practice, control coefficients can be calculated from the partitioned response relation-
ship (Eq. 4). As stated before, this relationship must never be applied uncritically; it is
valid in general only if i is an independent step. This is illustrated by comparing the ideal
pathway in Fig. 1B and the non-ideal channelled system in Fig. 1C. In the ideal case any
parameter p that acts only on, say, step 1 can be used to determine its control coefficients
using Eq. 4, assuming that εvi

p is known. If p is the concentration of enzyme 1, εv1
e1

= 1
when v1 is a linear function of e1. Then, Ry

e1
= Cy

1 .
If Fig. 1A were unjustly considered a valid aggregation of the channelled pathway in

Fig. 1C, then one would expect that Ry
e1

and Ry
e2

equal the control coefficients Cy
1 and

Cy
2 , and would therefore obey the classical summation theorems. However, in reality (i)

these control coefficients do not obey the summation theorems (see above), and (ii) the
direct interdependence of the two reactions caused by the intermediate complex E1S1E2

invalidates the equivalence between the response coefficients with respect to enzyme con-
centration and the respective control coefficients of those enzymes as defined in Eqs. 6
and 7 [8].

3 Co-response coefficients

The concept of a co-response coefficient has been developed as part of co-response analysis
[9, 10]. A co-response coefficient quantifies the relative steady-state responses of two
variables to a change in a system parameter. For steady-state variables y1 and y2, the
co-response coefficient with respect to parameter p is defined as the ratio of the response
coefficients of the two variables with respect to p:

Ωy1:y2
p =

Ry1
p

Ry2
p

(9)

4 Co-control coefficients

As for response and control coefficients, there is a need for distinguishing between ratios of
response coefficients and ratios of control coefficients. A co-control coefficient quantifies
the relative steady-state responses of two variables to a change in the local rate of an
independent step i in the system. For steady-state variables y1 and y2, the co-control
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coefficient with respect to rate i is defined as the ratio of the control coefficients of the
two variables:

Oy1:y2
i =

Cy1
i

Cy2
i

(10)

5 Scaled and unscaled coefficients

In metabolic control analysis both scaled and unscaled coefficients are used. The defini-
tions of the unscaled coefficients are basically the same as those of the scaled coefficients,
except that the derivatives are taken in linear space and not in double-logarithmic space.
An unscaled elasticity coefficient, for example, is defined as

ε̃v
s =

∂v

∂s
(11)

with v and s as in Eq. 8.
Scaled coefficients are most helpful in physiological interpretations of control and regu-

lation, while unscaled coefficients are sometimes more practical in mathematical contexts.
We propose that the same symbols be used for both scaled and unscaled coefficients, and
that the unscaled form be distinguished by a tilde above the symbol. For example, if Cy

i

is a particular scaled control coefficient, then C̃y
i is the corresponding unscaled control

coefficient.
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6 Summary of proposed metabolic control analysis

symbols and notation

Symbol Description

Scalars
Ry

q response coefficient of steady-state variable y with respect to variable con-
centration or parameter q

iRy
q partial response coefficient of steady-state variable y with respect to variable

concentration or parameter q referring to interaction only via step i
Cy

i control coefficient of step i on steady-state variable y
εvi

s elasticity coefficient of step i with respect to molecular species s
Ωy1:y2

p co-response coefficient of steady-state variables y1 and y2 with respect to
parameter p

Oy1:y2
i co-control coefficient of steady-state variables y1 and y2 with respect to a

change in the local rate of step i
Vectors
s vector of concentration variables
x vector of fixed external concentrations
p vector of parameters
v vector of reaction rates
J vector of steady-state fluxes
T vector of moiety-conserved sums
Matrices
N stoichiometric matrix as in ds/dt = Nv [11]
N scaled stoichiometric matrix
L link matrix relating metabolite concentrations to independent metabolite

concentrations [11]
L scaled link matrix
NR reduced stoichiometric matrix in N = LNR [11]
K nullspace or kernel matrix relating steady-state fluxes to independent fluxes

[11]
K scaled kernel matrix
In identity matrix of dimension n
εs, εp matrix of elasticity coefficients; the subscript indicates whether the coeffi-

cients refer to variable concentrations (subscript s) or to parameters (sub-
script p); if εp contains elasticity coefficients with respect to only one type
of parameter, this may be denoted by another subscript (e.g., x for external
concentrations or e for enzyme concentrations)

continued on next page
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Symbol Description
Matrices (continued)
M Jacobian matrix (NRε̃s L)
C matrix of control coefficients; if a distinction is required, the matrix of flux-

control coefficients can be indicated by a superscript J and the matrix of
concentration-control coefficients by a superscript s

E matrix of structural and local properties [K − εsL] that occurs in the
matrix equation CE = I [10]

R matrix of response coefficients; as for the elasticity matrix, a subscript can
indicate whether the coefficients refer to parameters (subscript p) or to
variable concentrations (subscript s)

O matrix of co-control coefficients
Ω matrix of co-response coefficients
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