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Classical Mechanics

Phase space: M

: 0c . M — R
Dynamics: % o4(t) = {oc(t), He)
ynamics: > 0c(t) = 10c(t), Hetpp

H.: An observable called “Hamiltonian”

H. 1s real-valued.



Quantum Mechanics

Hilbert space: 'H

: Hermitian operators

o:H—"H

Dynamics: ih%@b(t) = H (1)

H: An observable called “Hamiltonian”

H 1s Hermitian.



Inner product of ‘H: (-|-)
Definition: o: ' H — 'H is if
(Wlog) = (ov|¢) for all p, ¢ € H.

Theorem: Let o:'H — 'H be a
linear operator. Then (|ovy) € R
for all v € 'H iff o0 1s

There is no escape from Hermiticity.



In Classical Mechanics the geometry of
the phase space Is fixed.

In the geometry of
the Hilbert Space is fixed.

Is this absolutism justified in QM?



. 'Yes, because up to
unitary-equivalence there is a
single separable Hilbert space.



Defining inner product of H: (-|)

Any other inner product:
Codpe = Gl

is an everywhere-defined,
positive-definite, invertible

operator ( ).

‘= (H, )



Unitary Operator U : 'H_ L H:
(U, d) = (UV|UP)

-+
p = viewed as mapping

onto 7/ is a unitary operator.



States vectors ¥V and ¢ ;= p V¥ are
in
Observables o : H — 'H and
O:=plop: H, —H, are

in
Expectation values are identical:

(W, 00),  (|oy)

(W, W), W)



Let a quantum system be described
by (H.o0,h) where o stands for an
arbitrary observable and /1 the
Hamiltonian. Then the same
system may be described by

where

(H,o0,h) and provide two
physically equivalent representations

of the system.



Though these representations are
equivalent, the very fact that they
exist reveals a of the

formulation of QM.

Different reprsentations may
prove appropriate for different
systems.



Definition: An everywhere defined,

Hermitian, invertible operator

n:H — H 1s called a

Definition: A positive-definite
pseudo-metric operator 74 : ' H — 'H

is called a metric operator.



Definition: A linear operator H :'H — 'H
is said to be if there
is a pseudo-metric operator 7 : H — H

satisfying H' = nHn 1L

Definition: Given a pseudo-metric

operator 7, any linear operator H
that satisfies H' = nHn~!is called



U, .= Set of all pseudo-metric operators
satisfying // I = nHn !

: U, 1s either empty or an infinite
set. It may or may not include a
metric operator. there is

an infinity of metric operators in U,.



Qxn: Can a P7 -symmetric differential
operator H serve as the Hamiltonian

for a unitary quantum system?

e

H must be Hermitian

Y
H is diagonalizable &

has a real spectrum.



Let H :'H — 'H be a

diagonalizable linear operator
with a discrete spectrum.
Then the following conditions

are equivalent.



® The spectrum of H is real.

e 1 a metric operator n, such that i

1S

e 1 an inner product (-, *>’-'?+ satisfying
<‘ﬂ H‘>:q_|_ — <H? '>f.r]_|_'
e Ja operator h: H — 'H

such that H = p~ 'hp for an invertible

operator p.



H may serve as the Hamiltonian
for a unitary quantum system if

one defines the
using the inner product

(-,-), for some metric operator
Iy

n+ belonging to



H 1s diagonalizable: 4
{vn} and {¢,} such that
Hp = Epthp
H T(}ﬁn = Enon
<¢n‘¢m> = Omn
2_n [¥n){(¢n| =1
{1y, o} is called a

biorthonormal system.



Characterization of

Let {4y, ¢,} be as above.
Then n+ € Uy 1s given
by 7+ = Al Zn ) (Pn| A

where A is invertible and

(A, H] = 0.
A characterizes the

arbitrariness in 7.



e H: a reference Hilbert space [e.g.,L*(I")]

e :'H— H: a non-Hermitian Hamilto-

nian.

o HP]I}’H L= (H'.l ('1 )

ﬂ+) for some 7 € Uy.

. : 0 = p_lﬂp where /= ﬁ+

and o:'H — 'H is a Hermitian operator.



® : h:=pHp !
e Pseudo-Hemritian rep.: (Hpyys, O, H)
e Hermitian rep.: (H,o,h)



Pseudo-Hermitian Canonical

Quantization
Definition: Let H = L*(R). Then
X =plzp, P:=p 'pp

are called the

and operators.

X, P] = ihl



n+-Pseudo-Hermitian Quantization:

1
fEC%X: pC%PJ {:}C*ﬁ[:]

Classical Hamiltonian:

Either express H as H = f( X, P)
or express h = f(x,p) and let

— Hmh—}ﬂ f(xC: pC)



For H = p* + V(z) with V
, h, X, P are generally

nonlocal operators.
00
A=Y ayz)p’
¢=0

Both representations
(Hpnys, H, O) & (H, h,0)

involve nonlocal operators.



Indefinite-Metric QM

Definition: A pseudo-metric operator

n such that +7 is not positive-definite

1s called an

U € Hy — {0} such that (¥, ¥) < 0.
(*;*), is an indefinite quadratic form

(“inner product”).



Fix an indefinite-metric operator 7.

Consider Hamiltonian operators

that are 7-pseudo-Hermitian.

:= Invariant
subspace C 'Hy of n where 7 is

positive-definite.

If i1s invariant under / there

is a consistent theory.



. 3H+ C'H, invariant under n and H.

|
2. *n is positive-definite on H.
3.

4. Hy L H_ with respect to (-, -), .
Then V; = U} + ¥ with U;" € H4 and
(W1, W) 4 = (U7, ¥3), — (¥, ¥5),

is a (positive-definite) inner product.



For P7T-symmetric systems, n = P de-
fines an indefinite inner product (-, '>’P

and the corresponding

(-,-)+ is the CP7 -inner product.

In terms of the L*-inner product,

= (),

for some metric operator 7 € U,,.

C = ?7+73



C 1s just a grading operator:
CU— =4V~ for V- € H:
=1

H+ are invariant under

C, H| =0




C=n, lp
restricts 7.

The CP7-inner product (-,-),, that
is defined by 7+ is not the most
general permissible inner product

supporting a unitary evolution.



Calculation of the
Most (General n

1.

Ny = AT 3, |on)(dn| A
(A, H] =0

2. Perturbation Theory



Perturbative Calculation:

Let H = Hy+ eH| where Hy i1s Hermitian

and Hi i1s anti-Hermitian.

—Let Q .= —Inny, ie., set n, =e ¢
—Expand: Q =) ;2 Q. e®,

— Insert 1n and use

identity to solve

for ();. perturbatively.



Hy, Q1] = —2Hq,
Hy, Qo] = 01
Hy, Q3] = —[[[Ho, @1], @1], Q1]

12

Hoy,Qr] = fr(Ho, H,Q1,- -+, Qk_1)

n+ that makes C = ?7;177 an involution
(C? = 1) corresponds to a



If Hy = p?, in the z-representation

[HO:' Qk] — fk(HO:' Hl:' Ql: Co :Qk—l)
i1s just the wave equation:

(=05 + 9;)(z|Qxly) = fr(z,y)

which can be solved exactly.




Imaginary Cubic Potential




1 41 3 2 1 Ebl
bo
Qo= 5P
pl[] pl[]

D
g 1
/=1 p p

- -
1 b3
. 2 I
| ) ke gt + 5| P
=1 p p
and b, are real numbers

j¢ and k; are functions of -+, and b,.



Terms involving 7P have been
missed in an earlier calculation
that was based on making an

ansatz for the solution.

For C'P7 -metrics ao = by = 0.






2
ho= Rl QU ¥ g el
T ({:r: p2}+ {x o

+(510 + 100 ) {z%, —} 4

8820 + 140 4 1
: b {z”, — } 77) €2
p 3 p
1 9 1 44
—I_E (15 ({.’13 , ——— | plg)

+ibo{z”, 10} 77) >+ O(e).



Classical Hamiltonian

2 6
__ Pc 3 D e 4
H. = 5 - gme 2 O(e)

H. 1s independent of the choice

of

This 1s true 1n all orders of the

perturbation theory.



Imaginary Cubic Potential

p— 3 5 T,
— +—me" —+Ow )
2m 8 p—




QM of Klein-Gordon Fields

H = L*(R®) @ L*(R?)

€I¢) = / x [£1(Z)"C1(Z) + &a(2) " Co(T)]



Let H :'H — 'H be defined by

R AD+ATE AD =M
2\ A+ A aD -

D :=h? [ﬁz — (mc)Q] . AmeRT
® /1 is 03-pseudo-Hermitian.

e [ is diagonalizable.

e Spectrum(H) = R



General Metric Operator
(Spectral Method 3~ — |[)

1 cosh S sinh .S
G 2 sinh .S cosh S
1
S =3 In[\°D)],

H :'Hy, — Hyp, 1s Hermitian.
= (H, (-, '>fq+)



Y R xR — Cis a KG field:
(0V0y + p?)p(a, F) =0, p=mc/h
@b(ﬂjoj ) 3 @b( 9 ) € LQ(Rg)

V(a) = (@b(moj )+ z:A@%(Q;Oj )) .
"p(moa ) I %)\@D(moj )

For all 7 € R,

Y= 5 U(7)



}V:= Vector Space of all KG fields

)Y — ‘H 1s linear & i1nvertible.

General inner product (-,:) on V:

(P, ¢) = (U, U ),

1 cosh S sinh S
n = —
. 2 sinh S cosh S



Demanding

of (¢,7’) restricts the choice of
A that fixes 1. to a parameter
a € (—1,1) and a trivial scaling

factor Kk ¢ R™.

(+,-) is independent of A\ and 7.

Hilbert Space of KG Fields:



o

=r(J'+all ), kERT,

T () = —% {w(:c)* % w(m}
(a) =~ v 9 Cuo)|

C:=iD7 28, 0y =0



~-frequency part of ¥

C’Q)b:: — ZZ¢::

&
i
I

(CP7 -inner product):
(QP: ,‘p,)U — K [(?104-1 wil—)}{(} i (w—? QPI—)KG]

[Woddard (1993)]
Symplectic method [Kay & Wald (1991), Wald (1994)]

Greens’s function method [Halliwel & Ortiz (1993)]



e By construction U_: [, — H,

1s unitary.

= /11 7—(??+ — H is also unitary.

_>H 2 H = LAR? @ LA(RY)



Equivalent Representations:

Covariant Rep.:

Pseudo-Hermitian Rep.: (Hn+j H,O)

Hermitian Rep.: (H.h, o)

h ::pHp_l, O:p_lop
=U"'HU,, =U"'oU,

: Generator of time-translations



For a = 0:

P (\/p2+(mc)2 0 )
0 —\/p2 + (me)?

So pU_: 71 — H 1s the Foldy-

Whouthuysen transformation.




For o=p® 1, O,=p.
For o=7r®1, Oyf = X’a is a relativistic
position operator.

restricted to +-frequency fields

i1s precisely the

Localized States:

Xvaw((lf?::) _ fwéf?:_)j Cw((lf?::)

- (E)




One can define a probability density J/
associated with fa but as is well-known
[Peierls and Pauli] it cannot be covari-
ant. It turns out not be even conserved
(0,Js #0). But the total probability is

conserved, because

/d% j(?:/d?’:c J



Global Gauge Symmetry

p— Oy
Cag U()fOF{IEQ
R™ for a ¢ Q

R := multiplicative group of + reals



* Not fixing the geometry of the Hilbert space
reveals an infinite class of

e The classical limit of PT-symmetric non-
Hermitian Hamiltonians may be obtained
using the Hermitian rep. of the
corresponding systems.

e CPT-Inner product is not the most general
permissible inner product.



e For the classical
Hamiltonian is insensitive to the choice of
the metric.

 In the Hermitian rep. the Hamiltonian is
generally nonlocal while in the pseudo-
Hermitian rep. the basic observables are
nonlocal. This seems to indicate a duality
between non-Hermiticity and nonlocality.

e Pseudo-Hermiticity yields a consistent QM
of free KG fields with a genuine
probabilistic interpretation. The same holds
for real fields and fields interacting with a
time-independent magnetic field.



A direct application of the method fails for
Interactions with other EM fields, for one
can prove that in this case time-translations
are non-unitary for every choice of an inner
product on the space of KG fields (Klein
Paradox).

« Application: Construction of
[A.M. & F. Zamani].



Thank You for Your
Attention
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