Choice of physical operators and uniqueness of the metric

Hendrik B Geyer

Institute of Theoretical Physics
University of Stellenbosch
South Africa

Based on work with
Pierrot Musumbu (master's thesis project),
Dieter Heiss and Frederik Scholtz

Stellenbosch Workshop

Outline

- Context non-Hermitian many-body Hamiltonians resulting from
 - generalized Dyson-Maleev boson mapping of bifermion operators
 - $-\mathcal{PT}$ -symmetry considerations
 - Phenomenology (eg coupling to environment)
- Simple non-hermitian quadratic boson Hamiltonian (Swanson, J Math Phys **45** (2004) 585)
- Quasi- or pseudo-Hermitian Hamiltonians and modified inner product
 - Choice or construction of the metric
 - Uniqueness of the metric
 - Physical observables
- Moyal bracket construction of the metric
- Conclusions

Non-Hermitian Hamiltonians from Dyson-Maleev boson mappings

Schematic notation, suppressing single particle state indices and summation

$$c^{\dagger}c^{\dagger} \longleftrightarrow f(B^{\dagger}, B) = B^{\dagger} - B^{\dagger}B^{\dagger}B$$
$$cc \longleftrightarrow g(B^{\dagger}, B) = B$$
$$c^{\dagger}c \longleftrightarrow h(B^{\dagger}, B) = Bt^{\dagger}B$$

- \bullet operators c refer to fermions, B to bosons
- ullet characteristic feature: functions f,g and h all finite, but $g \neq f^{\dagger}$
- Result: 2-body fermion interaction terms typically map to structures

$$\alpha B_i^{\dagger} B_j^{\dagger} B_k B_l + \beta B_l^{\dagger} B_k^{\dagger} B_j B_i$$

with $\alpha \neq \beta$ ie manifestly non-Hermitian wrt standard inner product in boson Fock space

- link to Hermitian fermion problem guarantees real spectrum
- complete spectrum also obtained from full boson Fock space with a posteriori selection of physical subspace (see PHHQP1, Czech J Phys **54** No 1, 2004)

Clearly similar boson Hamiltonians may be studied from a purely phenomenological point of view (absorption, coupling to environment)

or from the point of view of generalizing the framework of QM, eg à $la~\mathcal{PT}$ -symmetry

(variational principle?)

Simple quadratic non-Hermitian boson Hamiltonian

(Swanson, J Math Phys **45** (2004) 585)

$$H = \omega(a^{\dagger}a + \frac{1}{2}) + \alpha a^{2} + \beta a^{\dagger^{2}}$$

 $\omega, \alpha, \beta \text{ real}; \ \alpha \neq \beta$

Diagonalize H by generalized Bogoliubov transformation to a canonical pair of boson operators

$$c = g_1 a^{\dagger} - g_3 a$$
$$d = g_4 a - g_2 a^{\dagger}$$

 g_i generally complex; $[d, c] = 1 \Leftrightarrow g_1g_4 - g_2g_3 = 1$

$$H = \Omega cd + \tilde{\alpha}c^2 + \tilde{\beta}d^2 + \epsilon + \frac{1}{2}\omega$$

Setting $\tilde{\alpha} = \tilde{\beta} = 0$ and introducing $|n_R\rangle = \frac{1}{\sqrt{n!}}c^n|0_d\rangle$, with $|0_d\rangle$ the d-boson vacuum $d|0_d\rangle = 0$, gives

$$H|n_R\rangle = (n + \frac{1}{2})\Omega|n_R\rangle \equiv E_n|n_R\rangle$$

with

$$\Omega = \sqrt{\omega^2 - 4\alpha\beta}$$

Consider

$$H^{\dagger}n_L\rangle = (n + \frac{1}{2})\Omega|n_L\rangle = E_n|n_L\rangle$$

where $\langle m_L | n_R \rangle = \delta_{mn}$

Utilises $U|n_R\rangle = |n_L\rangle$

$$\Rightarrow U = \sum_{n} |n_L\rangle\langle n_L|$$

with properties

$$H^{\dagger}U = UH$$
 $Uc = d^{\dagger}U$
 $Ud = c^{\dagger}U$

Swanson offers explicit form of U ito a^{\dagger} , c and d and g_i 's (based on SU(1,1) disentangling formula): not particularly illuminating

Considers $W_{\varphi n} \equiv \langle n_R | U \exp(-iHt) | \varphi_R \rangle$

and concludes from explicit calculation of W_{02} and W_{20} that transition probability defined "à la Bender" is unitary, while it is violated without the metric U (no surprises here!).

Observation: coefficients g_i appearing in Bogoliubov transformation are not uniquely determined; only products g_lg_4 , g_2g_3 , g_lg_2 and g_3g_4 fixed. This leaves an undetermined scale factor

$$g_l \to \lambda g_l$$
 , $g_3 \to \lambda g_3$ $g_2 \to 1/\lambda g_2$, $g_4 \to 1/\lambda g_4$

 $\Rightarrow U$ so constructed definitely not unique

Quasi-Hermitian Hamiltonian, modified inner product and consideration of a *set* of observables

(Scholtz, Geyer & Hahne Ann Phys 213 ('92) 74)

Linear operator (metric) T on Hilbert space \mathcal{H}

$$T:\mathcal{H}\to\mathcal{H}\ni$$

(i)
$$\mathcal{D}(T) = \mathcal{H}$$

(ii)
$$T^{\dagger} = T$$
 (Hermiticity)

(iii)
$$(\varphi, T\varphi) > 0 \ \forall \ \varphi \in \mathcal{H} \text{ and } \varphi \neq 0 \text{ (positive definiteness)}$$

(iv)
$$||T\varphi|| \le ||T|| ||\varphi|| \forall \varphi \in \mathcal{H}$$
 (boundedness)

(v)
$$TA_i = A_i^{\dagger} T \ \forall \ A_i$$

Notes:

- \bullet Hellinger-Toeplitz theorem: (i) \Rightarrow (iv) (Kretschmer & Szymanowski, PLA 2004)
- Relaxing (iii) leads to pseudo-Hermiticity (studied by Mostafazadeh in a series of papers, by Znojil, Solombrino, Ahmed and others)

Define new scalar product
$$(\varphi, \psi)_T \equiv (\varphi, T\psi) \Rightarrow (\varphi, A_i\psi)_T = (\varphi, TA_i\psi) = (\varphi, A_i^{\dagger}T\psi) = (A_i\varphi, \psi)_T$$

Uniqueness of T: iff T is defined wrt a set of operators A_i which is irreducible on \mathcal{H} (Scholtz, Geyer & Hahne)

Set of operators A_i is irreducible if no proper subset of states in \mathcal{H} is left invariant by all operators A_i

Since H is trivially reducible (each eigenstate is invariant under H), a unique metric is not necessarily obtained from $TH = H^{\dagger}T$ only (viz Swanson's construction $UH = H^{\dagger}U$)

Accordingly, not all transition matrix elements calculated wrt an inner product defined by U are physical (no unique measurement prediction) \iff different quantum mechanical systems

Construction of metric T for the quadratic non-Hermitian boson Hamiltonian

$$H = \omega(a^{\dagger}a + \frac{1}{2}) + \alpha a^2 + \beta a^{\dagger^2}.$$

with ω , α , β real; $\alpha \neq \beta$

a and a^{\dagger} standard boson annihilation and creation operators Rewriting to position x and momentum p makes it simple to check that H is \mathcal{PT} -symmetric

Rescaling $a \to \lambda a$ and $a^{\dagger} \to \lambda^{-1} a^{\dagger}$ immediately shows that H can equivalently be written in the Hermitian form

$$\tilde{H} = \omega(a^{\dagger}a + \frac{1}{2}) + \sqrt{\alpha\beta}(a^2 + a^{\dagger^2}) .$$

which can be diagonalized with a standard Bogoliubov transformation

$$\implies$$
 SHO with frequency $\Omega = \sqrt{\omega^2 - 4\alpha\beta}$

In general: if S hermitizes H, then H is quasi-Hermitian wrt $T=S^{\dagger}S$. For

$$H = \omega(a^{\dagger}a + \frac{1}{2}) + \alpha a^2 + \beta a^{\dagger^2}$$

 $S=(rac{lpha}{eta})^{\hat{n}/4}$ (with $\hat{n}=a^{\dagger}a$) transforms H into \tilde{H} above, where $\tilde{H}=SHS^{-1}=\tilde{H}^{\dagger}$

As noted, via standard unitary Bogoliubov transformation this yields the same (correct) spectrum as obtained by Swanson. Note that both H and \hat{n} are quasi-Hermitian wrt $T = (\frac{\alpha}{\beta})^{\hat{n}/2}$.

Notes:

- H and \hat{n} are clearly irreducible on \mathcal{H} (when we restrict to either subspace of n even or n odd)
- \hat{n} is not quasi-Hermitian wrt U (previous construction) without further conditions on g_i (use $Uc = d^{\dagger}U$ and $Ud = c^{\dagger}U$) enforcing $U\hat{n} = \hat{n}U$ requires $g_l/g_2 = g_4^*/g_3^*$, which fixes the g_i uniquely (the other condition on the g_i 's is consistent with [d, c] = 1
- boundedness of $T = (\frac{\alpha}{\beta})^{\hat{n}/2}$? Consider T^{-1} and H^{\dagger} (more general cure?)
- \tilde{H} is Hermitian for $\alpha\beta > 0$; the condition $\omega^2 - 4\alpha\beta \geq 0$ therefore does *not* define the full parameter space for real eigenvalues – only validity of Bogoliubov transformation

- even for $\alpha\beta$ < 0 and $|\alpha\beta|$ small enough, eigenvalues are still real transform to *anti*-Hermitian interaction and use 2nd-order perturbation
- \bullet however, real eigenvalues do not guarantee that T exists see SGH Annals paper

Construction of metric T for different choices of observables

Choose respectively n, x and p as the physical observable which, together with H, forms the set of irreducible operators which defines the metric uniquely.

The startegy here will be to use Swanson's results for U (equivalent to T) and demand in turn that $U\theta=\theta U$ for each of $\theta=n$, x, p. Tansform between a, $a^\dagger\leftrightarrow c$, d and use $Uc=d^\dagger U$ and $Ud=c^\dagger U$

This produces the following results:

Number operator n: Un = nU produces a difference equation $U(n+1) = \frac{g_3}{g_2}U(n)$ with solution

$$U(n) = \left(\frac{g_3}{g_2}\right)^n = \left(\frac{\alpha}{\beta}\right)^{n/2}$$

For x and p one finds simple differential equations with solutions

$$U(x) = \exp\left(\frac{\alpha - \beta}{2(\omega - \alpha - \beta)}x^2\right)$$

and

$$U(p) = \exp\left(-\frac{\alpha - \beta}{2(\omega + \alpha + \beta)}p^2\right)$$

These results have also been obtained and discussed by Jones, JPA $\bf 38$ (2005) 1741

One can now continue to calculate matrix elements of various physical quantities, by recalling that $S = \sqrt{T}$ hermitizes H and that the inverse tansformation can be used to obtain the operators X and P which should be viewed as equivalent to x and p, viz $X = S^{-1}xS$, etc

Moyal bracket calculation of the metric

Using the standard relations $a^\dagger=(\hat x-i\hat p)/\sqrt{2}$ and $a=(\hat x+i\hat p)/\sqrt{2}$ the quadratic boson Hamiltonian

$$H = \omega a^{\dagger} a + \alpha a a + \beta a^{\dagger} a^{\dagger}$$

is easily expressed (up to a constant) as

$$H = A\hat{p}^2 + B\hat{x}^2 + iC\hat{p}\hat{x} ,$$

with

$$A = (\omega - \alpha - \beta)/2$$
, $B = (\omega + \alpha + \beta)/2$, $C = (\alpha - \beta)$.

On the level of the Moyal bracket formulation this becomes

$$H(x,p) = Ap^2 + Bx^2 + iCpx;$$

 $H^{\dagger}(x,p) = Ap^2 + Bx^2 - iCpx + C.$

The equation for the metric (with \hbar explicitly shown) is

$$C(\hbar - 2ipx) T$$
+ $\hbar \left((Cp - 2iBx) T^{(0,1)} + (Cx + 2iAp) T^{(1,0)} \right)$
+ $\hbar^2 \left(BT^{(0,2)} - AT^{(2,0)} \right) = 0$,

where T = T(x, p) and $T^{(m,n)} = \frac{\partial^{m+n}T}{\partial x^m \partial p^n}$.

An exact solution for T is found as a one parameter family of metrics, given by

$$T(x,p) = e^{r p^2 + s p x + t x^2},$$

where

$$r \; = \; \frac{-C \pm \sqrt{C^2 - 4\,A\,B\,\hbar\,s\,(2i - \hbar s)}}{4\,B\,\hbar} \, ,$$

$$t = \frac{C \pm \sqrt{C^2 - 4 A B \hbar s (2i - \hbar s)}}{4 A \hbar},$$

s being a free parameter.

Existence of above one parameter family of solutions of course reflects a one-parameter symmetry in the defining differential eq for T(x, p).

(Earlier also noted by Geyer, Scholtz and Snyman (PHHQP2) and Jones, JPA **38** (2005) 1741)

 $T(x,p) = e^{rp^2 + spx + tx^2}$ is not the most general metric.

$$TH = H^{\dagger}T \Longrightarrow g(H)Tg(H^{\dagger})$$
 also a solution.

Moyal product formulation is

$$g(H(x,p)) * T(x,p) * e^{-i\hbar\partial_x\partial_p}g(H^{\dagger}(x,t))$$

For simplicity choice here restricted to $g=1;\Longrightarrow$ particular choice of boundary conditions.

$$T(x,p)=e^{r\,p^2+s\,p\,x+t\,x^2}$$
 satisfies the hermiticity condition
$$A^*(x,p)=e^{-i\hbar\partial_x\partial_p}A(x,p)$$

provided that s is chosen so that r and t are real; ensured for s=iq with $0 \le q \le 2/\hbar$ if $AB \ge 0$ and $q \le 0$ or $q \ge 2/\hbar$ if $AB \le 0$;

metric then Hermitian for all strength parameters A, B, C.

Construction does not guarantee that metric T is positive definite

Check by verifying that the logarithm of the metric is hermitian \Longrightarrow in Moyal product formulation one has to find the function corresponding to the logarithm of the metric operator and verify that it satisfies hermiticity relation above.

For arbitrary s computation of the function corresponding to the logarithm of the metric operator is technically involved $\Longrightarrow \operatorname{find} \eta(x,p)$ such that $1+\eta+\frac{1}{2!}\eta*\eta+\frac{1}{3!}\eta*\eta*\eta*+\dots=T$ Note that η is not simply the logarithm of T(x,p)

For s=0 (and real r and t) Moyal product reduces to an ordinary product

Now simply compute $\log T(x,p)$, giving $-C p^2/2B\hbar$ or $C x^2/2A\hbar$ (depending on r=0 or t=0) Recall $A=(\omega-\alpha-\beta)/2,\ B=(\omega+\alpha+\beta)/2,\ C=(\alpha-\beta)$

 $\log T(x,p)$ now trivially satisfies hermiticity condition \Longrightarrow metric positive definite

Conclusions

- Non-Hermitian quadratic boson Hamiltonian offers a simple setting to explore various aspects of the role and construction of a metric in quasi-Hermitian quantum mechanics
- Explicit and exact (non-perturbative) forms of metric were constructed for different choices of an observable forming an irreducible set with the *given/chosen* Hamiltonian
- Moyal bracket construction offers an attractive way of constructing the metric (and explore eg semi-classical approximation)
- We still need a crisper focus on what we expect from, or say about observables/measurable quantities in quasi-Hermitian QM, including \mathcal{PT} -symmetric QM