
Computational Science &
Engineering DepartmentCSE

Parallel Algorithms on a cluster of PCs

Ian Bush
Computational Science & Engineering Department

Daresbury Laboratory
I.J.Bush@dl.ac.uk

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

2

Daresbury

Manchester

Liverpool Nottingham

Cambridge

HPCx phase 1

HPCx phase 2

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

3

Daresbury Campus

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

4

Computational Science and Engineering in a Nutshell

• Do theory, make mathematical models

• Write programs

• Use programs to do science

• Make programs available to university colleagues and
support them

• Make programs run quickly on the fastest machines
around

• Operate some of the fastest machines around - HPCx -
as a facility for University researchers

We’re solving the
Schrodinger equation,
Newton’s equations,
Navier-Stokes equations,
etc for ever more
complicated and realistic
models.

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

5

Materials Science and Condensed Matter

Slow diffusion!
Bluemoon method
Fixed and flexible framework
Reaction path found
Free energy profiles
MC method for D0

Accurate
modelling of
molecular
interactions for
crystal structure
prediction

Modelling active sites catalysts using combine QM/MM methods to
design more specific, more environmentally friendly, more active
systems capable of working at lower temperatures and pressures.

(5x5) Cr2O3 surface containing 700 atoms (14850 basis
functions) per unit cell. Such calculations are essential in
order to study the role in defects in determining the
properties of real materials

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

6

Life Sciences

Modelling active sites of enzymes in solvents at
room temperature - simulation of TIM at 300K to
study mechanism of active site

Simulations of liposomes
coating DNA strands prior to
transport across cell
membranes

Virtual Outer Membrane - molecular dynamics simulations of
transport channels through membranes require 2 million
atoms to be modelled for 100 ns with multiple comparative
runs to generate statistics (Mark Sansom)

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

7

Computational Engineering

Diffusion of red blood cells
D=6.8x10-10 cm2/s

Diffusion of serum albumin
D=6.5x10-7 cm2/s

Microfluidics

Modelling complex
geometries

Modelling turbulence
(Neil Sandham)

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

8

Ocean and Climate Models

• A 1/12º Ocean Model
– has 608 million grid cells
– needs 60 Gbyte storage
– needs 40 x 1015 floating point

operations/model year
– produces a 20 Gbyte data set

every 3 model days

• A comparative climate model with ocean,
atmosphere and land sub-models needs
about twice the resources.

• Greenhouse effect, raised CO2 emissions,
ozone depletion, storm and gulf stream
variability, regional shelf edge models,
biological sub-models

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

9

Some Application Codes

• GAMESS-UK: general purpose ab initio molecular electronic structure program
for performing SCF-, MCSCF- and DFT-gradient calculations, together with a
variety of techniques for post Hartree Fock calculations. Integrated QM/MM
modelling. (140 user groups)

• DL_POLY: general purpose molecular dynamics code, replicated/ distributed
data, NVT, NPT, NST, NVE thermodynamic ensembles, multiple time stepping
and RESPA algorithms, Ewald summation for electro-statics. (350 users)

• CRYSTAL: 1D, 2D, 3D periodic Gaussian, Hartree-Fock, total energy, forces.
(330 users)

• CASTEP: The Cambridge Serial Total Energy Package plane wave DFT
calculation of the total energy, forces and stresses in a 3D-periodic system.
(150 users)

• Plus lots of others with no names ….

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

10

The HPCx Project

• Operated by University of Edinburgh and
Daresbury

• First Tera-scale research computing facility
in the UK

• Largest academic HEC facility in Europe;
2nd largest in the world

• Funded by EPSRC, NERC, BBSRC

• Located at Daresbury from October 2002

• IBM is the technology partner
– Power4-based Regatta systems
– Year 0: 3 Tflops sustained (on Linpack) -

1280 cpus
– Year 2: 6 Tflops sustained - 1600 cpus
– Year 4: 12 Tflops sustained

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

11

Vital Statistics of HPCx

Phase 1, Phase2 and possible Phase 3 configurations

Phase 1 Phase 2 Phase 3
Start date December 2002 April 2004 October 2006
Processors 1280 Power4 cpus 1600 Power4+ cpus 3072 Power4+ cpus
Peak speed 6.7 TFlops
Sustained speed 3.2 TFlops 6.2 TFlops 12 Tflops
Switch Colony Federation Federation
Memory 1.28 TBytes 1.6 TBytes 3.072 TBytes
Disk 18 TBytes 36 TBytes 72 TBytes
Storage 35 TBytes 70 TBytes 140 TBytes
Power consumption 0.4 MWatts 0.5 MWatts 1 MWatt

10.9 TFlops

Power 4 (aka Regatta H) chip

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

12

HPCx is a Really Big System

• In 1980, the faster supercomputer in the world was the Cray 1 (at Daresbury).

• In 2003, HPCx is faster than the Cray 1 by a factor of 45,578.

• Applying Moore’s Law between 1980 and 2003 gives a factor of 2048.

• HPCx beats Moore’s Law because it is parallel - many CPUs joined together.

• Programming a parallel computer for efficiency and speed (ie capability
computing) is hard, because the traffic of data between the CPUs has to be
managed carefully.

• A measure of parallel efficiency is scaling: does your program continue to run
more quickly if you use more CPUs?

• Not many real programs scale well enough ….

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

13

But it’s NOT all about 1000+ processor systems !

• We also run a number of small clusters (16-64 processors)

• These are a very cost effective way of performing computational science
– Just commodity parts so cheap
– Interconnects can be as cheap as ethernet

• Higher performance networks are available but cost more

• However if it’s two processors or 1000 the same principles apply !
– It’s just the downside hits you harder !

• Possible to get a very powerful resource for your group/department
at a very reasonable cost, c.f. vector machines

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

14

So What Can We Do With Parallel Computing ?

• A quick run through one or two examples of what we are currently involved
with

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

15

Long-Term Ocean Circulation
• Impact of cooling on the water mass exchange of Agulhas rings in a high

resolution ocean model
Vortex shedding has an
important role in the
global thermohaline
circulation

The UK’s global ocean
model (OCCAM) is being
run at an eddy-resolving
resolution of 1/12o

The level of realism that
can now be achieved is
providing an invaluable
compliment to
observational
programmes

J Donners et al, 2004, Geophys Res Lett., 31,
L16312

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

16

Coupled Marine Ecosystem Model (POLCOMS)

Physical Model

Pelagic Ecosystem Model

Benthic Model

Wind Stress

Heat Flux
Irradiation

Cloud Cover

C, N, P, Si Sediments

oC

oC

River Inputs

Open
Boundary

Proudman
Oceanographic
Laboratory (NERC)

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

17

High-resolution coastal ocean modelling

A 1.8km model of the
NW european shelf

seas is being run

Early results show
unprecedented detail
in the resolution of
fronts and eddies.

POLCOMS
code

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

18

DNS
721x351x256

LES
181x181x64

Inter-comparison of Direct Numerical Simulation
and Large Eddy Simulation

Yorke, C.P et al, European J.Mech. B – Fluids, 23, 319,
2004.

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

19

Methanol-water solutions
Neutron diffraction experiments and
MD simulations (DLPOLY) show that
mixtures of methanol and water exhibit
extended structures in solution despite
the components being fully miscible in
all proportions.
- Of particular interest is a concentration

region where both methanol and water
appear to form separate, percolating
networks, a concentration range where many
transport properties reach extremal values.
- The observed concentration dependence of
several of these material properties of the
solution may thus have a structural origin.

Front face of the MD simulation
box for the methanol-rich
solution (water oxygens– red;
methyl carbons- blue).

The entire box comprises
~20000 atoms. A large water
“super-cluster”, containing over
400 molecules, can be seen
running top to bottom of the
middle of the box

L. Dougan et al, J Chem Phys., 2004 (in
press)

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

20

From CO2 to Methanol by QM/MM Embedding
Sam French, Alexey Sokol, Richard Catlow and Paul Sherwood

• BASF 1923 high pressure catalyst 300 bar, < 300 oC
Zinc Oxide / Chromia

• ICI 1965 low pressure catalyst 40-110 bar, 200–300 oC
Copper Oxide / Zinc Oxide / Alumina

Syngas Methanol

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

21

• BASF 1923 high pressure catalyst 300 bar, < 300 oC
Zinc Oxide / Chromia

• ICI 1965 low pressure catalyst 40-110 bar, 200–300 oC
Copper Oxide / Zinc Oxide / Alumina

From CO2 to Methanol by QM/MM Embedding
Sam French, Alexey Sokol, Richard Catlow and Paul Sherwood

ZnO / Al2O3 Support

Active Site

H2 CH3OH
H2O

CO2

Cu / CuO Catalyst

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

22

H2(g) 2H(a)

CO2(g) CO2(a)

CO2(a) + H(a) HCO2(a)

HCO2(a) +2H(a) CH3O(a) +
O(a)

CH3O(a) + H(a) CH3OH(g)

CO(g) + O(a) CO2(g)

H2(g) + O(a) H2O(g)

Chinchen et al., J. Chem.
Soc. Faraday 1, 83 (1987)
2193

Problems / Goals

• Morphology of active site: Cu surface and
Cu/ZnO interface

The nature of the interaction of Cu with
the catalytically important (0001)-Zn and
(000-1)-O surfaces of ZnO ?

The oxidation state of the active copper
sites (0, +1, +2) ?

The surface morphology of the catalytically
active copper clusters involved - 111, 110 or
110-like?

• From reactants to intermediates to products
structure, spectra (vibrational) &

energetics

Cu (111) surface Cu (110) surface

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

23

Crambin - The Crystal

• 1284 Atoms

• Initial studies using STO3G (3948
basis functions)

• Improved to 6-31G** (12354 functions)

• All calculations Hartree-Fock

• Calculations run on HPCx

• As far as we know the largest HF
calculation ever converged

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

24

Results - charge density and electrostatic potential

• Isosurface of the charge density at 0.1Å
resolution: You name the resolution, in
principle we can get it !

• Can be compared with SR results

• Charge density isosurface coloured
according to electrostatic potential

• Useful to determine possible chemically
active groups

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

25

Rusticyanin

• Rusticyanin, a blue copper protein,
has ~6300 atoms and is involved in
redox processes

• We have started calculations using
over 30000 basis functions

• In collaboration with S.Hasnain (DL)
we want to calculate redox potentials
for rusticyanin and associated
mutants. Rusti has a large potential,
680mV

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

26

But Why Should You Know About Parallel Computing ?

• Do you run your science packages without knowing the theory ?

• To exploit those packages better
– If you know the pitfalls you’ll know how to get the best out of them

• To write your own software !
– Commercial or open source software does not always address what you

want to do
– Commercial packages often do not work very well in parallel even if the

company has claimed to parallelized the code
• They don’t make a large amount of money from it so why invest a lot of effort

?
– It makes you think and is good for your soul

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

27

So What Is a Parallel Computer ?

Distributed Memory

CPU 0 CPU 1 CPU 2 CPU 3

Mem Mem Mem Mem

Interconnect

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

28

Shared Memory

CPU 0 CPU 1 CPU 2 CPU 3

Memory

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

29

Mixed

CPU 0 CPU 1 CPU 2 CPU 3

Memory Memory

Interconnect

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

30

Why Do We Want To Do Parallel Computing ?

• Faster results
– One might hope that given P CPUs you can solve your problem P times

quicker
• Larger Problems

– Typically parallel machines have lots of memory so can do bigger
problems

• e.g. 16 CPU system with 2 Gigabyte per processor has a lot more memory
than your desktop

• Side issue – are you restricted to 32 bit pointers ? Much less of a problem
on a distributed memory machine

• Larger Problems Faster ???????

These are actually all related ……….

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

31

Speed Up

Speed up is how much faster your program runs on P processors relative to
one

• Relative speed up is how much faster your program runs on P processors
relative to one

• Absolute speed up is how much faster your program runs on P processors
relative to THE BEST SERIAL IMPLEMENTATION

– Sometimes these are the same. Often there is little difference. Sometimes
the difference can be quite marked

• Sometimes the best serial algorithm is not the best for parallel machines

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

32

A Speed Up Curve for CRYSTAL

0

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200

Perfect Scaling

Actual Performance

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

33

Speed Up Curves for POLCOMMS

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

34

So Why Isn’t it Perfect ….

• Remaining Serial code

• Load Imbalance

• Message Passing

• Memory and cache issues

• Other shared Resources

• It just doesn’t like you !

Actually these two examples are very good, something to aim at.
– Sometimes your program gets SLOWER with more processors

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

35

Remaining Serial Code

Say your program on one processor runs for P% of the time in perfectly parallel
code, so it takes (1-P)% in serial. So on N processors it runs for P/N% of
the time in parallel routines, but still (1-P)% in the serial ones. The speed up
is therefore

Speed up = 1/((1-P)+P/N)

This is known as Amdahl’s law. It is somewhat scary !
– On a infinite number of processors the speed up is 1/(1-P), so even if your

program is running 90% in parallel the best speed up you can EVER get is
10 !

– The CRYSTAL results presented above when fitted to Amdahl’s law give
P=99.95%

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

36

Amdahl's Law

0
5

10
15
20
25
30
35

0 10 20 30 40

Processors

S
pe

ed
 U

p

P=0.9
P=0.95
P=0.99
P=0.999
P=1.0

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

37

The Software Challenge

0.1

1

10

100

1000

1996 2000 2004

Teraflops

Peak Performance

Real Performance

Software
Challenge

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

38

Is It Really That Bad ?

• P is usually a function of the problem being addressed

• In many problems the portion of the code that has been parallelised
depends strongly on the system size in some way (e.g. N3) while the serial
portion scales much less strongly

– Gustavson’s law

Parallel Computing Is Best For Large Systems

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

39

The Prime Directive

Parallel
Computing Is

Best For Large
Systems

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

40

Speed Up Curves for POLCOMMS

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

41

0

10

20

30

0 256 512 768 1024
Number of Processors

Pe
rf
or

m
an

ce
 (a

rb
itr

ar
y)

Ideal
6-31G** (12,354 GTOs)
6-31G (7,194 GTOs)
STO-3G (3,948 GTOs)

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

42

Load Imbalance

• Say you have 10 processors running a parallel job

– If all processors are doing the same thing one might hope that they take
the same time

• Can hope for optimal speed up

– HOWEVER if they are doing different things, or the whole job is not evenly
distributed, you can not hope for the best performance

• Say one processor takes 6s to do it’s work and the other take 1s the best
you can hope for is a speed up of (6+9x1)/6=5/2

This is known as LOAD IMBALANCE. It can affect all parallel programs, but is
probably best known for task farms, grid based codes and, in some cases,
classical MD codes.

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

43

Message Passing

• In parallel computing CPUs have to `talk’ to each other
– The bit of data you need for this calculation may not be on this processor
– You may have to sum something across all processors (e.g. contributions to the total

energy)

• THIS TAKES TIME
– T = α+βN
– α is the latency – time to send zero bytes – 1-200µs
– 1/ β is the bandwidth – 10Mbytes/s – GBytes/s+

• Obviously your serial code does not need to do this, so this inhibits get the best
performance you might expect

• Avoid where possible – but unfortunately in all practical codes you can’t avoid in
entirely

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

44

Message Passing – is it really that bad ?

• T = α+βN

• In practice the latency is the real problem
– Say N is large, so T ~ βN
– For a distributed data code if you double the number of CPUs N goes down

by a factor of 2, and so does T – scales well
– BUT YOU CAN’T get rid of the latency !!

• So … SEND LONG MESSAGES

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

45

Memory Bus Issues

CPU0 CPU1

Memory

• This is how one vendor’s dual processor system really works
• What if both processors want to use lots of memory real, right NOW ?
• Can see this even just running two identical serial jobs

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

46

Memory And Cache Issues

CPU0 can’t get it’s memory until CPU1’s cache is flushed

CPU0

Cache

CPU1

Cache

Memory

Even worse – False Sharing

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

47

Shared Resources

CPU0 CPU1

Disk

• If two CPUs have to share ANY resources there may be contention
• Classic case is disk

– May have to share with other users – non-repeatable job times
– DON’T DO PARALLEL I/O OVER NFS !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
– In fact don’t do I/O in parallel codes AT ALL if possible !!!!!!

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

48

It hates you

• Well … Computers are inanimate so this can’t occur, right ?

• In practice there are a number of issues that are very difficult to resolve
without a very in depth knowledge of the code, and sometimes you simply
get unlucky

– E.g. because the memory layout depends on how many processors you
run on the efficiency of the cache usage may also vary. You may get
unlucky. On the other hand … occasionally you might get lucky

• Also debugging gets trickier, v. brief discussion latter

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

49

Other Issues

Well we’re almost ready to start thinking about what we really need to do to
write parallel codes. What else ?

• Portability

• Portability

• Portability

• debugging

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

50

Portability

• Portability has for a long time been a major issue with parallel computing
– Each vendor supplied it’s own way to do it
– Could require a lot of effort to move from one machine to another

• However it has got a lot better over the last few years, and I VERY strongly
suggest you stick to the standard methods now in use

– Fortran90 / C / C++ as a base language (and stick to the ISO standards !)
– MPI for message passing
– OpenMP for shared memory programming (or maybe Pthreads)
– Open Source libraries where appropriate e.g.

• Scalapack
• Plapack
• FFTW
• PetSc

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

51

Portability

• The situation is now such that if carefully written a code can run very well on
a variety of machines with no change.

• If you suddenly get time on a supercomputer do you really want to blow all
your budget porting the code from your cluster ?

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

52

Debugging

• I don’t want to say too much about this as it is really something you learn by
experience. However parallel computing introduces a number of extra
places to go wrong which can be very hard to diagnose

– Deadlock
– Irreproducible errors

• Run one time it works, run the next it doesn’t
• Typically occurs due to incorrect expectations about what all the processors

are doing – e.g. one processor gets the wrong data from another because
the other is in another part of the code from that you expect

• Parallel debuggers do exist (e.g. Totalview, DDT) but they tend to be
commercial and expensive, though if you can afford them they can be very
useful

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

53

Parallel Programming Paradigms

• There are 3 major ways of programming the beasts
– Message passing by MPI

• View memory as totally distributed – i.e. each CPU has it’s own local
memory which can not be directly accessed by any other, and conversely it
can not access the memory of any other CPU

• Most general method

– Shared Memory by OpenMP
• Each CPU can see all the memory.

– Mixed mode using both MPI and OpenMP
• Within the shared memory node use OpenMP
• Between use MPI
• In theory some performance benefits but in practice …. See the `It Hates

You’ section.

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

54

Recursive bisection grid partitioning in POLCOMS

2D halo boundary
data exchange

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

55

POLCOMS 2 km benchmark : All systems

POLCOMS 2km
resolution

1200 x 1200 x 34

0

20

40

60

80

100

120

0 128 256 384 512 640 768 896 1024
Number of processors

Pe
rf

or
m

an
ce

 (M
 g

rid
-p

oi
nt

s
tim

es
te

ps
/s

ec
)

IBM p690+ HPS

Ideal IBM p690+

IBM p690 SP

Origin 3800

Cray T3E

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

56

Rusticyanin

• Rusticyanin, a blue copper protein,
has ~6300 atoms and is involved in
redox processes

• We have started calculations using
over 30000 basis functions

• In collaboration with S.Hasnain (DL)
we want to calculate redox potentials
for rusticyanin and associated
mutants. Rusti has a large potential,
680mV

	Computational Science and Engineering in a Nutshell
	Materials Science and Condensed Matter
	Life Sciences
	Computational Engineering
	Ocean and Climate Models
	Some Application Codes
	The HPCx Project
	Vital Statistics of HPCx
	HPCx is a Really Big System
	But it’s NOT all about 1000+ processor systems !
	So What Can We Do With Parallel Computing ?
	Long-Term Ocean Circulation
	High-resolution coastal ocean modelling
	Methanol-water solutions
	
	Crambin - The Crystal
	Results - charge density and electrostatic potential
	Rusticyanin
	But Why Should You Know About Parallel Computing ?
	So What Is a Parallel Computer ?
	Why Do We Want To Do Parallel Computing ?
	Speed Up
	Speed Up Curves for POLCOMMS
	So Why Isn’t it Perfect ….
	Remaining Serial Code
	The Software Challenge
	Is It Really That Bad ?
	The Prime Directive
	Speed Up Curves for POLCOMMS
	Load Imbalance
	Message Passing
	Message Passing – is it really that bad ?
	Memory Bus Issues
	Memory And Cache Issues
	Shared Resources
	It hates you
	Other Issues
	Portability
	Portability
	Debugging
	Parallel Programming Paradigms
	Recursive bisection grid partitioning in POLCOMS
	POLCOMS 2 km benchmark : All systems
	Rusticyanin

