
Computational Science & 
Engineering DepartmentCSE

Parallel Algorithms on a cluster of PCs

Ian Bush
Computational Science & Engineering Department

Daresbury Laboratory
I.J.Bush@dl.ac.uk



Presenter Name
Facility Name

Computational Science & 
Engineering DepartmentCSEComputational Science & 

Engineering DepartmentCSE

2

Daresbury

Manchester

Liverpool Nottingham

Cambridge

HPCx phase 1

HPCx phase 2



Presenter Name
Facility Name

Computational Science & 
Engineering DepartmentCSEComputational Science & 

Engineering DepartmentCSE

3

Daresbury Campus



Presenter Name
Facility Name

Computational Science & 
Engineering DepartmentCSEComputational Science & 

Engineering DepartmentCSE

4

Computational Science and Engineering in a Nutshell

• Do theory, make mathematical models

• Write programs

• Use programs to do science

• Make programs available to university colleagues and 
support them

• Make programs run quickly on the fastest machines 
around

• Operate some of the fastest machines around - HPCx -
as a facility for University researchers

We’re solving the 
Schrodinger equation, 
Newton’s equations, 
Navier-Stokes equations, 
etc for ever more 
complicated and realistic 
models.
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Materials Science and Condensed Matter

Slow diffusion!
Bluemoon method
Fixed and flexible framework
Reaction path found
Free energy profiles
MC method for D0

Accurate 
modelling of 
molecular 
interactions for 
crystal structure 
prediction

Modelling active sites catalysts using combine QM/MM methods to 
design more specific, more environmentally friendly, more active
systems capable of working at lower temperatures and pressures. 

(5x5) Cr2O3 surface containing 700 atoms (14850 basis 
functions) per unit cell. Such calculations are essential in 
order to study the role in defects in determining the 
properties of real materials
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Life Sciences

Modelling active sites of enzymes in solvents at 
room temperature - simulation of TIM at 300K to 
study mechanism of active site

Simulations of liposomes
coating DNA strands prior to 
transport across cell 
membranes

Virtual Outer Membrane - molecular dynamics simulations of 
transport channels through membranes require 2 million 
atoms to be modelled for 100 ns with multiple comparative 
runs to generate statistics (Mark Sansom)
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Computational Engineering

Diffusion of red blood cells
D=6.8x10-10 cm2/s

Diffusion of serum albumin
D=6.5x10-7 cm2/s

Microfluidics

Modelling complex 
geometries

Modelling turbulence 
(Neil Sandham)
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Ocean and Climate Models

• A 1/12º Ocean Model
– has 608 million grid cells
– needs 60 Gbyte storage
– needs 40 x 1015 floating point

operations/model year
– produces a 20 Gbyte data set 

every 3 model days

• A comparative climate model with ocean, 
atmosphere and land sub-models needs 
about twice the resources.

• Greenhouse effect, raised CO2 emissions, 
ozone depletion, storm and gulf stream 
variability, regional shelf edge models, 
biological sub-models
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Some Application Codes

• GAMESS-UK: general purpose ab initio molecular electronic structure program 
for performing SCF-, MCSCF- and DFT-gradient calculations, together with a 
variety of techniques for post Hartree Fock calculations. Integrated QM/MM 
modelling. (140 user groups)

• DL_POLY: general purpose molecular dynamics code, replicated/ distributed 
data, NVT, NPT, NST, NVE thermodynamic ensembles, multiple time stepping 
and RESPA algorithms, Ewald summation for electro-statics. (350 users)

• CRYSTAL: 1D, 2D, 3D periodic Gaussian, Hartree-Fock, total energy, forces.
(330 users)

• CASTEP: The Cambridge Serial Total Energy Package plane wave DFT 
calculation of the total energy, forces and stresses in a 3D-periodic system. 
(150 users)

• Plus lots of others with no names ….
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The HPCx Project

• Operated by University of Edinburgh and 
Daresbury 

• First Tera-scale research computing facility 
in the UK

• Largest academic HEC facility in Europe; 
2nd largest in the world

• Funded by EPSRC, NERC, BBSRC

• Located at Daresbury from October 2002

• IBM is the technology partner
– Power4-based Regatta systems
– Year 0: 3 Tflops sustained (on Linpack) -

1280 cpus
– Year 2: 6 Tflops sustained - 1600 cpus
– Year 4: 12 Tflops sustained
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Vital Statistics of HPCx

Phase 1, Phase2 and possible Phase 3 configurations

Phase 1 Phase 2 Phase 3
Start date December 2002 April 2004 October 2006
Processors 1280 Power4 cpus 1600 Power4+ cpus 3072 Power4+ cpus
Peak speed 6.7 TFlops
Sustained speed 3.2 TFlops 6.2 TFlops 12 Tflops
Switch Colony Federation Federation
Memory 1.28 TBytes 1.6 TBytes 3.072 TBytes
Disk 18 TBytes 36 TBytes 72 TBytes
Storage 35 TBytes 70 TBytes 140 TBytes
Power consumption 0.4 MWatts 0.5 MWatts 1 MWatt

10.9 TFlops

Power 4 (aka Regatta H) chip
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HPCx is a Really Big System

• In 1980, the faster supercomputer in the world was the Cray 1 (at Daresbury).

• In 2003, HPCx is faster than the Cray 1 by a factor of 45,578.

• Applying Moore’s Law between 1980 and 2003 gives a factor of 2048.

• HPCx beats Moore’s Law because it is parallel - many CPUs joined together.

• Programming a parallel computer for efficiency and speed (ie capability 
computing) is hard, because the traffic of data between the CPUs has to be 
managed carefully.

• A measure of parallel efficiency is scaling: does your program continue to run 
more quickly if you use more CPUs?

• Not many real programs scale well enough ….
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But it’s NOT all about 1000+ processor systems !

• We also run a number of small clusters (16-64 processors)

• These are a very cost effective way of performing computational science
– Just commodity parts so cheap
– Interconnects can be as cheap as ethernet

• Higher performance networks are available but cost more

• However if it’s two processors or 1000 the same principles apply !
– It’s just the downside hits you harder !

• Possible to get a very powerful resource for your group/department 
at a very reasonable cost, c.f. vector machines
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So What Can We Do With Parallel Computing ?

• A quick run through one or two examples of what we are currently involved 
with
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Long-Term Ocean Circulation
• Impact of cooling on the water mass exchange of Agulhas rings in a high 

resolution ocean model
Vortex shedding has an 
important role in the 
global thermohaline
circulation

The UK’s global ocean 
model (OCCAM) is being 
run at an eddy-resolving 
resolution of 1/12o

The level of realism that 
can now be achieved is 
providing an invaluable 
compliment to 
observational 
programmes 

J Donners et al, 2004, Geophys Res Lett., 31, 
L16312
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Coupled Marine Ecosystem Model (POLCOMS)

Physical Model

Pelagic Ecosystem Model

Benthic Model

Wind Stress

Heat Flux
Irradiation

Cloud Cover

C, N, P, Si Sediments

oC

oC

River Inputs

Open
Boundary

Proudman
Oceanographic 
Laboratory (NERC)
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High-resolution coastal ocean modelling

A 1.8km model of the 
NW european shelf 

seas is being run

Early results show 
unprecedented detail 
in the resolution of 
fronts and eddies.

POLCOMS
code
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DNS 
721x351x256

LES 
181x181x64

Inter-comparison of Direct Numerical Simulation  
and Large Eddy Simulation

Yorke, C.P et al, European J.Mech. B – Fluids, 23,  319, 
2004.
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Methanol-water solutions
Neutron diffraction experiments and 
MD simulations (DLPOLY) show that 
mixtures of methanol and water exhibit 
extended structures in solution despite 
the components being fully miscible in 
all proportions.
- Of particular interest is a concentration 

region where both methanol and water 
appear to form separate, percolating 
networks, a concentration range where many 
transport properties reach extremal values. 
- The observed concentration dependence of 
several of these material properties of the 
solution may thus have a structural origin. 

Front face of the MD simulation 
box for the methanol-rich 
solution (water oxygens– red; 
methyl carbons- blue).

The entire box comprises 
~20000 atoms. A large water 
“super-cluster”, containing over 
400 molecules, can be seen 
running top to bottom of the 
middle of the box

L. Dougan et al, J Chem Phys., 2004 (in 
press)
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From CO2 to Methanol by QM/MM Embedding
Sam French, Alexey Sokol, Richard Catlow and Paul Sherwood 

• BASF 1923 high pressure catalyst 300 bar, < 300 oC
Zinc Oxide / Chromia 

• ICI 1965 low pressure catalyst 40-110 bar, 200–300 oC
Copper Oxide / Zinc Oxide / Alumina

Syngas Methanol
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• BASF 1923 high pressure catalyst 300 bar, < 300 oC
Zinc Oxide / Chromia 

• ICI 1965 low pressure catalyst 40-110 bar, 200–300 oC
Copper Oxide / Zinc Oxide / Alumina

From CO2 to Methanol by QM/MM Embedding
Sam French, Alexey Sokol, Richard Catlow and Paul Sherwood 

ZnO / Al2O3  Support

Active Site

H2 CH3OH
H2O

CO2

Cu / CuO Catalyst
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H2(g) 2H(a)

CO2(g) CO2(a) 

CO2(a) + H(a) HCO2(a)

HCO2(a) +2H(a) CH3O(a) + 
O(a)

CH3O(a) + H(a) CH3OH(g)

CO(g) + O(a) CO2(g) 

H2(g) + O(a) H2O(g)

Chinchen et al., J. Chem. 
Soc. Faraday 1, 83 (1987) 
2193

Problems / Goals

• Morphology of active site: Cu surface and 
Cu/ZnO interface

The nature of the interaction of Cu with 
the catalytically important (0001)-Zn and 
(000-1)-O surfaces of ZnO ?

The oxidation state of the active copper 
sites (0, +1, +2) ?  

The surface morphology of the catalytically 
active copper clusters involved - 111, 110 or 
110-like?

• From reactants to intermediates to products
structure, spectra (vibrational) & 

energetics

Cu (111) surface Cu (110) surface
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Crambin - The Crystal

• 1284 Atoms

• Initial studies using STO3G (3948 
basis functions)

• Improved to 6-31G** (12354 functions)

• All calculations Hartree-Fock

• Calculations run on HPCx

• As far as we know the largest HF 
calculation ever converged 
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Results - charge density and electrostatic potential

• Isosurface of the charge density at 0.1Å 
resolution: You name the resolution, in 
principle we can get it !

• Can be compared with SR results

• Charge density isosurface coloured 
according to electrostatic potential

• Useful to determine possible chemically 
active groups
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Rusticyanin

• Rusticyanin, a blue copper protein, 
has ~6300 atoms and is involved in 
redox processes

• We have started calculations using 
over 30000 basis functions

• In collaboration with S.Hasnain (DL) 
we want to calculate redox potentials 
for rusticyanin and associated 
mutants. Rusti has a large potential, 
680mV
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But Why Should You Know About Parallel Computing ?

• Do you run your science packages without knowing the theory ?

• To exploit those packages better
– If you know the pitfalls you’ll know how to get the best out of them

• To write your own software !
– Commercial or open source software does not always address what you 

want to do
– Commercial packages often do not work very well in parallel even if the 

company has claimed to parallelized the code
• They don’t make a large amount of money from it so why invest a lot of effort 

?
– It makes you think and is good for your soul
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So What Is a Parallel Computer ?

Distributed Memory

CPU 0 CPU 1 CPU 2 CPU 3

Mem Mem Mem Mem

Interconnect
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Shared Memory

CPU 0 CPU 1 CPU 2 CPU 3

Memory
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Mixed

CPU 0 CPU 1 CPU 2 CPU 3

Memory Memory

Interconnect
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Why Do We Want To Do Parallel Computing ?

• Faster results
– One might hope that given P CPUs you can solve your problem P times 

quicker
• Larger Problems

– Typically parallel machines have lots of memory so can do bigger
problems

• e.g. 16 CPU system with 2 Gigabyte per processor has a lot more memory 
than your desktop

• Side issue – are you restricted to 32 bit pointers ? Much less of a problem 
on a distributed memory machine

• Larger Problems Faster ???????

These are actually all related ……….



Presenter Name
Facility Name

Computational Science & 
Engineering DepartmentCSEComputational Science & 

Engineering DepartmentCSE

31

Speed Up

Speed up is how much faster your program runs on P processors relative to 
one

• Relative speed up is how much faster your program runs on P processors 
relative to one

• Absolute speed up is how much faster your program runs on P processors 
relative to THE BEST SERIAL IMPLEMENTATION

– Sometimes these are the same. Often there is little difference. Sometimes 
the difference can be quite marked

• Sometimes the best serial algorithm is not the best for parallel machines
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A Speed Up Curve for CRYSTAL
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Speed Up Curves for POLCOMMS
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So Why Isn’t it Perfect ….

• Remaining Serial code

• Load Imbalance

• Message Passing

• Memory and cache issues

• Other shared Resources

• It just doesn’t like you !

Actually these two examples are very good, something to aim at.
– Sometimes your program gets SLOWER with more processors
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Remaining Serial Code

Say your program on one processor runs for P% of the time in perfectly parallel 
code, so it takes (1-P)% in serial. So on N processors it runs for P/N% of 
the time in parallel routines, but still (1-P)% in the serial ones. The speed up 
is therefore

Speed up = 1/((1-P)+P/N)

This is known as Amdahl’s law. It is somewhat scary !
– On a infinite number of processors the speed up is 1/(1-P), so even if your 

program is running 90% in parallel the best speed up you can EVER get is 
10 !

– The CRYSTAL results presented above when fitted to Amdahl’s law give 
P=99.95%



Presenter Name
Facility Name

Computational Science & 
Engineering DepartmentCSEComputational Science & 

Engineering DepartmentCSE

36

Amdahl's Law
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The Software Challenge
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Is It Really That Bad ?

• P is usually a function of the problem being addressed

• In many problems the portion of the code that has been parallelised 
depends strongly on the system size in some way (e.g. N3) while the serial 
portion scales much less strongly

– Gustavson’s law

Parallel Computing Is Best For Large Systems 
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The Prime Directive

Parallel 
Computing Is 

Best For Large 
Systems 
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Speed Up Curves for POLCOMMS
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Load Imbalance

• Say you have 10 processors running a parallel job

– If all processors are doing the same thing one might hope that they take 
the same time

• Can hope for optimal speed up

– HOWEVER if they are doing different things, or the whole job is not evenly 
distributed, you can not hope for the best performance

• Say one processor takes 6s to do it’s work and the other take 1s the best 
you can hope for is a speed up of (6+9x1)/6=5/2

This is known as LOAD IMBALANCE. It can affect all parallel programs, but is 
probably best known for task farms, grid based codes and, in some cases, 
classical MD codes.
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Message Passing

• In parallel computing CPUs have to `talk’ to each other
– The bit of data you need for this calculation may not be on this processor
– You may have to sum something across all processors ( e.g. contributions to the total 

energy )

• THIS TAKES TIME
– T = α+βN
– α is the latency – time to send zero bytes – 1-200µs
– 1/ β is the bandwidth – 10Mbytes/s – GBytes/s+

• Obviously your serial code does not need to do this, so this inhibits get the best 
performance you might expect

• Avoid where possible – but unfortunately in all practical codes you can’t avoid in 
entirely
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Message Passing – is it really that bad ?

• T = α+βN

• In practice the latency is the real problem
– Say N is large, so T ~ βN
– For a distributed data code if you double the number of CPUs N goes down 

by a factor of 2, and so does T – scales well
– BUT YOU CAN’T get rid of the latency !!

• So … SEND LONG MESSAGES
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Memory Bus Issues

CPU0 CPU1

Memory

• This is how one vendor’s dual processor system really works
• What if both processors want to use lots of memory real, right NOW ?
• Can see this even just running two identical serial jobs
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Memory And Cache Issues

CPU0 can’t get it’s memory until CPU1’s cache is flushed

CPU0

Cache

CPU1

Cache

Memory

Even worse – False Sharing
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Shared Resources

CPU0 CPU1

Disk

• If two CPUs have to share ANY resources there may be contention
• Classic case is disk

– May have to share with other users – non-repeatable job times
– DON’T DO PARALLEL I/O OVER NFS !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
– In fact don’t do I/O in parallel codes AT ALL if possible !!!!!!
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It hates you

• Well … Computers are inanimate so this can’t occur, right ?

• In practice there are a number of issues that are very difficult to resolve 
without a very in depth knowledge of the code, and sometimes you simply 
get unlucky

– E.g. because the memory layout depends on how many processors you 
run on the efficiency of the cache usage may also vary. You may get 
unlucky. On the other hand … occasionally you might get lucky

• Also debugging gets trickier, v. brief discussion latter
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Other Issues

Well we’re almost ready to start thinking about what we really need to do to 
write parallel codes. What else ?

• Portability

• Portability

• Portability

• debugging
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Portability

• Portability has for a long time been a major issue with parallel computing
– Each vendor supplied it’s own way to do it
– Could require a lot of effort to move from one machine to another

• However it has got a lot better over the last few years, and I VERY strongly 
suggest you stick to the standard methods now in use

– Fortran90 / C / C++ as a base language ( and stick to the ISO standards ! )
– MPI for message passing
– OpenMP for shared memory programming ( or maybe Pthreads )
– Open Source libraries where appropriate e.g.

• Scalapack
• Plapack
• FFTW
• PetSc
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Portability

• The situation is now such that if carefully written a code can run very well on 
a variety of machines with no change.

• If you suddenly get time on a supercomputer do you really want to blow all 
your budget porting the code from your cluster ?
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Debugging

• I don’t want to say too much about this as it is really something you learn by 
experience. However parallel computing introduces a number of extra 
places to go wrong which can be very hard to diagnose

– Deadlock
– Irreproducible errors

• Run one time it works, run the next it doesn’t
• Typically occurs due to incorrect expectations about what all the processors 

are doing – e.g. one processor gets the wrong data from another because 
the other is in another part of the code from that you expect

• Parallel debuggers do exist ( e.g. Totalview, DDT ) but they tend to be 
commercial and expensive, though if you can afford them they can be very 
useful 
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Parallel Programming Paradigms

• There are 3 major ways of programming the beasts
– Message passing by MPI

• View memory as totally distributed – i.e. each CPU has it’s own local 
memory which can not be directly accessed by any other, and conversely it 
can not access the memory of any other CPU

• Most general method

– Shared Memory by OpenMP
• Each CPU can see all the memory.

– Mixed mode using both MPI and OpenMP
• Within the shared memory node use OpenMP
• Between use MPI
• In theory some performance benefits but in practice …. See the `It Hates 

You’ section.
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Recursive bisection grid partitioning in POLCOMS

2D halo boundary 
data exchange
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POLCOMS 2 km benchmark : All systems

POLCOMS 2km
resolution
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Rusticyanin

• Rusticyanin, a blue copper protein, 
has ~6300 atoms and is involved in 
redox processes

• We have started calculations using 
over 30000 basis functions

• In collaboration with S.Hasnain (DL) 
we want to calculate redox potentials 
for rusticyanin and associated 
mutants. Rusti has a large potential, 
680mV
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