
Computational Science &
Engineering DepartmentCSE

Parallel Algorithms on a cluster of PCs

Ian Bush
Computational Science & Engineering Department

Daresbury Laboratory
I.J.Bush@dl.ac.uk

mailto:I.J.Bush@dl.ac.uk

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

2

General Introduction To Parallel Algorithms

• In this lecture I want to cover some fairly general principles about parallel
algorithm and program design. These include

– Task farming – don’t look down upon it !
– Replicated data algorithms, their advantages and their problems
– Physical systems that only have short ranged interactions (in some sense)
– Very basic introduction into analysing if your chosen algorithm is a good

one
– Distributed data – how to choose the distribution
– Parallel distributed data libraries

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

3

Parallel Computing – What Do We Want ?

• Independent operations !
– Do i = 1, n

a(i) = b(i) + c(i)
End Do

dot = 0.0
Do i = 1, n

dot = dot + a(i) * b(i)
End Do
Call global_sum(dot)

• The more independent operations before comms the better (coarse grained
v. fine grained parallelism)

• Strong synergy with vectorization

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

4

Task Farming (or Job Farming)

• You have N separate jobs to do, with P processors to do it on.
– e.g. Monte Carlo using different random number sequences
– e.g. Geometry optimizations for a genetic algorithm
– e.g. Loads of integrals
– e.g. Studies of different trajectories when examining the scattering of ions

of a material (MEIS)

• So give each job in turn to the processors, until done

• This is task farming, and is a VERY effective way to use a parallel machine
(provided you didn’t spend too much on the interconnect !)

• So if it’s that simple why do I mention it
– As usual simple ideas have some subtleties

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

5

Why Bother to Parallelize The Code ?

• In some cases there is no, or very little coupling, between the jobs
– Just fire of copies of the serial code and post-process if required

• However often some sort of analysis across the jobs has to be performed as
the job goes on

– Could do it by clever things with grep and files and such like
– But it is such a simple thing to parallelize you might as well do it that way

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

6

Example Message Passing Code For Task Farming
Include ‘mpif.h’
Real, Dimension(1:njobs) :: answers
Integer, Dimension(1:njobs) :: job_list
Integer :: me, numprocs, error, i
Call mpi_init(error)
Call mpi_comm_rank(mpi_comm_world, me, error)
Call mpi_comm_size(mpi_comm_world, numprocs, error)
Call get_job_list(job_list)
Do i = 1, njobs

If(Mod(i - 1, numprocs) == me) Then
Call doit(job_list(i), answers(i))

End If
End Do
Call analyze(answers) ! Comms required here
Call mpi_finalize(error)
OpenMP is analogous – just need directive for the loop

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

7

Task Farming – The Major Consideration

• What to do about I/O ?
– Each Processor writes to its own file ?
– Processor 0 produces all the outputs at the end ?
– Have some master node that copes with all the I/O – i.e. receives messages

from the other procs and acts on them ?

• For small clusters just have each processor write to its own file
– Much the simplest, each processor just opens a file whose name depends

on the processor rank

• May need to think again for larger systems
– Analysing 100s of output files can be a nightmare

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

8

How Many Processors Can I Exploit Effectively ?

Well as many as I have jobs, duh ! NEXT !!

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

9

But What if the Jobs All Take Different Times ?

• Load Balancing can become very important
• Two real choices

– If njobs >> P just take your chances
• With any luck it will balance out
• In general task farms work best with njobs >> P
• This is STATIC LOAD BALANCING

– Alternatively use a master-slave algorithm
• The master doles out the jobs in turn to the slaves
• The slave tells the master when it has finished one job, and the master then

gives it a new one until there are no left
• An example of DYNAMIC LOAD BALANCING
• Wastes a processor …
• Best when there are extreme deviations in job times, or though njobs is

somewhat bigger than P, it’s not hugely greater than P (e.g. 3-4xP)
• The ONLY excuse for mpi_any_source in a mpi_recv when using MPI

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

10

But My Case Will Not Fit on a Single Processor !

• You now have to move to distributed data land (see later)

• So now you MUST use some parallel programming paradigm

• This is an ideal job for MPI communicators. Use MPI_SPLIT to create
communicators for subsets of all the procs in use, then use the same
method as above but with these subsets instead of single processors

• This is the method use in the genetic algorithm mentioned above

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

11

I Have a Task Farm, But my Job does Other Stuff as well

• Quite a common case

• Many parallel codes use a mixture of parallelization techniques and
algorithms, the one chosen is that best to perform the operation required

• The same principles apply, and as task farming is such an effective way of
parallel computing one should look for even very simple opportunities if
available

– e.g. in a UHF calculation you have to do two independent diagonalizations.
Use a task farm with just two jobs, half the procs doing one diag, the other
half doing the other.

• This is also part of the genetic algorithm calculation. Farms within Farms !

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

12

Replicated v. Distributed Data

• Replicated data is when each processor holds all the data required
to perform the calculation

• Distributed Data is when you split up all the (large) arrays so that
each processor only holds a part of it

• Hybrid schemes are possible

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

13

Replicated Data, Pros and Cons

• It’s easier to program
– All the data is there, you don’t have to mess about message passing to get

what you want
– I/O is easier, you have the whole array so just read in at the beginning and

write it all out at the end

• Much less complicate message passing is required, typically just a few
collectives

• However it is memory hungry

• And typically it scales less well than distributed data

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

14

DL_POLY2 – Replicated Data and Scaling
• DL_POLY is a classical MD program out of Daresbury by W.Smith

• The replicated data version is DL_POLY2

• The major compute time is the force evaluation which is perfectly parallel
and linear scaling (assuming only short ranged forces)

– T(compute) = aN/P

• The major comms time is in global collectives
– T(comms)=bNxlog(P)
– N.B. Grows with P

• So T(compute):T(comms)=a/(bPxlog(P))

• Want this ratio to be big !

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

15

Short Ranged Interactions

• An important general class of simulations/calculations have interactions
between `particles’ which are in some sense short ranged – typically when
compared to the size of the bounding box

• Examples might be
– Classical MD simulations where there are no Ewald terms, e.g. Lennard-

Jonesium
– Many Grid based simulations – often solving PDEs

• CFD
• Oceanography
• Weather forecasting
• Climate modelling

• What happens if we can give each processor a bit of the box which is larger
than the range of the interaction ? – i.e. distributed data

• Domain Decomposition

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

16

DL_POLY 3
• DL_POLY3 is a distributed memory parallel classical MD code

Only need to communicate with nearest
processors !

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

17

Recursive bisection grid partitioning in POLCOMS

2D halo boundary
data exchange

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

18

Scaling With Short Range Forces
• Use DL_POLY as an example – POLCOMS similar but a little more

complicated

• Remember for the replicated date DL_POLY2
– T(compute) = aN/P
– T(comms) = bNxlog(P)
– T(compute):T(comms) = a/(bPxlog(P))

• For distributed data DL_POLY3
– T(compute) = dN/P - note new pre-factor
– T(comms) = eN/P - Each proc has N/P data and have to communicate

with a finite number
– T(compute):T(comms) = d / e

• INDEPENDENT OF PROCESS COUNT and system size

• So should scale perfectly …

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

19

So Why Isn’t POLCOMS Perfect For All System Sizes ?

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

20

The Effect of Latency

• Possible reason include
– Load imbalance
– Amdahl’s law effects

• But we haven’t considered the effect of latency in the communications time:
– T(compute) = dN/P - still, no latency effects
– T(comms) = f(α+βN/P) - residual comms time you can’t get rid of
– T(compute):T(comms) = dN/(f αP) + d/(f β)

= (d/f)(N/(αP) + 1/β)

• Latency introduces a term that DECREASES the ratio as P increases
– Bad !

• So under what conditions do we expect good scaling ?

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

21

A Closer Look At The Ratio
• T(compute):T(comms) = d/f x (N/(αP) + 1/β)

• To get a ratio that does not decrease markedly with processor count we
want a small latency

• To get a large ratio overall we want
– Large Bandwidth - 1/β
– Each bit of compute work being expensive – d

• Another way of looking at it is Volume to surface area effects
• Or have slow CPUs !!

– Small numbers of messages – f

– LARGE SYSTEM SIZE – big N

Parallel Computing Is Best For Large Systems

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

22

Distributed Data

• For small clusters replicated data can get you a long way.

• However as your problems become more complex, and as you gain access
to machines with more processors, Distributed Data algorithms become
more and more attractive.

• It’s important to understand that different versions of the same parallel
program which use different data distributions are often best suited to
different problem domains

– DL_POLY2 – replicated data – a few 10’s of thousand atoms, a few 10s of
processors

– DL_POLY3 – distributed data – 100’s of thousands of atoms

• However it is using distributed data that I find most interesting
– More intellectually challenging
– Allows much larger and more difficult problems to be solved

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

23

Distributed Data – How To Distribute Your Data

• So you have a program, or at the very least an algorithm, to solve your
problem, and you think that distributed data is for you. How should you
choose how to split up your large arrays ?

• Firstly look at what people have done in related areas before
– They might have a solution ready for you

• The programmer’s first commandment is ‘Be Lazy’ – don’t reinvent the
wheel!

– If there is not a ready made solution, previous work will suggest how to
distribute your data

– Be imaginative in your reading !
• As shown above there is some relationship between classical MD and ocean

modelling
– Be aware of common distributions, e.g. domain decomposition (or

blocked), row, column, block cyclic (see later) …
• They are used for a reason

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

24

Distributed Data – How To Distribute Your Data (2)

• So you can’t find anything, or at maybe what you have found is not very
convincing.

• Now you have to think ….

• You have to
– Understand your algorithm for the whole calculation

• How does the time scale with system size
• How does the memory scale with system size

– From that which parts take the most time and/or memory
• If possible PROFILE !

– Understand the data flow in your program
• For a good parallelization this is possibly the most important

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

25

Distributed Data – How To Distribute Your Data (3)

• The way to choose your data distribution is to base it on that which best fits
the most expensive part of your algorithm (in terms of time or memory,
whichever is your major concern)

– Fairly obvious really
– The distribution of all other object within your code should derive from

this
• Avoid unnecessary comms

– Is there a library that does what you want ? (see below)

• Sometimes more than one part of the algorithm is expensive
– If you are lucky the same data decomposition can be used for both, e.g. for

dense linear algebra in general block cyclic is a very good choice
– If not you either have to redistribute between the expensive parts …

• How expensive is the redistribution relative to the other parts of the
calculation ?

– Or compromise

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

26

Distributed Data – Is It Worth It ?

• Before you jump in at least have a rough and ready estimate of the
compute:comms ratio for what you are thinking about. Remember you want
that high, not to decrease markedly with number of processors, and at the
very least be constant with system size. Include latency if possible: e.g.

– Matrix Multiply - N3 compute, N2 communicate
• Very good. Good ratio and large messages

– Matrix Vector Multiply - N2 compute, N communicate.
• Good. Good ratio but messages getting a bit short – latency effects ?

– FFT - Nxlog(N) compute, at least N communicate
• Hmmmm, poor ratio, short messages. 1D is a bit of a disaster but higher

dimensionalties work better, see below

– Matrix transpose - 0 (ZERO) compute, N2 communicate
• COMPLETE DISASTER !!!!

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

27

Rules of Thumb For Good Algorithms

• Algorithms that scale very well generally have two properties

– A good compute to communicate ratio

– Only local comms are required, i.e. to perform the operation a given
processor does not need to know the state of the WHOLE machine, and
best the amount of processors it needs to communicate with should grow
less slowly than the total number of processors

• e.g. Matrix diagonalization has a good ratio but is difficult to get to scale well
– orthonormailty constraints

• The first is required, the second is not but should be held in mind

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

28

Parallel Libraries

• Remember the first commandment – ‘Be Lazy’
• There are increasingly large number of good quality libraries that solve a

wide variety of problems in parallel already out there. If they
– Fit your data distribution for your whole code
– Or redistribution is a possibility

you should use them.

• Ideally the library suits all your needs, at least computational one, and then
your data distribution should be driven entirely of that of the library.

• I would strongly suggest you stick with open source libraries
– Portability

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

29

One or Two Example Parallel Libraries

• There are loads out there. Some that myself and my collaborators have use
are

– ScaLAPACK - Dense Linear Algebra

– PLAPACK - Dense Linear Algebra

– FFTW - Multidimensional Parallel FFTs

– PetSc - Partial Differential Equations

– ParPACK – Sparse Eigen systems

• Remember – DON’T REINVENT THE WHEEL !

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

30

One Example - ScaLAPACK

• Parallel version of LAPACK
– Parallel BLAS
– Linear Equation Solves
– Standard Matrix Factorizations
– Eigensystems
– Singular Value Decomposition
– Linear Least Squares
– …

• I’ve used this extensively and it is a very good library (with one or two
reservations about the eiegnsolvers) – CRYSTAL, GAMESS-UK, PFARM

• Uses a block cyclic decomposition

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

31

2-D Block Cyclic Distribution

•Flexible

•Load balancing and scaling

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

32

But Sometimes Life Just Gets Difficult

• Sometimes the compute to comms ratio is poor, it’s a global operation, and
you’ve got to parallelise it because it takes too much time, or too much
memory, or both.

• Example – Three Dimensional FFT - Used huge number of areas
– Plane wave ab initio electronic structure codes, e.g. CASTEP, CPMD, VASP

• In parallel the FFTs often take over 50% of the run time
– Ewald Summations, e.g. DL_POLY3

• Remember the earlier stuff was for short range forces only
– Spectral Methods in CFD
– Signal Processing
– …

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

33

2D FFTs – Method 1 – Transpose Method

Transpose

o 1 2 3

o

1

2

3

• Do the FFTs in the Y Direction in parallel using a serial library routine

• Transpose – Requires all to all communication

• Do the FFTs in the X direction in parallel using a serial library routine

• T(compute) = aAlog(a) – where A is the area, i.e. number of grid points
• T(comms) = bP(α+A/βP2) – latency problems
• Used by CASTEP, VASP, CPMD etc.

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

34

2D FFTs – Method 2 – DaFT Method

0 1

2 3

• Do the FFTs in PARALLEL in the X direction – lots at once

• Do the FFTs in PARALLEL in the Y direction – lots at once

• T(compute) = cAlog(A)

• T(comms) = dlog(P)(α+A/βP)

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

35

Comparison of the Two Methods

• Transpose Method:
– T(comms) = bP(α+A/βP2)

• DaFT Method:
– T(comms) = dlog(P)(α+A/βP)

• DaFT passes more data about but the messages are much longer
– In the latency limit DaFT is better
– In the bandwidth dominated regime Transpose is better

• So
– Transpose better for small P
– DaFT better in the very large P limit

• In practice Transpose is generally better, at least on most machines

• So why does DL_POLY3 use DaFT ?
– One for you to think about – see next lecture !!

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

36

Castep on HPCx

0

200

400

600

800

1000

32 64 128

Scaling of TiN benchmark

Job time (s)

MPI_AllToAllV
time (s)

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

37

Measured Time (seconds)

Number of CPUs

Gramicidin in water;Gramicidin in water;
rigid bonds + SHAKE:rigid bonds + SHAKE:
792,960 ions, 50 time steps

Performance Relative to the IBM p690

Number of CPUs

DL_POLY3

103

49

139

196

311

89

122

208

66

104

181

55

91

169

0

100

200

300

32 64 128 256

IBM p690
SGI Altix 3700/Itanium2 1300
IBM p690+ SP7
SGI Altix 3700/Itanium2 1500

0

0.5

1

1.5

2

2.5

3

32 64 128 256

IBM p690
SGI Altix 3700/Itanium2 1300
IBM p690+ SP7
SGI Altix 3700/Itanium2 1500

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

38

Summary
• Parallel computing is all about finding independent operations

• Task farms are an easy and effective way to use parallel computers

• Replicated data is a comparatively simple way to program the beasts, but
has memory and scaling drawbacks

• If your interactions are short ranged you should get good scaling

• Try to think about the compute:comms ratio

• Distributed memory requires good understanding of the algorithm
– Base your distribution on the most important parts

• Don’t reinvent the wheel – Use google, Use those libraries !

• What’s good for small processor counts may not be good for large

	General Introduction To Parallel Algorithms
	Parallel Computing – What Do We Want ?
	Task Farming (or Job Farming)
	Why Bother to Parallelize The Code ?
	Example Message Passing Code For Task Farming
	Task Farming – The Major Consideration
	How Many Processors Can I Exploit Effectively ?
	But What if the Jobs All Take Different Times ?
	But My Case Will Not Fit on a Single Processor !
	I Have a Task Farm, But my Job does Other Stuff as well
	Replicated v. Distributed Data
	Replicated Data, Pros and Cons
	DL_POLY2 – Replicated Data and Scaling
	Short Ranged Interactions
	DL_POLY 3
	Recursive bisection grid partitioning in POLCOMS
	Scaling With Short Range Forces
	So Why Isn’t POLCOMS Perfect For All System Sizes ?
	The Effect of Latency
	A Closer Look At The Ratio
	Distributed Data
	Distributed Data – How To Distribute Your Data
	Distributed Data – How To Distribute Your Data (2)
	Distributed Data – How To Distribute Your Data (3)
	Distributed Data – Is It Worth It ?
	Rules of Thumb For Good Algorithms
	Parallel Libraries
	One or Two Example Parallel Libraries
	One Example - ScaLAPACK
	2-D Block Cyclic Distribution
	But Sometimes Life Just Gets Difficult
	2D FFTs – Method 1 – Transpose Method
	2D FFTs – Method 2 – DaFT Method
	Comparison of the Two Methods
	Castep on HPCx
	DL_POLY3
	Summary

