Quantum Monte Carlo

1. Introduction to Monte Carlo: sampling, random numbers,
Markov chains, estimating errors

2. Variational Monte Carlo: sampling and wavefunctions.

3. Diffusion Monte Carlo: branching random walks, fermion sign
problem

4. Introduction to Path Integrals: formalism, sampling, the
action.

5. Boson & Fermion Path Integrals: permutations, exchange
moves, superfluidity and bose condensation.

Goal: to solve quantum many-body systems with computer
simulation.

Examples: liquid and solid helium, electron gas, hydrogen,...

I only will cover continuum quantum Monte Carlo, not lattice
models!
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Monte Carlo and Random Walks

Today we start with an _introduction to basic Monte Carlo
techniques.

e What is Monte Carlo?

— Any computational method which uses random numbers
as an essential part of the algorithm

— Equivalent to performing integrals by randomly sampling
an integral.

— Often a Markov chain, in particular Metropolis MC

= References
— Allen & Tildesley “Computer Simulation of Liquids”
— Frenkel & Smit “Molecule Simulations”
— Thijssen, “Computational Physics”
— Kalos & Whitlock, “Monte Carlo Methods”
— “Numerical Recipes”
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MC is advantageous for high
dimensional integrals

Consider an integral in the unit hypercube:

1
| = Pk aXp T (X Xp)
0

By conventional deterministic methods:

= Lay out a grid with L points in each direction with h=1/L

= Number of points is N=LP p CPU time.

HOW DOES ERROR GO WITH CPU TIME and DIMENSIONALITY?
= Error in trapizoidal rule goes as e=f’(x) h2.

< The CPU timep eP2,

= By sampling CPU time Y e2. To get another decimal place
takes 100 times longer!
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Other reasons to do Monte Carlo:
— Conceptually and practically simple.
— Comes with built in error bars.

Many methods of integration have been tried, and will be tried in
this world of sin and woe. No one pretends that Monte Carlo is
perfect or all-wise. Indeed, it has been said that Monte Carlo
is the worst method except all those other methods that have
been tried from time to time. Churchill 1947
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Central Limit Theorem (Gauss)

Sample N values from p(X)dX. (X3, X5, X3 ... Xy)
Estimate mean from

N
What is the pdf of mean? = % é X
Solve by fourier transforms. i=1

If you add together two random variables, you multiply together
their characteristic functions:

¢, (K) =(€") = gyixp(x)e™

C.y&)=c, (k) (k)
Then Crry, (K) = ¢ (k)"

c, (k) =c,(k/N)"

Taylor expand: In(c, (K)) = 3 Kk (ik)"
: =1 ) n!

cumulants —1
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cumulantsk
What happens to the reduced moments? mean:kl
R variance=k,
kn=k N""
n =Ry skewness =k ,
Hence the n=1 moment remains invariant.  KUrtosis=k,

The rest get reduced by higher and higher powers of N.
: — Aikks- k% /2N-ikk3/6N2....
limygy C,(K) =€ :

set k, =k, =...=0and fourier transform
N(y- k)

p(y)=(N/2pk,)"*e™ =

Given enough averaging almost anything becomes a
Gaussian distribution.
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Approach to normality
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Figure 1. Distributions of sums of uniform random numbers, each compared with e
nermal distributisn. (#) B, the uniform distribution, (8) Ry, the sum of ree

unifarmly distributed numbers. (¢} Ry, the surn of three uniformly diseribated
numbers, (d) Bis, the sum of twelve uniformly distribated numbers.

Conditions on Central Limit Theorem

|, :<x”> = (PXp(X) X"

e We need the first three moments to exist.
— If I, is not definedb p(x) not a pdf

— If 1; does not exist b integral not mathematically
well-posed.

— If 1, does not exist b infinite variance. Important to
know if variance is finite for Monte Carlo.

« Divergence could happen because of tails of distribution
¥

I, = OAxp(x)x* lim ., X°p(X) ® 0

= Or because of singular points, e.g. at x=0
lim ., X°p(X) ® finite
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Random Number Generation

Also read “Numerical Recipes”.

What is a random number?

— A single number is not random. Only an infinite
sequence can be described as random.

— Random means the absence of order (a negative
property).

— Can an intelligent gambler make money by betting
on the next numbers that will turn up?

— All subsequences are equally distributed. This is the
property that MC uses to do integrals.
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Random numbers on a computer

e Truly random--the result of a physical process such as
timing clocks, circuit noise, bad memory

— Too slow (we need 1019/sec)

Too expensive
— Low quality
— Not reproducible

e Pseudo-random. prng (pseudo means fake)
— Deterministic sequence

— But if you don’t know the algorithm, they appear to
be random

e Quasi-random (quasi means almost random)
— “half way” between random and a uniform grid
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Pseudo Random Sequence

Cycla
T T
.S = Sp1 = 5 = Sna =
Seed [; F ['F
I-" | not . I n ..".. Cna
S: State and initial seed. Y T " Uner

T: Iteration process,

F: Mapping from state to integer RN (I ) or real RN (U).
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Cycle length

<If internal state has M bits, total state space is 2Y values.

<If mapping is 1-1, then it will divide up space into a finite
of cycles.

-Best case is a single cycle of length 2M.

<Entire period of the RNG is exhausted in-

= rand (1 processor) ~ 100 second
drand48 (1 processor) —~ 1 year
drand48 (100 processor) ~ 3 days
SPRNG LFG (105 procs) — 10375 years
Assuming 107 RN/sec per processor

eIt is easy to achieve very long cycle length but 32 or 24
bit generators are no longer adequate!
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Common PRNG Generators

= Multiplicative Lagged z2, =2, %2,
Fibonacci ~vary
- Modified Lagged Zn = Znk 24, initialization
Fibonacci (modulo 2m)
= 48 bit LCG
* 64 bit LCG Zy=avzy, +p vary p
e Prime Modulus LCG (modulo m)
vary a
- CR:ombirjed Multiple z, =a,,*z,, + ...+ vary LCG
ecursive an-k*zn-k + LCG
Recurrence Parallelization
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Sequential RNG Problems

e Correlations Wnon—uniformity in higher dimensions

Uniform in 1-D but
non-uniform in 2-D

This is the important property to guarantee:

(f(%.)9(X%.2)) ={f (x))}{g(x))

MC uses numbers many at a time--they need to be uniform.
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Recommendation:for very careful work
use several generators!

e For most real-life MC simulations, passing existing
statistical tests is necessary but not sufficient.

< Random number generators are still a black art.

< Rerun with different generators, since algorithm may be
sensitive to different RNG correlations.

< Computational effort is not wasted, since results can be
combined to lower error bars.

* In SPRNG, relinking is sufficient to change RNGs
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Importance Sampling
Given the integral | = (\ﬂXf (X)

How should we sample x to maximize the efficiency?
Estimator

f(x)u éf(x)u
p)H \&p(X) 4

Transform the integral to:

| = i (X)e

The variance is:

6f(x) O\ _ . f(¥? .,
=(axa—2- ], = —7 ]
““\&eeo '/ T 009

=0 with constraints

Optimal sampling:

d p(x)
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_ (%)
Parameterize as: P(x) = (‘-)jxqz(x)
Solution: p* (X) =3 |f (X)|
x| f ()]
Estimator:

<y = 39n(F(X))
F()/p () & 19

If f(X) is entirely positive or negative, estimator is
constant. “zero variance principle.”

We can’'t sample p*(x), but its form can guide us.

Importance sampling is a general technique: it works in
many dimensions.
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Example of important sampling.

X2

)=
1+x
.. —_ -1/2 'é
Optimize “& p(x) = pa) ‘e
Mean value is independent of a CPU timeis not
relative cpu tme
" :
t
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« Basic idea of importance sampling is to sample more in
regions where function is large.

+ Find a convenient approximation to |f(x)].

e Do not under-sample. That could cause infinite
variance.

e Over-sampling results in loss of efficiency but not
infinite variance.

< Always derive analytically, conditions for finite variance.

e To debug: test that estimated value is independent of
important sampling.

< Do not ignore the spikes—understand them!

= Sign problem: zero variance is not possible for
oscillatory integral. “Monte Carlo can add but not
subtract.”

ceperley random walks
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Random Walks

= It is very difficult to sample
directly a general probability
distribution.

If we sample from another
distribution, the overlap will
be order exp(-aN) where N is
the number of variables.

= Markov chains (random walks)
allow you sample any
distribution based on detailed
balance and transition rules.

= These methods were introduced
by Metropolis et al. ( 1953)
applied to a hard sphere liquid. Markov 1856-1922

= One of the most powerful and
most used algorithms in science.
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Markov chain or Random Walk

e Markov chain is a random walk through phase space:
SiPs, P s;p s b ...
Here “s” is the state of the system
* The transition probability is: P(s,® s,,41) stochastic matrix
* In a Markov chain, the distribution of s,,; depends only
on s, (by definition).
- Let f,(s) be the probability after “n” steps. It evolves
according to a “master equation.”

fra (S :é; f.(s)P(s® s)

< The stationary states are eigenfunctions of P.

apr(s)P(s® s)=ep(s)

ceperley random walks

< Because P is positive, the eigenvalues have e£ 1. An
equilibrium state must have e =1.

< How many equilibrium states are there?
e Ifitis , then it will converge to a unique

stationary distribution (only one eigenfunction=1)
< In contrast to MD, ergodicity can be proven

e Conditions:

— One can move everywhere in a finite number of
steps with non-zero probability. No barriers

— Non-periodic transition rules. (for example hopping
on a bi-partite lattice)

— Average return time is finite. (no expanding
universe) Not a problem in a finite system.

- If ergodic, convergence is geometrical and monotonic.

fn(s):p(s)+$ae|“qf, (s)

ceperley random walks
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Metropolis algorithm

Three key concepts:
1. Sample by using an ergodic random walk.

2. Determine equilibrium state by using detailed
balance

3. Achieve detailed balance by using rejections.

Detailed balance: P (s) P(s® s)=p (sHP (s’ ® s).

Put p (s) into the master equation.

égp(s)P(s@ s'):ésp (s)P(s'® s)=p (s)és P(s'® s)=p(s)

= Hence p(s) is an eigenfunction.

e If P(s b g is ergodic then p (s) is the unique steady
state solution.
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Rejection Method
Metropolis achieves detailed balance by rejecting moves.
Break up transition probability into sampling and
acceptance:

P(s® s)=T(s® s')A(s® s')

T(s® s') =sampling probability

A(s® s') = acceptance probability

The optimal acceptance probability that gives detailed
balance is:

. & T(s'® N
e -

Note that normalization of p(s) is not needed or used!

ceperley random walks
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The “Classic” Metropolis method

Metropolis-Rosenbluth -Teller (1953) method for

sampling the Boltzmann distribution is:

* Move from s to s’ with probability T(s® s’)= constant
< Accept with move with probability:

A®s)=min [ 1, exp (- (E(S)-E(s))/7ksT ) 1]

e Repeat many times

= Given ergodicity, the distribution of s will be the
canonical distribution: p(s) = exp(-E(s)/kgT)/Z

e Convergence is guaranteed but the rate is not!
ceperley random walks

How to sample

S new =S old + D (sprng - 0.5)

Uniform distribution in
a cube of side “D”.

Note: It is more efficient to move one particle at atime
because only the energy of that particle comesin and the
movement and acceptance ratio will be larger.

Als® s)=exp(-b (v (5)-V(s))) =epg-b & V(i 1)- v(r - 1))

jti

ceperley random walks
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MONTE CARLO CODE

call initstate(s_old) <
E_old = action(s_old)
LOOP{
call sample(s_old,s_new,T_new,1) <«
E_new = action(s_new)
call sample(s_new,s_old,T_old,0) <
A=exp(-E_new+E_old) T_old/T_new N
if(A.gt.sprng()) {
s_old=s_new
E_old=E_new

naccept=naccept V
call averages(s_old) 3}

«—
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Overview of MCMC

= Decide how to move from state to state.

= Initialize the state

= Throw away first k states as being out of equilibrium.

= Then collect statistics but be careful about correlations.

Common errors:
1. If you can move from s to s’, the reverse move must also be
possible.
2. Accepted and rejected states count the same!
3. No a priori criterion for deciding how long to run:
= Try different starting places
= Occasionally, do a very long run
= Think about the physics

= Monitor lots of different properties, including order
parameters

Exact: no time step error, no ergodic problems, in principle, but

no dynamics either.
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Always measure acceptance ratio. Adjust to roughly
0.5 by varying the “step size”

A 20% acceptance ratio actually achieves better
diffusion.
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Optimizing the moves

= Any transition rule is allowed as long as you can go
anywhere in phase space with a finite number of steps.
(ergodic)

e Trytofinda T(s P s) »p(s). If you can the
acceptance ratio will be 1.

= We can use the forces to push the walk in the right
direction. Taylor expand about the current point.

V(N)=V(ro)-F(r) (r-r,)
e Set T(s b s") » exp[ -b(V(rg)- F(rp)(r-r))]

* Leads to Force-Bias Monte Carlo

+ Related to Brownian motion (Smoluchowski Eq.)

e Local implementation is called the “heat bath” method.
« Will use in Diffusion Quantum Monte Carlo.
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Problems with estimating errors

e Any good simulation quotes systematic and
statistical errors for anything important.

e The error and mean are simultaneously determined
from the same data. HOW?

e Central limit theorem: the distribution of an average
approaches a normal distribution (if the variance is
finite). One standard deviation means ~2/3 of the time
the correct answer is within s of the sample average.

= Problem in simulation: data is correlated in time. It
takes a “correlation” time to be “ergodic.”

< We must throw away the initial transient and get rid of

autocorrelation.

= We need 220 independent data points to estimate

errors.

ceperley random walks

Y ou need to be able to look at
the data and estimate the error
bars.

Interactive code to perform
statistical analysis of data.

Download from Materials
Computation Center at U of
Illinois.

File All Datasets

BiE|

The file md3.sca contains 4 datasets,

time
MD_EN

WO_PE iew]

MOM A2

Email questiens/bugs to shumway@uiucedu
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DataSpork

= MD_PE

File Trace Autocorrelation Blocking

Trace of MD_PE

-23 r

235 L L L

i} 1000 2000 3000

Autocorrelation for MD_PE

S

o 100 200 300

1.0

0L

on

Blocking Analysis of MD_PE

4000 5000

Dataset Information

mean: —2.2545316
+0.00213234281

sigma: 0.0283611639

correlation time: 25.812561

start cuttoff:| S00

0.0030 end cuttoff:| S000

00020 -
Lah g of

g Ll i
0123458788
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Correlated data

Uncorrelated data

T
. l |I I | -|L rrcieed] _[—.—I
5 ! | i Q | W W E:. —eom
T ma__| R ——r— i
= =
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Estimating Errors
{a} O<tEN
1o
3)»a=1-a 3
= Uncorrelated data t
1/2
ae Sada’ l
error(a)=<(5- a))> ” NN U
= Correlated data . [Ka(a-a) m
error(ﬁ)z((a_- (a))> » W

= correlation time

§ (daday)
k =1+2Q
o 2\da25

e Blocking method: average together data in blocks
longer than the correlation time until it is uncorrelated.

ceperley random walks
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Proof of variance estimate

2\1/2 ké-(at'ﬁ)z - — _ 1o
error (a) :<(E- (a) > » W a —Wa a

t

¥ ¥
k =1+2§ C(t)=correlation time » 26(%0(0
0

t=1

C(t,t)° @(Z—:;% =C(|t- t{)=autocorrelation function

(- )= (A sasa )22

& da’) & & k
a Gy <<N2>§1_“§?1¥C[ =(daz>ﬁ

K ” ot
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Estimating Errors

- Trace of A(t):

- Equilibration time.

- Histogram of values of A ( P(A) ).

- Mean of A (a).

- Variance of A (Vv).

- estimate of the mean:

- estimate of the variance

- Autocorrelation of A (C(t)).

- Correlation time (k).

- The (estimated) error of the (estimated) mean

(s).
- Efficiency [= 1/(CPU time * error 2)]

ceperley random walks
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Efficiency of MC

statistical error — sqrt(variance/computer time).

DEFINE: 1
efficiency=z = —
uT

N =error? of mean
T =total computer time

(independent of the length of run)
To improve efficiency, one can either:
— write faster code,
— get a faster computer
— work on reducing the variance/step.
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Statistical thinking is slippery: be careful

“Shouldn’t the energy settle down to a constant”

— NO. It fluctuates forever. It is the overall mean
which converges.

< “The cumulative energy has converged”.

— BEWARE. Even pathological cases have smooth
cumulative energy curves.

» “Data set A differs from B by 2 error bars. Therefore it
must be different”.

— This is normal in 1 out of 10 cases. If things agree
too well, something is wrong!

e “My procedure is too complicated to compute errors”

— NO! Run your whole code 10 times and compute the
mean and variance from the different runs. If a
quantity is important, you MUST estimate its errors.

ceperley random walks
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