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Quantum Monte Carlo
1. Introduction to Monte Carlo: sampling, random numbers, 

Markov chains, estimating errors
2. Variational Monte Carlo: sampling and wavefunctions.
3. Diffusion Monte Carlo: branching random walks, fermion sign 

problem
4. Introduction to Path Integrals: formalism, sampling, the 

action.
5. Boson & Fermion Path Integrals: permutations, exchange 

moves, superfluidity and bose condensation.

Goal: to solve quantum many-body systems with computer 
simulation.

Examples: liquid and solid helium, electron gas, hydrogen,…

I only will cover continuum quantum Monte Carlo, not lattice 
models!
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Monte Carlo and Random Walks

Today we start with an introduction to basic Monte Carlo 
techniques.

• What is Monte Carlo?
– Any computational method which uses random numbers 

as an essential part of the algorithm
– Equivalent to performing integrals by randomly sampling 

an integral.
– Often a Markov chain, in particular Metropolis MC

• References
– Allen & Tildesley “Computer Simulation of Liquids”
– Frenkel & Smit “Molecule Simulations”
– Thijssen, “Computational Physics”
– Kalos & Whitlock, “Monte Carlo Methods” 
– “Numerical Recipes”
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MC is advantageous for high 
dimensional integrals

Consider an integral in the unit hypercube:

By conventional deterministic methods:
• Lay out a grid with L points in each direction with h=1/L

• Number of points is N=LD ∝ CPU time.
HOW DOES ERROR GO WITH CPU TIME and DIMENSIONALITY?
• Error in trapizoidal rule goes as ε=f’’(x) h2.

• The  CPU time ∝ ε-D/2 .

• By sampling CPU time ∝ ε-2. To get another decimal place 
takes 100 times longer!
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Other reasons to do Monte Carlo:
– Conceptually and practically simple.
– Comes with built in error bars.

Many methods of integration have been tried, and will be tried in 
this world of sin and woe. No one pretends that Monte Carlo is 
perfect or all-wise. Indeed, it has been said that Monte Carlo 
is the worst method except all those other methods that have 
been tried from time to time. Churchill 1947

Good Log(error)         Bad

Log(CPU Time)

MC
2D

4D 6D 8D
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Central Limit Theorem (Gauss)
Sample N values from p(x)dx. (x1, x2, x3,… xN)
Estimate mean from 
What is the pdf of mean?
Solve by fourier transforms.
If you add together two random variables, you multiply together 

their characteristic functions:

Then 

Taylor expand:
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What happens to the reduced moments?

Hence the n=1 moment remains invariant.
The rest get reduced by higher and higher powers of N.

Given enough averaging almost anything becomes a 
Gaussian distribution.
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Approach to normality
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Conditions on Central Limit Theorem

• We need the first three moments to exist.
– If I0 is not defined⇒p(x) not a pdf
– If I1 does not exist ⇒integral not mathematically 

well-posed.
– If I2 does not exist ⇒ infinite variance. Important to 

know if variance is finite for Monte Carlo.
• Divergence could happen because of tails of distribution

• Or because of singular points, e.g. at x=0
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Random Number Generation
Also read “Numerical Recipes”.

What is a random number?

– A single number is not random. Only an infinite 
sequence can be described as random.

– Random means the absence of order  (a negative 
property). 

– Can an intelligent gambler make money by betting 
on the next numbers that will turn up?

– All subsequences are equally distributed. This is the 
property that MC uses to do integrals.
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Random numbers on a computer
• Truly random--the result of a physical process such as 

timing clocks, circuit noise, bad memory

– Too slow (we need 1010/sec)
– Too expensive
– Low quality
– Not reproducible

• Pseudo-random. prng (pseudo means fake)
– Deterministic sequence

– But if you don’t know the algorithm, they appear to 
be random

• Quasi-random (quasi means almost random)
– “half way” between random and a uniform grid
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Pseudo Random Sequence

S: State and initial seed. 

T: Iteration process, 

F: Mapping from state to integer RN (I ) or real RN (U).
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Cycle length

• rand (1 processor)           ~  100 second
• drand48 (1 processor)     ~  1 year 
• drand48 (100 processor) ~  3 days
• SPRNG LFG (105 procs) ~  10375 years

Assuming 107 RN/sec per processor

•If internal state has M bits, total state space is 2M values.

•If mapping is 1-1, then it will divide up space into a finite 
of  cycles.

•Best case is a single cycle of length 2M.

•Entire period of the RNG is exhausted in:

•It is easy to achieve very long cycle length but 32 or 24 
bit generators are no longer adequate!
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Common PRNG Generators
• Multiplicative Lagged 

Fibonacci 
• Modified Lagged 

Fibonacci

• Combined Multiple 
Recursive

• 48 bit LCG
• 64 bit LCG
• Prime Modulus LCG

zn = zn-k * zn-l 

zn = zn-k + zn-l 

(modulo 2m )

zn = a*zn-1 + p

(modulo m )

zn = an-1*zn-1 + ...+ 
an-k*zn-k + LCG

vary
initialization

vary a

vary p

vary LCG

ParallelizationRecurrence
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Sequential RNG Problems

• Correlations       non-uniformity in higher dimensions

Uniform in 1-D but 
non-uniform in 2-D

This is the important property to guarantee:

MC uses numbers many at a time--they need to be uniform.
1 2( ) ( ) ( ) ( )i i i if x g x f x g x+ + =
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Recommendation:for very careful work 
use several generators!

• For most real-life MC simulations, passing existing 
statistical tests is necessary but not sufficient.

• Random number generators are still a black art.
• Rerun with different generators, since algorithm may be 

sensitive to different RNG correlations.
• Computational effort is not wasted, since results can be 

combined to lower error bars.
• In SPRNG, relinking is sufficient to change RNGs 
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Importance Sampling
Given the integral

How should we sample x to maximize the efficiency? 
Estimator

Transform the integral to:

The variance is:

Optimal sampling:
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Parameterize as:

Solution: 

Estimator: 

If f(x) is entirely positive or negative, estimator is 
constant. “zero variance principle.”

We can’t sample p*(x), but its form can guide us.
Importance sampling is a general technique: it works in 

many dimensions.
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Example of important sampling.
2
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Mean value is independent of a.          CPU  time is not
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What does infinite 
variance look like?

Spikes

Long tails on the 
distributions
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• Basic idea of importance sampling is to sample more in 
regions where function is large.

• Find a convenient approximation to |f(x)|.
• Do not under-sample. That could cause infinite 

variance.
• Over-sampling results in loss of efficiency but not 

infinite variance.
• Always derive analytically, conditions for finite variance.
• To debug: test that estimated value is independent of 

important sampling.
• Do not ignore the spikes—understand them!

• Sign problem: zero variance is not possible for 
oscillatory integral. “Monte Carlo can add but not 
subtract.”
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Random Walks
• It is very difficult to sample 

directly a general probability 
distribution.
If we sample from another 

distribution, the overlap will 
be order exp(-aN) where N is 
the number of variables.

• Markov chains  (random walks) 
allow you sample any 
distribution based on detailed 
balance and transition rules.

• These methods were introduced 
by Metropolis et al. ( 1953) 
applied to a hard sphere liquid.

• One of the most powerful and 
most used algorithms in science.

Markov 1856-1922

ceperley                  random walks
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Markov chain or Random Walk
• Markov chain is a random walk through phase space: 

s1⇒s2 ⇒ s3 ⇒ s4 ⇒…
Here “s” is the state of the system

• The transition probability is: P(sn→sn+1) stochastic matrix

• In a Markov chain, the distribution of sn+1 depends only 
on sn (by definition). A drunkard has no memory.

• Let fn(s) be the probability after “n” steps. It evolves 
according to a “master equation.”

• The stationary states are eigenfunctions of P.

( ) ( ) ( )1 ' 'n n
s

f s f s P s s+ = →∑

( ) ( )' ( ')
s

s P s s sπ επ→ =∑
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• Because P is positive, the eigenvalues have ε ≤ 1. An 
equilibrium state must have ε =1.

• How many equilibrium states are there?
• If it is ergodic , then it will converge to a unique 

stationary distribution (only one eigenfunction=1)
• In contrast to MD, ergodicity can be proven
• Conditions:

– One can move everywhere in a finite number of 
steps with non-zero probability. No barriers

– Non-periodic transition rules. (for example hopping 
on a bi-partite lattice)

– Average return time is finite. (no expanding 
universe) Not a problem in a finite system.

• If ergodic , convergence is geometrical and monotonic.

( ) ( ) ( )n
nf s s c sλ λ λ

λ

π ε φ= + ∑
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Metropolis algorithm
Three key concepts:

1. Sample by using an ergodic random walk.
2. Determine equilibrium state by using detailed 

balance
3. Achieve detailed balance by using rejections.

Detailed balance: π (s) P(s → s’) = π (s’)P (s’ → s ).
Rate balance from s to s’.

Put π (s) into the master equation.

• Hence π(s) is an eigenfunction.

• If P(s ⇒s’) is ergodic then π (s)  is the unique steady 
state solution.

( ) ( ) ( ) ( ) ( ) ( )' ' ' ' ' ( ')
s s s
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Rejection Method

( ) ( ' ) ( ')' min 1,
( ') ( )

T s s sA s s
T s s s

π
π

 →→ =  → 

Metropolis achieves detailed balance by rejecting moves.

Break up transition probability into sampling and 
acceptance:

The optimal acceptance probability that gives detailed 
balance is:

Note that normalization of π(s) is not needed or used!
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The “Classic” Metropolis method

Metropolis-Rosenbluth -Teller (1953) method for 

sampling the Boltzmann distribution is:

• Move from s to s’ with  probability T(s→s’)= constant
• Accept with move with probability:

A(s→s’)= min [ 1 , exp ( - (E(s’)-E(s))/kBT ) ]

• Repeat many times

• Given ergodicity, the distribution of s will be the 

canonical distribution: π(s) = exp(-E(s)/kBT)/Z

• Convergence is guaranteed but the rate is not!

ceperley                  random walks

How to sample

S_new = S_old + ∆ (sprng - 0.5)

Uniform distribution in 
a cube  of side “∆”.

∆

Note: It is more efficient to move one particle at a time  
because only the energy of that particle comes in  and the 
movement  and acceptance ratio will be larger.

( ) ( ) ( )( )( ) ( ) ( )( )' exp ' exp 'i j i j
j i

A s s V s V s v r r v r rβ β
≠

 
→ = − − = − − − − 

 
∑
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MONTE CARLO CODE

call initstate(s_old) 

E_old = action(s_old)
LOOP{

call  sample(s_old,s_new,T_new,1)
E_new = action(s_new) 

call sample(s_new,s_old,T_old,0) 
A=exp(-E_new+E_old) T_old/T_new 
if(A.gt.sprng()) {

s_old=s_new
E_old=E_new
naccept=naccept+1}

call averages(s_old)           }

Initialize the state

Sample snew
Trial action
Find prob. of 

going backward 
Acceptance prob.

Accept the move
Collect statistics
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Overview of MCMC

• Decide how to move from state to state.
• Initialize the state
• Throw away first k states as being out of equilibrium.
• Then collect statistics but be careful about correlations.

Common errors:
1. If you can move from s to s’, the reverse move must also be 

possible.
2. Accepted and rejected states count the same!
3. No a priori criterion for deciding how long to run:

• Try different starting places
• Occasionally, do a very long run 
• Think about the physics
• Monitor lots of different properties, including order 

parameters

Exact: no time step error, no ergodic problems, in principle, but 
no dynamics either.
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Always measure acceptance ratio. Adjust to  roughly 
0.5 by varying the “step size”

A 20% acceptance ratio actually achieves better 
diffusion.
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Optimizing the moves
• Any transition rule is allowed as long as you can go 

anywhere in phase space with a finite number of steps. 
(ergodic)

• Try to find a  T(s ⇒ s’) ≈ π (s’). If you can the 
acceptance ratio will be 1.

• We can use the forces to push the walk in the right 
direction. Taylor expand about the current point.

V(r)=V(r0)-F(r)(r-ro)
• Set T(s ⇒ s’) ≈ exp[ -β(V(r0)- F(r0)(r-ro))]
• Leads to Force-Bias Monte Carlo
• Related to Brownian motion (Smoluchowski Eq.)
• Local implementation is called the “heat bath” method.

• Will use in Diffusion Quantum Monte Carlo.
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Problems with estimating errors

• Any good simulation quotes systematic and 
statistical errors for anything important. 

• The error and mean are simultaneously determined 
from the  same data.  HOW?

• Central limit theorem: the distribution of an average 
approaches a normal distribution (if the variance is 
finite). One standard deviation means ~2/3 of the time 
the correct answer is within σ of the sample average. 

• Problem in simulation: data is correlated in time . It 
takes a “correlation” time to be “ergodic .”

• We must throw away the initial transient and get rid of 
autocorrelation.

• We need ≥20 independent data points to estimate 
errors.
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DataSpork

You need to be able to look at 
the data and estimate the error 
bars.

Interactive code to perform  
statistical analysis of data. 

Download from Materials 
Computation Center at U of 
Illinois.
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Correlated data Uncorrelated data
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Estimating Errors

• Uncorrelated data

• Correlated data

• Blocking method: average together data in blocks 
longer than the correlation time until it is uncorrelated.
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Proof of variance estimate
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Estimating Errors

• Trace of A(t): 

• Equilibration time. 

• Histogram of values of A ( P(A) ). 

• Mean of A (a). 

• Variance of A ( v ). 

• estimate of the mean:     ΣA(t)/N

• estimate of the variance

• Autocorrelation of A (C(t)).

• Correlation time (κ ). 

• The (estimated) error of the (estimated) mean
(σ ). 

• Efficiency [= 1/(CPU time * error 2)]
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Efficiency of MC
statistical error ~ sqrt(variance/computer time).

DEFINE:

(independent of the length of run)
To improve efficiency, one can either: 

– write faster code, 
– get a faster computer
– work on reducing the variance/step.

2
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Statistical thinking is slippery: be careful

• “Shouldn’t the energy settle down to a constant” 

– NO. It fluctuates forever.  It is the overall mean 
which converges.

• “The cumulative energy has converged”.
– BEWARE. Even pathological cases have smooth 

cumulative energy curves.
• “Data set A differs from B by 2 error bars. Therefore it 

must be different”.  
– This is normal in 1 out of 10 cases. If things agree 

too well, something is wrong!
• “My procedure is too complicated to compute errors”

– NO! Run your whole code 10 times and compute the 
mean and variance from the different runs. If a 
quantity is important, you MUST estimate its errors.


