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Overview

e Wednesday

1. Feed-forward subnetworks in the cortex

2. Parameters and variability of the synchronization dynamics

e Thursday

3. Stability in recurrent cortical networks

4. Integration of pulse-coupled neural networks

e Friday

5. Simulation of realistic network structures by distributed computing
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Reminder: Single neuron simulation scheme

e state vector (y; )

e y, subthreshold dynamics

e 7, time since last spike

e here, y3 membrane potential

r—r—1~pr

e integration time step h

e P propagator
e input arriving at time h(k + 1)

T<_TI'

yz «— 0 |«

=> e spike times restricted to time grid

@y; r)att =h(k+ 1D (can be relaxed)
e causality requires minimal delay h

Diesmann et al. (2001) Neurocomput. 38—-40:565-571
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Reminder: Exact Integration

Thus, the system

—1 9 0 2\%
y=Ay=|1 —= 0 |y, gy(0)=|0
1 1

0 ¢ - 0

generates a PSP for initial condition y(0).

The exact solution of this system is given by

y(t) = e'y(0),

where et denotes the matrix exponential

(think of power series e4t =1 + (At) + % (At)? +

= On the time grid y* = y(kh) we can write

yk+1 Ahyk: + (I)

where 1 is the initial condition for PSPs elicited at time (k -+ 1)h.
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Simulation of realistic network structures by
distributed computing

e Representation of network structure

e Update scheme

e Communication

e Random numbers

e Performance

e Summary

A. Morrison, C. Mehring, T. Geisel, A. Aertsen, & M. Diesmann (2005) Advancing
the boundaries of high connectivity network simulation with distributed computing.
Neural Computation, in press

(all figures, references to textbooks and original work)
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Realistic local cortical networks

e connectivity ¢ = 0.1

e synapses per neuron = 104 r— |
. _ 5 C 14 | |
=> minimal network size = 10 £ i 2 | 1 slope
g w0 |
5 L
network of N = 10 neurons > 3 |
considered elementary unit of cortex S 6 :
corresponding to 1 mm?3 S 4 |
E |
& l
total number of synapses = (¢IN) - N — ' —> possible

012345678
log # neurons
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Representation of network structure: Serial

Neurons Synapses

HEREISRIEIESEINE

—ry
N
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Representation of network structure: Distributed

e modulo operation distributes neurons

®1 — 7J:

— one target list for 2 on each machine
— synapse stored on machine owning 3

Machine: a Machine: b .
: N ¢ : e compressed target lists
Synapses Neurons Machines Synapses Neurons Machines . .
T e list of target machines for each neuron
2| |a]
3] J|a
4| [a]b]
5 a
6] [a]b] -
7| [a]b]
8| |b
9 alb :
o [alb e crude load balancing
11 b - . .
2 b e wiring is a parallelizable task
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Neuron update

(y: state at ) e “looped tape device” buffers

Y Incoming events

y < Fily)
y&G(ly,an — - V’ e position determined by delay
F._F ‘ ® no central queue required
T T (A‘ e maximal delay determines
@ |refractory dynamics| length Of tape
rota’uon e minimal delay is h

o VP 1-d — tape 1-d

»
>

\
(y: state at t + h)

J

Time-driven or event-driven? —a hybrid approach to simulation
e input events to neurons are frequent: time-driven algorithm

e events at individual synapses are rare: event driven component
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Buffering of events prior to communication

‘Machine: eﬂ

Neurons Machines

1

a

OO~ (WIN

AV SOV OV A Y

Buffer for Machine:

a

b
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e communication only required in
intervals of the minimal delay

e communication load independent
of computation step size h

e events sent only to
machines where needed
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Complete pairwise exchange (CPEX)

A
@ @ @ @ @ e blocking MPI Send and Receive
e communication is parallel

B

e equivalent to an edge coloring problem (Tam & Wang, PDCS 2000, Las Vegas)
e edges with same color are parallel exchanges not causing deadlock
e number of machines m odd: m colors (steps)

e number of machines m even: m — 1 colors (steps)
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Event delivery

( Machine: b\

a

b

lag:

Buffer from Machine:

1

Ny 55N

G it

SN

AN

Synapses

Neurons
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e received buffers are sequentially
processed

e synapses activated according to
received neuron indices

e markers indicate start of
new time step
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Random numbers

e random number generators with independent trajectories for different seeds (Knuth, 1997)
e GNU Scientific Library ensures platform independence

e pseudo processes provide independence of number of processors
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Scalability of wiring

A 32 B 6400
- 3200 | "

1600 \ T(m)="T(1)/m
| ' logT(m) =logT (1) — logm

time [s]

log-log plots are easier to interpret

machines machines

10% neurons 10° neurons

e (solid) elderly PC: 8 x 2, Pentium 0.8 GHz, 100 MBit Ethernet
(dashed) recent PC: 20 X 2, Xeon 2.8 GHz, Dolphin/Scali

e (dash-dotted) Compaq GS160: 16, Alpha 0.7 GHz

e (dotted) Compaq GS1280: 8, Alpha 1.15 GHz
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Scalability of simulation time

A 6400 — B s0

3200 . C a0l _

1600 >~ % / T(m)=T(1)/m
— ‘\. +— 30} /. ]
2 a0 | s /1 8(m) =T(1)/T(m)
E 400 ~ N _?I) 20 : _ —m

200 R S

100 S~y 7 => speed-up S(m)

1 > 4 8 16 e 8 2 16
machines machines

e linear scaling

e supra-linear (cache)

e limited by memory bandwidth
e (solid) elderly PC: 8 x 2, Pentium 0.8 GHz, 100 MBit Ethernet
dashed) recent PC: 20 X 2, Xeon 2.8 GHz, Dolphin/Scali

(
(
e (dash-dotted) Compaq GS160: 16, Alpha 0.7 GHz
e (dotted) Compaq GS1280: 8, Alpha 1.15 GHz
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Comparison of computer architectures

1200

1000 [

800 [

600

time [s]

400

200 I
0 /3

low rate 104

high rate 10*  low rate 10°

(8 eight processors)

e (black) elderly PC: 8 x 2, Pentium 0.8 GHz, 100 MBit Ethernet
e (dark gray) recent PC: 20 X 2, Xeon 2.8 GHz, Dolphin/Scali

e (light gray) Compaq GS160: 16, Alpha 0.7 GHz

e (white) Compaq GS1280: 8, Alpha 1.15 GHz
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Scalability with respect to activity and network size

A 30 * B 3200
1600 2
25 1 800 ¢ ¢ |
*
—_ —, 400 S
2, 20 ¢ L. 200 3
o ¢ o
= £ 100 ’
= 15 = ¢
. 50
10} & : 20 ’
r 101 4 ¢
5 N N N N N N N N
0 25 50 75 100 1 2 4 8 16 32 64
rate [HZ] neurons [x 10%]

e linear in spike rate

e slope 1.88 with quadratically increasing number of synapses until > 10° (1.05)
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Scalability with respect to problem size

machines

140 . n ° S

| T(m) = [T(1) - m]/m
o 105F S(m) =T(1)/T(m)
£ R =1
2 e .
£ ’ ¢ => scaled speed-up S(m)
© 095 ‘)

09, s 4 s s T s o e GS1280
5
neurons [x 107] e measured slope —0.0057
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More processors

e not limited by communication
e profits from cache memory
e non-deterministic algorithms

e limited by memory bandwidth

® permits
quasi-interactive style of working

here: recent PC: 20 X 2, Xeon 2.8 GHz, Dolphin/Scali
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time [s]

400

200

50

basis simulation: simulation time against number of processors

10% neurons

# proc

huge simulation: simulation time against number of processors

10% neurons

# proc
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Organization
Distributed development of simulation tools

. é% o
P
\\ ‘\ A \ .
V/ *%\ since 2001
—
Machine: a N ~ Machine: b . .
Synapses Neurons Machines Synapses Neurons Machines Instltute Of BlOlOgy III

Albert-Ludwigs-University

Dept. Nonlinear Dynamics

EE Max-Planck-Institute for Fluid Dynamics
o
i Honda Research Institute
e distributed and cache optimized Dept. Mathematical Sciences
data structures Agricultural University of Norway
A
@ @ @ @ @ www.nest-initiative.org
B
. — : M. Diesmann & M.-O. Gewaltig (2002) NEST; An environment
e efficient communication algorithms for neural systems simulations, GWDG-Bericht 58:43-70
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Summary

e Simulation on a time grid

e Minimal delay of h required by causality

e Partial target lists local to the machine owning the targets

e Compression of target lists

e Frequency of communication steps independent of computation step size
e Reproducible simulations by pseudo processes

e Complete pairwise exchange with blocking communication

e Linear speed-up

e Quasi-interactive: Qualitatively new style of working

e Scalable to larger problems
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e Hans Ekkehard Plesser
e Alexa Riehle

e Stefan Rotter

e Marc Timme

Fr—23/23]



	Title
	Copyright
	Overview
	Reminder: Single neuron simulation scheme
	Reminder: Exact Integration
	Simulation of realistic network structures
	Realistic local cortical networks
	Representation of network structure: Serial
	Representation of network structure: Distributed
	Single neuron update
	Buffering of events prior to communication
	Complete pairwise exchange (CPEX)
	Event delivery
	Random numbers
	Scalability of wiring (log-log)
	Scalability of simulation time (speed-up)
	Comparison of computer architectures
	Scalability with activity and network size
	Scalability with problem size (scaled speed-up)
	More processors

	Organization (NEST Initiative)
	Summary
	Thanks

