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Code development in astrophysics

Traditional picture
● Small codes (< 10,000 lines)
● Limited physics scope
● Simple data structures (e.g., uniform grids, serial)
● Developed by individuals or small groups
● Not shared with outside world
● Informal testing process
● Little emphasis on documentation or design

Emerging picture
● Large codes (> 100,000 lines)
● Many different physical processes
● Complex data structures (e.g., AMR grids, parallel)
● Developed by teams of specialists
● Often shared with and used by community
● Demand for clear design, up-to-date documentation, and rigorous formal testing
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FLASH code framework
Ricker et al. (2000)
(astro-ph/0011502)

FLASH (Fryxell et al. 2000)
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for astrophysical 
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simulations developed 
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Cellular detonations Helium burning on neutron starsFlame-vortex interactions

Laser-driven shock instabilities

Richtmyer-Meshkov 
instability

Rayleigh-Taylor instability

Core astrophysics calculations
X-ray bursts
Novae and pre-nova mixing
Type Ia supernovae

Microphysics calculations
Cellular detonations
Flame-vortex interactions

Validation calculations
Rayleigh-Taylor instability
Richtmyer-Meshkov instability

FLASH calculations

Gravity wave breaking on white dwarfsType Ia supernova deflagrations
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Currently released:  version 2.4

Next release:  version 2.5... soon!

~ 530,000 lines

Physics:  Fortran 90 (65%), C (30%)

Configuration:  Python (5%)

Support:  Python, Perl, Java, and IDL

Message-Passing Interface

Parallel I/O:  Hierarchical Data Format ver. 5

Nightly test suite

Free download (register):  http://flash.uchicago.edu

FLASH status
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FLASH physics – a sample

Hydrodynamics

Shock-capturing algorithm (PPM; Colella & Woodward 1984)
Consistent multi-fluid advection (Plewa & Müller 1999)

Nonideal equation of state (Colella & Glaz 1985)

Nonequilibrium ionization

Magnetohydrodynamics (Powell et al. 1999) with div B cleaning

Collisionless particles

Particle-mesh (e.g., Hockney & Eastwood 1988)

Gravity

External fields

Multipole Poisson solver
Multigrid Poisson solver (Martin & Cartwright 1996)

Isolated boundaries (James 1977)

Cosmological expansion and comoving coordinates

Source terms
Explicit thermal conduction and viscosity (Spitzer 1962)

Optically thin radiative cooling (Peres et al. 1982 or Sutherland & Dopita 1993)
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Code development cycle

Write code Compile Run

CompareFix bug

Merge

Write code Compile Run

CompareFix bug

Draft design

Compromise

Revise

Compile Run

CompareFix bug

Science!
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Essential code development tools

Compilers
● Fortran 90 – G95, Intel, Portland Group, Lahey, NAG, Absoft
● C/C++ – GCC, Intel, Portland Group
Scripting languages
● Python, Perl, Java
Parallel communication and I/O
● MPI, PVM, OpenMP
● HDF5, NetCDF
Code management tools
● Building code – GNU Make, Ant
● Version control – CVS, Aegis
● Integrated development environments – Eclipse
Debugging
● Debuggers – GDB, IDB, DDD, TotalView
● Bug tracking – BugZilla
● Automated testing
Performance measurement
● SGI Perfex, PAPI
Documentation
● RoboDoc, Doxygen
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# Makefile for 2D N-body demo program

F90 = ifort

.SUFFIXES : .f90 

.f90.o :
        $(F90) -O2 -r8 -i4 -c $*.f90

nbody2d   : nbody2d.o init.o poisson2d.o pm2d.o cic.o \
            leapfrog.o extpot.o
        $(F90) -O2 -o nbody2d nbody2d.o init.o poisson2d.o \

     pm2d.o cic.o leapfrog.o extpot.o

nbody2d.o : init.f90 pm2d.f90 leapfrog.f90
pm2d.o    : poisson2d.f90 cic.f90 extpot.f90 

Make

Recompile only those files that have changed
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Version control

Concurrent Versioning System:  http://www.cvshome.org



16th Chris Engelbrecht Summer School, January 2005 6: 11

Debugging
Data Display Debugger 
http://www.gnu.org/software/ddd/
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Eclipse

http://www.eclipse.org/
http://brain.cs.uiuc.edu/photran/photran.html
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FLASH test suite
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Posting detailed test results
http://www.astro.uiuc.edu/~pmricker/research/codes/flashcosmo/

http://t8web.lanl.gov/people/heitmann/test3.html
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Types of tests

Unit testing

● Does each subroutine accept the expected range of input, and produce the 
expected range of output?

● Are “contracts” fulfilled?

Verification

● “The process of determining that a model implementation accurately represents 
the developer's conceptual description of the model and the solution of the 
model.” (AIAA)

● Are we solving the equations right?

Validation

● “The process of determining the degree to which a model is an accurate 
representation of the real world from the perspective of the intended uses of the 
model.” (AIAA)

● Are we solving the right equations?
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Ideas to consider in verification tests

Physical limits and symmetries

● Mach number ≪ 1, ≫ 1
● Pressure gradients dominant or insignificant
● Diffusive terms on, off
● Long-range forces on, off, pre-specified
● Exploit symmetries of equations – translation, rotation, parity, Galilean and 

Lorentz transformations

Geometry

● Test problems with similar symmetries, especially if mesh symmetries are 
different

● Treatment of mesh boundaries – interaction of flow features with boundaries
● Treatment of coordinate singularities (e.g., cylindrical or spherical coordinates; 

general relativistic calculations)
● Degenerate geometries – do the centered case as well as the offset case
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Ideas to consider in verification tests

Simplified models

● Simple source terms sometimes yield self-similar solutions (e.g., thermal 
bremsstrahlung instead of full cooling curve with atomic lines etc.)

● Perfect-gas equation of state instead of full equation of state
● Radiation field put in “by hand”

Numerical limits

● Sensitivity to convergence criteria for iterative methods
● Sensitivity to linear stability/accuracy criteria (e.g., CFL number)
● Sensitivity to artificial dissipation strength/type

Exercise of conditionals

● Nonlinear schemes have a lot of switches.  Have all combinations been tried?  
(e.g., a centered rarefaction occurs but you've only tested shocks)
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Verification problems useful in astrophysics

One-dimensional shock problems

● Sod (1978) problem
● Sedov (1959) problem
● Zalesak (2000) strong shock problem
● Shu-Osher (1998) problem
● Woodward-Colella (1984) interacting blast wave problem
● Brio-Wu (1988) MHD shock-tube problem

Two-dimensional shock problems

● Emery (1968) wind tunnel problem
● Double Mach reflection from a wedge (e.g., Woodward & Colella 1984)

Fluid instability problems

● Jeans (1902) instability
● Kelvin-Helmholtz (1800's) instability
● Gravity waves
● Orszag-Tang (1979) MHD vortex
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Verification problems useful in astrophysics

Gravitational collapse problems

● Plane-parallel collapse (Zel'dovich (1970) pancake – see Anninos & Norman 
1994)

● Spherical dust cloud collapse (Colgate & White 1966; Bertschinger 1985)
● Isothermal sphere collapse (Foster & Chevalier 1992)

Hydrodynamic stability problems (two books by Chandrasekhar)

● Maclaurin (1700's) spheroid
● Jacobi and Dedekind (1800's) ellipsoids
● Inhomogeneous polytropes

Radiation/radiative cooling hydrodynamics problems

● Stability of radiative shocks (e.g., Blondin, Chevalier papers)
● Self-similar cooling flow model (Chevalier again)

Particle tests

● Kepler (1600's) problem; any “dusty” gas problems
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Measures of global error

Integral quantities – mass, momentum, energy, etc.

● Crude “catastrophic failure” test – esp. for explicitly conservative finite-volume 
schemes

● More informative if method is not explicitly conservative (e.g., source terms, 
finite-difference, internal energy method for hypersonic flows, etc.)

Function-integral error norms

● L1 norm

● L2 norm

● Maximum norm

L1 norm≡
1
N ∑i

∣ f i
numeric− f i

analytic∣

L2 norm≡[ 1
N ∑i

∣ f i
numeric− f i

analytic∣2]
1/2

max norm≡sup∣ f i
numeric− f i

analytic∣
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Measures of global error

Want to show global error convergence rate (generally poorer than local rate)

In asymptotic regime, error ℇ ∝ xp; can estimate p even without exact solution 
using three solutions on grids with refinement factor r:

p=
ln E  f 3, f 2−ln E  f 2, f 1

ln r
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Validation example
3-layer laser-driven shock experiments (Calder et al. 2002)

t = 39.9 ns              66.0 ns

Simulation

ExperimentSimulation
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Validation (code comparison) example
Calder et al. (2002) - single-mode Rayleigh-Taylor instability


eff

 =            4            8            16           32          64         128   zones
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LCDM big box 256/1024 (QSC 256 procs)

Code comparison example
 CDM model

Heitmann et al. (2004)

Two box sizes
L = 64h-1 Mpc
L = 256h-1 Mpc

Comparisons
2563 particles / 10243 grid
5123 particles / 5123 grid

LCDM small box 256/1024 (Seaborg 768 procs)
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0-125 125-250 250-375 375-500 km/s
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Halo mass function
All codes agree at high masses
At highest masses, too few halos 
despite large box
At lower masses, AMR simulation 
agrees with lower-mass PM runs
Below ~ 30 particles/halo, counts 
dominated by halo finder systematics
Calculations must be validated as well 
as codes!

MC2 256

MC2 512

MC2 1024
FLASH
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Thank you!


