e physics of the very small:

High energy physics & String theory

* physics of the very large:

Astrophysics & Cosmology

e physics of the very complex:

Condensed matter physics




Condensed Matter Physics

Complex behaviour of systems of
many interacting particles

“Emergent properties”

The collective behaviour of a
system iIs qualitatively different from
that of Its constituents

Complexity arises from simple local interactions



J. Bardeen, W. Shockley
& W. Brattain

Ideas

technology

5 million transistors in a Pentium chip



WHAT ARE SOME OF THE BIG QUESTIONS
CONDENSED MATTER PHYSICISTS ARE
TRYING TO ANSWER???

HOW DO MANY INTERACTING ELECTRONS
ORGANISE THEMSELVES AT LOW TEMPERATURE
(T=0)?7



V(0

Isolated Atom:
Discrete energy levels _
of bound states P (r)

Crystal: periodic array of atoms

Y(r)

e quantum tunneling
e propagating waves



Band Theory: Insulators v/s. Metals

* solve the quantum mechanics of a single
electron in a periodic potential

 obtain “bands” and “gaps” of energy levels
o fill up states consistent with Pauli exclusion
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Excitation gap Gapless excitations
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HIGH TEMPERATURE SUPERCONDUC

INSIGHTS INTO EXPERIMENTS FROM PROJECTED WAVE

FUNCTIONS

VI

Y .



High Tc Superconductors:

* Highest transition temperatures il ow)
e Potential for applications

Challenge the basic paradigms of
20t century solid state physics

 band theory of metals & insulators
e Landau’s theory of Fermi-liquids
« BCS theory of superconductivity



resistance

a0

Hy

11

0.0mW

|

-

F
s
"

v T =
FiHurﬂr 3.1

e

— \ \

permission obtained from Elsevier Press.|

LE-I

1"

Resistance (vertical axis) versus temperature (horizontal axis) for
different alloys. The dashed line is Onnes’ extrapolation for a pure gold wire.
Au stands for gold, Pt for platinum. Also plotted is the result for mercury (Hg
wires. (Courtesy of the Kamerlingh Onnes Laboratorium, Leiden. Copyright

Kammerlingh Onnes
Leiden 1911
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Figure 3.2 Resistance (vertical axis, in units of ohm) vorsusT(K)
temperature (horizontal axis, in degrees Kelvin) for mercury

(Hg) wires. (Courtesy of the Kamerlingh Onnes Labor-
atorium, Leiden. Copyright permission obtained from
Elsevier Science Publishers.)



Many metals when cooled become Superconducting!
e.g. Al, Pb, Hg, ...
Phase transition at temperature Tc
T > Tc: normal metal / Landau Fermi liquid

T < Tc: Superconductor typical Tc ~ 1 — 10 K

Kammerlingh Onnes (1911) Meissner & Oschenfeld (1933)
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BCS Theory of Superconductivity (1957)

J. Bardeen, L. N. Cooper & J. R. Schrieffer
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Theory of Superconductivity™

J. BarpeEeN, L. N. CoorEr,f anD J. R. SCHRIEFFER]
Department of Physics, University of Illinois, Urbana, Illinois
(Received July 8, 1957)

A theory of superconductivity is presented, based on the fact
that the interaction between electrons resulting from wvirtual
exchange of phonons is attractive when the energy difference
between the electrons states involved is less than the phonon
energy, fiw. It is favorable to form a superconducting phase when
this attractive interaction dominates the repulsive screened
Coulomb interaction. The normal phase is described by the Bloch
individual-particle model. The ground state of a superconductor,
formed from a linear combination of normal state configurations
in which electrons are virtually excited in pairs of opposite spin
and momentum, is lower in energy than the normal state by
amount proportional to an average (#iw)*, consistent with the
isotope effect. A mutually orthogonal set of excited states in

one-to-one correspondence with those of the normal phase is
obtained by specifying occupation of certain Bloch states and by
using the rest to form a linear combination of virtual pair con-
figurations. The theory yields a second-order phase transition and
a Meissner effect in the form suggested by Pippard. Calculated
values of specific heats and penetration depths and their temper-
ature variation are in good agreement with experiment. There is
an energy gap for individual-particle excitations which decreases
from about 3.5kT. at T'=0°K to zero at T.. Tables of matrix
elements of single-particle operators between the excited-state
superconducting wave functions, useful for perturbation expan-
sions and calculations of transition probabilities, are given.

I. INTRODUCTION

HE main facts which a theory of superconductivity

must explain are (1) a second-order phase
transition at the critical temperature, T, (2) an elec-
tronic specific heat varying as exp(—7To/7T) near
T'=0°K and other evidence for an energy gap for
individual particle-like excitations, (3) the Meissner-
Ochsenfeld effect (B=0), (4) effects associated with
infinite conductivity (E=0), and (5) the dependence
of T, on isotopic mass, Tix/M =const. We present
here a theory which accounts for all of these, and in
addition gives good quantitative agreement for specific
heats and penetration depths and their variation with
temperature when evaluated from experimentally
determined parameters of the theory.

basic. F. London* suggested a quantum-theoretic
approach to a theory in which it was assumed that
there is somehow a coherence or rigidity in the super-
conducting state such that the wave functions are not
modified very much when a magnetic field is applied.
The concept of coherence has been emphasized by
Pippard,’ who, on the basis of experiments on pene-
tration phenomena, proposed a nonlocal modification
of the London equations in which a coherence distance,
£y, 1s introduced. One of the authors®7 pointed out that
an energy-gap model would most likely lead to the
Pippard version, and we have found this to be true of
the present theory. Our theory of the diamagnetic
aspects thus follows along the general lines suggested
by London and by Pippard.”



BCS Theory of Superconductivity v

Pairing and Condensation

Weak attraction ‘g’ between electrons
(electron-phonon interaction in conventional SC’s)

instability of the Fermi liquid:
S=0, L=0 Pairs
Binding energy of pairs = Energy gap
Ao = wo exp(-1/9)

2nd order phase transition at Tc ~ Ao

Experimental observation of gap A:
Thermodynamics: C(T); x(T)
Spectroscopy: tunneling, NMR, optics



Order parameter:
A=| Ao | exp (1 6)
gap Pairing and Condensation
Macroscopic number (~10 ) of pairs

condense into a single quéntum state
(cf. Bose-Einstein condensation)

superfiuid - EXperimental manifestation of 0:
stfiness o guperconductivity: p=0
 Flux expulsion: B =0
e Josephson Effects



By the late 1970’s

BCS and Ginzburg-Landau Theories solved

Superconductivity
Tc(K)
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Plateau In
the search for
higher Tc materials



Superconductivity in cuprates (1986)
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FIG. 5. Low-temperature resistivity of a sample with
x(Ba)=0.75, recorded for different current densities. From
Bednorz and Miiller (1986), © Springer-Verlag 1986.
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FIG. 14. Resistivity of a single-phase YBa,;Cu;0; sample as a
function of temperature.




Nobel Prizes in Superconductivity & Superfluidity

H. KAMERLINGH-ONNES investigations on the properties of matter at low
temperatures which also led to the production of liquid helium (1913).

L. D. LANDAU pioneering theories for condensed matter,
especially liquid helium (1962)
J. BARDEEN, L. N. COOPER and J. R. SCHRIEFFER
BCS theory of superconductivity (1972)

B.D. JOSEPHSON prediction of Josephson effects (1973).
|. GIAEVER tunneling in superconductors (1973)

P. L. KAPITSA low-temperature physics (1978)

J. G. BEDNORZ and K. A. MULLER High Tc superconductors (1987).

D. M. LEE, D. D. OSHEROFF and R. C. RICHARDSON
discovery of superfluidity in helium-3 (1996).

E.A. CORNELL, W. KETTERLE and C. E. WIEMAN
Bose-Einstein condensation in dilute gases of alkali atoms (2001).

L. Onsager, R. P. Feynman, C. N. Yang, P. W. Anderson, P. G. deGennes


http://almaz.com/nobel/physics/2001a.html
http://almaz.com/nobel/physics/2001b.html
http://almaz.com/nobel/physics/2001c.html
http://almaz.com/nobel/physics/1996a.html
http://almaz.com/nobel/physics/1996b.html
http://almaz.com/nobel/physics/1996c.html
http://almaz.com/nobel/physics/1987a.html
http://almaz.com/nobel/physics/1987b.html
http://almaz.com/nobel/physics/1978a.html
http://almaz.com/nobel/physics/1973b.html
http://almaz.com/nobel/physics/1973c.html
http://almaz.com/nobel/physics/1972a.html
http://almaz.com/nobel/physics/1972b.html
http://almaz.com/nobel/physics/1972c.html
http://almaz.com/nobel/physics/1962a.html
http://almaz.com/nobel/physics/1913a.html

The Nobel Prize in Physics 2003

"for pioneering contributions to the theory
of superconductors and superfluids"

Alexel A. Vitaly L. Anthony J.
Abrikosov Ginzburg Leggett



to levitated trains!



FIG. 1. Crystal structure of La,_ . Sr,CuQO, (T phase). Taken
from Almasan and Maple (1991).
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Extracting a Model

Anisotropic structure & electronic structure

main action on 2 dimensional Cu-O planes

2D square lattice

One band Hubbard model



2 dimensions
Cu-O plane

High tc problem

3 band model

1 band model




HUBBARD MODEL
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MOTT insulator: Finite gap in spectrum
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<i,j> initial int final
Heisenberg Model

Antiferromagnetic long range order




Mott Insulator

Ignoring Interactions
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Failure of Band Theory: Mott Insulators

Band theory
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What happens when there are holes?




Mott Insulator
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High Temperature Superconductors:
schematic phase diagram

convenhonok
Metal

—_ temperoture T—
o™\
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Mot
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 unusual phase
AFM

transitions
e unusual crossovers



Our Philosophy

Look at the strongly
correlated SC state by itself;
not as an instability from
another state

Look at instabilities out of
the SC state

Minimal model to
understand

Systematically build up to Mott

Fermi
Liquid
>

get entire complexity of the
cuprates 0

xopt

X (dopingQ)

XcC



INPUTS strong correlations between electrons

APPROACH Variational Wave Functions

No obvious small parameter

success stories: BCS: SC
Laughlin: FQHE
Feynman: He4

Anderson suggested projected BCS wave functions
In 1987 for hitc

Anderson, Science 235, 1196 (1987)



how do we construct wave functions for correlated systems?

. \N
‘%ose> — (akzo) ‘O> = uniformly spread out in real space

What is the w.f for bosons with repulsive interactions?

_ P Correlation physics:
‘Wintbosons> o H Jastrow factor
I< ] R
h
IQHE ‘¢2'QHE> — -
4 ) = - -

#) =11(z-2;) 2 ) =11 —Z)

<] /

Jastrow correlation factor
Keeps electrons further apart



how do we construct wave functions for correlated systems?

‘WBCS> = Z(¢(k)CIjTCjk¢ )N ’ ‘O>

K

Explains the phenomenology

‘WO> — P ‘WBCS > of correlated SC in hitc

THE PROPERTIES OF ‘ WO >

ARE COMPLETELY DIFFERENT FROM THOSE OF ‘ WBCS >



	Our Philosophy

