
New Phases in Disordered  
Quantum Systems



∃DISORDER: yuch!!

NEW PHENOMENA
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Quantum Hall Effect

∃Quantization to 1 part in 10
ONLY if some disorder in sample
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T=0 Quantum Phase Transitions

Qualitative change of the ground state wave function
by tuning a parameter: Trapped atomic gases:

-- density 
-- periodic potential 
-- interactions

Solid State Systems:
-- density
-- magnetic field
-- pressure
-- disorder

Main questions: nature of phases and excitations; 
nature of phase transitions



Simplest disorder driven quantum phase transition
Anderson Localization (1958)

non interacting electrons 
in a random potential
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CONDUCTOR ANDERSON INSULATOR

Extended wave function
Sensitive to boundary conditions

Localized wave function 
Insensitive to boundaries

2d: All states are localized; No true metals in 2d
(Abrahams et.al PRL 1979)
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“METAL”

INSULATOR METALS IN 2D ?

E. Abrahams, S. Kravchenko, M. Sarachik
Rev. Mod. Phys. 73, 251 (2001)EXPERIMENTS



In condensed matter systems interactions 
Cannot be ignored; 
By localizing particles,
disorder only enhances the interactions

repulsive interactions: superfluids (bosons)
metals (fermions)

attractive interactions: superconductors (fermions)



Effect of Disorder on a Mott Insulator

diso
rder

MAIN QUESTION:
What is the effect of disorder on 
AFM long range order?
on charge gap?
Which is killed first?
Or are they destroyed together…



Model: Hubbard model + potential disorder
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V=0   Mott insulator with finite charge gap and long range AFM order

U=0   localization problem of non-interacting electrons



Techniques:

No small parameter – need NONPERTURBATIVE methods

Field theoretic techniques for clean systems 
(Sachdev, “Quantum Phase Transitions”)

Disordered Systems:
• numerical Quantum Monte Carlo techniques
• inhomogeneous mean field methods
• sum rules and bounds



INTERACTING ELECTRONS WITH DISORDER IN 2D

non-interacting
electrons

insulating

Interacting
electrons

P.J.H. Denteneer, R.T. Scalettar, N. Trivedi, 
PRL 83, 4610 (1999); PRL 87, 146401 (2001) 

Interplay of interactions and 
disorder enhance conductivity

Can it drive the system 
metallic?

Technique:
Coherent state path integral
for fermions

Sign problem at low T

QMC SIMULATIONS



INHOMOGENEOUS MEAN FIELD THEORY
•STRENGTH OF INTERACTION U
•DENSITY OF ELECTRONS
•DISORDER PROFILE (RANDOM POTENTIAL)
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Probability 
distribution of 
local density <n(i)>

N=24x24 U=4t T=0 n=1
averaged over 10 realizations

AFM 

PM ( 1) ( )x y zS i+− < >†( )m i =

Probability distribution of local 
staggered magnetization

( 1) ( )x yi i
zS i+−



DISORDERED HUBBARD MODEL AT HALF FILLING

As disorder strength increases the 
defected regions i.e. regions with 
suppressed checker board pattern 
grows

Local magnetization
( )zS i ( 1) ( )x yi i

zS i+−

Disorder V:
uniform distribution 
couples to density

N=24x24
U=4t

D. Heidarian and NT
PRL 93, 126401 (2004)



I
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Mott

II
?
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?

III
Anderson

III
Anderson

Gap ~ U
AFM J ~ 2 /t U U�

•Why is the gap killed first?

•What is the ? phase?



spin-spin correlation function

[10]

2
OPm→

disorder

OPm =order parameter



(t=0)CONNECTIONS WITH PERCOLATION

singly occupied sites

*
|V|>U/2

*

V>U/2doubly occupied and empty sites 

Destroy AFLROContribute to AFLRO

Classical percolation of vacancies on square lattice pcrit = 0.41
/ 21 crit
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⇒ − ≡Probability of ‘bad sites’ 1 0.85
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SD

WD: weakly disordered
SD: strongly disordered

V=3t

SD WD SD

AFMPM

WD: weakly disordered
SD: strongly disordered

Correlation of AFM regions with WD
and <n>~1

PM regions with SD and bimodal <n>



NATURE OF EIGENFUNCTIONS AROUND THE FERMI ENERGY

Localized at 
defective site

again localized

extended!

States getting 
more extended!

Inverse participation ratio

2~ 1/ξ

Extended state: ( ) 1/i Nψ � ~ 1/IPR N

Localized state: 0( ) 1iψ � ~ 1IPR

2

1

( ) 1
N

i

iψ
=

=∑

4

1

( )
N

i

IPR iψ
=

=∑



Mott gap

AFLRO

disorder

Mott
Ins

? Anderson Ins

CONCLUSIONS
AFM

Defected

I. MOTT Ins disorder
I II III

II. “METAL”
(inhomogeneous metal 
coexisting with AFM)

III. Anderson Ins
(paramagnetic)

II. Anomalous metallic state:
• states live in the defected region 
• get more extended with increasing disorder 
• percolating metallic regions coexist with AFM regions…



GENERAL CONCLUSIONS

NANOSCALE inhomogeneities induced by disorder

SELF ORGANISATION of system into regions of relatively high 
disorder and regions of low disorder 

GENERIC BEHAVIOR seen in quantum  Hall systems, 
manganites, superconductors and Mott insulators

LOCAL PROBES to see charge, spin and superconductivity
(STM, STS, spin polarized tunneling, Josephson tunneling…)



Coherent state path integral Monte Carlo: Basic idea
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VMC
variational

GFMC
Green 
function

PIMC
Path integral

DMC
Determinantal

T=0 T=0

“exact” for 
bosons; mixed 
estimator

“exact” for 
bosons

can be “exact”
for some fermion
problems also

Results only as 
good as input 
wave function
BUT….

0≠T0≠T

trialΨ GSΨ )(ˆ βρTrZ = ∑ ↓↑= )()( MDetMDetZ

Wave function
dependent
Easy to apply

2||Ψ sampled
Nodes in w.f
--fixed node
Release node

SIGN PROBLEM FOR FERMIONS
P)1(− Cancellation

of amplitudes for
fermions

no aprior inputs 
required

sign absorbed in 
operator; divergence 
of <sign> at low T

NO sign
problem

trial state must 
have non-zero 
overlap with true
ground state

No apriori inputs

Disorder YES Disorder YES

Analytic continuation to get finite frequency 



STUDYING CLASSICAL PHASE TRANSITIONS WITH
QUANTUM MONTE CARLO TECHNIQUES!!

VORTICES



(type II)

(layered SC, high Tc, fluctuations)



boson world 
lines β

vortices

quantum
d-space
1-time τ

0

classical
d+1-space

L

0
magnetic field Bdensity n

h T
(quantum fluctuations) (thermal fluctuations)

Random potential Columnar pins

Nelson



P. Sen, N. Trivedi, D.M. Ceperley, PRL 86, 4092 (2001).
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Examples:

Quantum magnetism: Heisenberg antiferromagnet

Strongly interacting bosons: 
atoms in traps;  optical lattices: +U Bose Hubbard model

Feshbach resonance: BCS-BEC crossover: -U Fermion Hubbard Model

High temperature superconductivity: +U Fermion Hubbard model

Quantum Hall Effect: 

Disorder driven Quantum Phase transitions
Superfluid—Bose Glass transition: +U Bose Hubbard model + 
(Josephson Junction arrays; helium in aerogels) disorder
Superconductor-Insulator Transition: -U Fermion Hubbard model 
(ultra thin films; high Tc SCs) + disorder
Metal-Insulator transition: +U Fermion model + 
(disordered Mott insulators; 2D electron gases) disorder

Lattice models
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