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Featureless X-ray Spectra from NSs
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» As discussed Iin previous lecture, one expects spectral signatures of the
atmosphere and/or magnetic field on the surface of the NS
- Chandra gratings observations of RX J1856-3754 (500 ks!) and Vela reveal

no evidence of such spectral features
- can definitely rule out any heavy element atmospheres for these sources
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RX J185635-3754: An Old Isolated NS(?)
’. . ‘e h.‘“‘

 Distance known well from parallax ;. ‘ .. T
-d =117 +- 12 pc (Walter & Lattimer 2002)

« X-ray emission consistent with blackbody co gttt
- no lines seen despite 450 ks Chandra LETG observation; © ..#*
rules out heavy element atmosphere ~ 12,

-kT=63eV;R=43kmatd =117 pc =0
- this is too small for a neutron star! (quark star??!!) T: 0 y
S 10 -

» X-ray BB spectrum under-predicts optical/UV flux % 1o~ 18
- model with two BBs needed; 27 eV and 64 eV 10720] . | e
-then R, =17+1.9 km B 10 100 1000 1000
- but smaller size still needed for X-rays; hot spot , Recent atmosphere ?ﬁ%ﬁ;iﬁﬁolds oromise
- N0 quark star needed... (Ho et al. 2006)

- emission from partially-ionized H yields
reasonable NS size and log B ~ 12.6

- but, need very thin atmosphere so that
not optically thick at all temp; how does
this arise???

* No pulsations observed
- pulsed fraction < 5%; how can this be?
- GR bending (hard to reconcile with optical radius)
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NSs With X-ray Absorption Features

* Nearby, thermally-emitting NSs offer the

best opportunity for measuring spectra

directly from NS surface

- low absorption provides X-ray spectra

to low energies
- sources are faint; must be nearby

e Several sources show thermal emission

with no evidence of any features from a

Source Absorption | Period B
Name Energy (keV) (s) (TG)
RX J1308.6+2127 ~0.2-0.3 10.31 34
RX J0720.4-3125 ~0.27 8.39 24
1E 1207.4-5209 0.7,1.4 0.42 2-4
RX J1605.3+3249 ~0.45

RX J0420-5022 ~0.3?

RX J0806.4-4123 ~0.57?

RBS 1774 ~0.77?

NS atmosphere

- PSR B0656+14 and Vela Pulsar show featureless BB spectra with an additional

power law component; both pulse in X-rays

- RX J1856-3754 is perfectly fit by a blackbody; no pulsations observed

* Four (perhaps 7) nearby NSs show evidence for absorption in X-ray spectra

- may be associated with cyclotron absorption by either ions or electrons; independent
magnetic field estimates available for 3 sources; no pulses from the rest
- may be absorption from bound states of neutral hydrogen in atmosphere

Patrick Slane
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1E 120/.4-5209: Probing [he Atmospnere or a Neutron star

L

* Associated w/ SNR PKS 1209-51/52
d =2.1'3% kpc (Hiabsorption)
P =424 ms; 7 > 200 kyr (too old for SNR)
— presumably P = P,
B =2-4x10"G (from spin - down)
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1e 1707.4- 5209 Frooning the Atmospnere oT a Neutron otar

e X-ray spectrum shows broad absorption
features (Sanwal et al. 2002)

- features centered at ~0.7 and ~1.3 keV
- continuum gives R ~ 1.6 km for emission region

— —

Flux

e Cyclotron absorption (15t & 2"d harmonic)~

Electrons:

E _116 ——B,, keV =B, =0.06(1+z) too small

= \ . : . = 1—|—Z
— ] — 1 Protons:

AN iyl UL g 1T _0.63
: .. ..... "'-'..-1 'hI] NG _ = Bl4 keV:> Bl4 —1. 1(1_|_ Z) t00 Iarge

P 147

] _ : 1 oscillator strengths for 1st/2nd are also very different
0.5 | 2
Energy (keV) -Bignami et al. 2003 who claim to see 3'd/4th

« Associated w/ SNR PKS 1209-51/52 harmonics; Mori et al. 2005 dispute this claim

d =2.1%5 kpc (Hiabsorption) « Atomic absorption lines?

P =424 ms; 7 > 200 kyr (too old for SNR) - gravitational redshift can give mass-radius ratio

= presumably P ~ P, 147 1

B =2-4x10"G (from spin - down) \/1—(2MG/02R)

Residual
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1E 120/.4-5209: Probing the Atmosphere of a Neutron Star

« Can’t be hydrogen
- no pair of lines like this at any
B value (Sanwal et al. 2002)

 May be once-ionized He
(Pavlov et al. 2002)
3 - this givesR/M =8.8-14.2 km M
- details of model not yet published

-~
-3

* Hailey & Mori (2002) suggest
He-like oxygen or neon in
10" G magnetic field

Absorption
Features

1
—

-
XN|4 ucloyd aAljojay

I ; . - need more detailed substructure
Energy (keV) in lines to fully constrain model
: . _ and measure z
 Light element ionization edges: : - assuming a 1.4 solar mass star
E ~a4721n 426B,, o\ rules in favor of oxygen lines
z ~ 72 - redshift then leads to very stiff

equation of state
- e.g. 160 eV for H (compare with 13.6 eV for B=0)
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X-ray Emission from Young Neutron Stars

O  Thermal emission from surface
- cooling of interior
@ - particle heating of surface (caps)
- accretion from ISM

e Nonthermal emission

/ J\I\C/
/ g - pulsed, from magnetosphere
// - unpulsed, from wind (e.g. PWN)

KT _ .
* Timing analysis
/ - provides information on spin, magnetic field, and age
? - comparing spin-down age with independent estimate

;j/\ﬁl\ can constrain spin period at birth

e Imaging
- can provide information about kick velocities, emission
structure near pulsar, and emission geometry (more on
this in PWN lecture)

Patrick Slane Harvard-Smithsonian Center for Astrophysics
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» Cooling emission from young NSs is primarily
in the soft X-ray band

- a hot, cooling NS can be detected at a large
distance

Patrick Slane

NS Cooling: X-ray Flux Considerations
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NS Cooling: X-ray Flux Considerations
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e Cooling emission from young NSs is primarily L T ——
in the soft X-ray band
- a hot, cooling NS can be detected at a large
distance
» For more rapid cooling, things are harder...
- even nearby NSs require long exposures

1077

Energy (keV)
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NS Cooling: X-ray Flux Considerations
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* Cooling emission from young NSs is primarily L P I
in the soft X-ray band

- a hot, cooling NS can be detected at a large
distance

» For more rapid cooling, things are harder...
- even nearby NSs require long exposures

1077

Energy (keV)

» The combination of increased distance,
higher column density, and lower kT
can render young NSs virtually undetectable
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Slane et al. 2004
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About 3C 58

* Wind nebula produced by PSR J0205+6449
- D = 3.2 kpc (HI absorption)
- Size: 9 x5 arcmin ==> 8.4 x 4.7 pc
- P =62 ms (Camilo et al. 2002)

* Believed to be associated w/ SN 1181

based on historical records

- pulsar has 3rd highest spin-down power of
CE\ET N s BICETRN £ = 3% 10%ergs s

==> very young

- however, PWN expansion velocity observed
In optical filaments is too low to explain large
size, making association troublesome

Harvard-Smithsonian Center for Astrophysics



3C 58: Neutron Star Spectrum
Slane et al. 2062 .
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» Central spectrum is completely Energy (keV)
dominated by a power law * Best fit includes a 10 km NS w/ H
=1.6+0.1 atmosphere and log T = 5.97
R - this is a statistical improvement over a power
L, =9.0x10%d/ergs™ law, but not a huge one; if we assume no

detection, the upper limitis log T < 5.99
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PSR J0205+6449: Cooling Emission
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* Point source spectrum is a power law; .
adding blackbody component leads *For NSw/R=10km, T <1.1x10°K
to limit on surface cooling emission - standard cooling models predict higher

- since atmosphere effects harden spectrum, temp_era_ture fo_r this age _ I'
limit on surface temperature is conservative - Mmay indicate direct Urca or pion cooling

Patrick Slane Harvard-Smithsonian Center for Astrophysics



PSR J0205+6449: Standard or Non-Standard Cooling?

* Recent calculations yield rapid
cooling without “exotic” processes
(e.g. Kaminker et al. 2001)

- EOS has direct Urca turn-on for M > 1.358 Mo

- requires particular superfluidity assumptions to
allow fast cooling to persist

- explains J0205+6449 result, but requires
different core structure for other NSs
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PSR J0205+6449: Standard or Non-Standard Cooling?

* Recent calculations yield rapid
cooling without “exotic” processes
(e.g. Kaminker et al. 2001)

- EOS has direct Urca turn-on for M > 1.358 Mo

- requires particular superfluidity assumptions to
allow fast cooling to persist

- explains J0205+6449 result, but requires
different core structure for other NSs
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» Alternatively, different superfluidity
model allows same EOS to explain
variations as due to NS mass

- requires direct Urca (i.e. “nonstandard”) cooling
for J0205+6449, Vela, and other pulsars

¥ J1B56—83754

* Note that Tsuruta et al. (2002) argues
that above models do not actually
achieve superfluid state

- argue proton fraction is too small for direct Urca
- suggest pion cooling as nonstandard process

Patrick Slane Harvard-Smithsonian Center for Astrophysics



CTA 1. A Central Compact Source

« CTA 1is a high-latitude SNR whose central
X-ray emission is dominated by synchrotron
radiation

j0007+73p3 - Indicative of a PWN, and thus a young NS

- Sedov solution gives SNR age of about
20 kyr

73730
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* The faint unresolved X-ray source
RX JO007.0+7303 resides at the center
of the diffuse emission
- presumably the NS counterpart

N

vasn

 An unidentifed EGRET source contains the
X-ray source in its error circle

ROSAT PSPC image showing the position of - another indicator of a young NS
RX JO007.0+7303.

fhagm ghqgm phom
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JO00702+7302.9: Extended Emission

- Slane et al. 2004 RX JOOO?.0+7302 |
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« XMM observations reveal soft spectrum ¢ Chandra observation reveals extended
typical of young NS source and jet-like structure

» Slight evidence of extended emission - source is unquestionably the pulsar powering
- structure from pulsar outflows? the PWN; pulsation searches underway

Patrick Slane Harvard-Smithsonian Center for Astrophysics



Photons s keV-!

RX JO007.0+7302: Spectrum

e For N,, =2.8x10% cm~ (fixed at that for CTA 1),
power law fit requires additional soft component

lo-l E n T T n I ] n ] I Lo

10-2 » Power law:
'=15+0.2 L =47x10"D}, ergs™
- low for a young pulsar, but not extremely so
109 - ~0.1% of PWN Lx (similar to 3C 58, G54.1+0.3

and G292.3+0.8)

-assuming L, ~ 10 ° B¥RX J0007.0+7302 would
have an B/ d? ratio larger than the faintest
known y-ray pulsars

- extrapolation of X-ray spectrum to EGRET band
reproduces y-ray spectrum without need for a
spectral break

Residual (o)
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RX JO007.0+7302: Spectrum

» Soft Component:
Blackbody:

logT =6.20°% K R =0.63D,, km

- temperature too high, and radius too small for
cooling from entire NS surface
- suggestive of hot polar cap emission

Light NS Atmosphere: (Pavlov et al. 1995)
-for R =10 km and a 1.4 kpc distance,

log T =5.79 00 K

- this falls below standard cooling curves for the

._ modified Urca process

10 100 1000 10* 108 @ - direct Urca cooling is consistent for M ~1.46 M
Age (years) (Yakovlev et al. 2002)

Patrick Slane Harvard-Smithsonian Center for Astrophysics



RX JO007.0+7302: Spectrum

» Soft Component:
Blackbody:

logT =6.20°% K R =0.63D,, km

- temperature too high, and radius too small for
cooling from entire NS surface
- suggestive of hot polar cap emission

-
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Ty O Light NS Atmosphere: (Pavlov et al. 1995)
- ‘=1‘L;F = -for R =10 km and a 1.4 kpc distance,
RX'JOD_.Q_Z_-QZ?E_Z N\ logT =5.797,,, K

- this falls below standard cooling curves for the
modified Urca process

- direct Urca cooling is consistent for M ~1.46 M
(Yakovlev et al. 2002)
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X-ray Searches for Young Neutron Stars

» The youngest neutron stars should still be near the associated SNRs
- target SNRs to search for young neutron stars
- studies of SNRs provide addition, independent information about ages,
distances, and environment

» Most SNRs should have NSs associated with them
- ~75-80% are from core-collapse Sne, and only a small fraction of these
will form black holes

* Yet... there are many SNRs (even very young ones) for which the
associated NSs have not yet been identified
- selection effects can make some hard to find
- there may be young neutron stars with properties much different from
what we currently expect (we’ve seen this with magnetars and CCOs...);
SNRs are the likely places to look for them

Patrick Slane Harvard-Smithsonian Center for Astrophysics
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- use Chandra or XMM to detect X-ray sources in field
- choose field size such that reasonable NS velocities will not move NS from field
- choose exposures to detect source with luminosities 10x lower than faintest CCOs

- use optical/IR follow-up for counterpart search to rule out non-NS candidates

e If no NS Is detected, we have:

- a Type la, a very high-velocity NS, a black hole (none of which should happen often), or
- a rapidly cooling NS

Patrick Slane

0.

e Conduct survey of SNRsw/ D <5 kpc (part of D. Kaplan’s thesis)

1(.; 13
T [ergsfs{cm )
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Searching for Young Neutron Stars in SNRs

* No viable NS candidates
identified for G084.2-0.8,
G093.3+6.9, G127.1+0.5,
or G315.4-2.3
- upper limits based on

detection threshold, or
faintest detected source,
provide strong cooling
constraints (if there is a
NS in any of these SNRS)

Patrick Slane
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Searching for Young Neutron Stars in SNRs

* No viable NS candidates

identified for G084.2-0.8, I Kaplanetal. 2004
G093.3+6.9, G127.1+0.5, & Crab i LherTﬁ' |
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