Ab Initio Shell Model with a Core: Extending the NCSM to Heavier Nuclei

Bruce R. Barrett University of Arizona, Tucson

20th Chris Engelbrecht Summer School in Theoretical Physics, January 19-28, 2009

MICROSCOPIC NUCLEAR-STRUCTURE THEORY

- 1. Start with the bare interactions among the nucleons
- 2. Calculate nuclear properties using nuclear many-body theory

$H\Psi = E\Psi$

We cannot, in general, solve the full problem in the complete Hilbert space, so we must truncate to a finite model space

⇒ We must use effective interactions and operators!

Some current shell-model references

- 1. E. Caurier, G. Martinez-Pinedo, F. Nowacki, A. Poves, and A. P. Zuker, "The Shell Model as a Unified View of Nuclear Structure," *Reviews of Modern Physics* **77**, 427 (2005)
- 2. 2. B. A. Brown, "The Nuclear Shell Model towards the Drip Lines," *Progress in Particle and Nuclear Physics* **47**, 517 (2001)
- 3. I. Talmi, "Fifty Years of the Shell Model-The Quest for the
- 4. Effective Interaction," Advances in Nuclear Physics, Vol. 27,
- 5. ed. J. W. Negele and E. Vogt (Plenum, NY, 2003)
- 6. 4. B. R. B., "Effective Operators in Shell-Model Calculations," 10th Indian Summer School of Nuclear Physics:Theory of Many-Fermion Systems, *Czechoslovak Journal of Physics* **49**, 1 (1999)

No Core Shell Model

"Ab Initio" approach to microscopic nuclear structure calculations, in which <u>all A</u> nucleons are treated as being active.

Want to solve the A-body Schrödinger equation

$$H_A \Psi^A = E_A \Psi^A$$

R P. Navrátil, J.P. Vary, B.R.B., PRC <u>62</u>, 054311 (2000)

From few-body to many-body

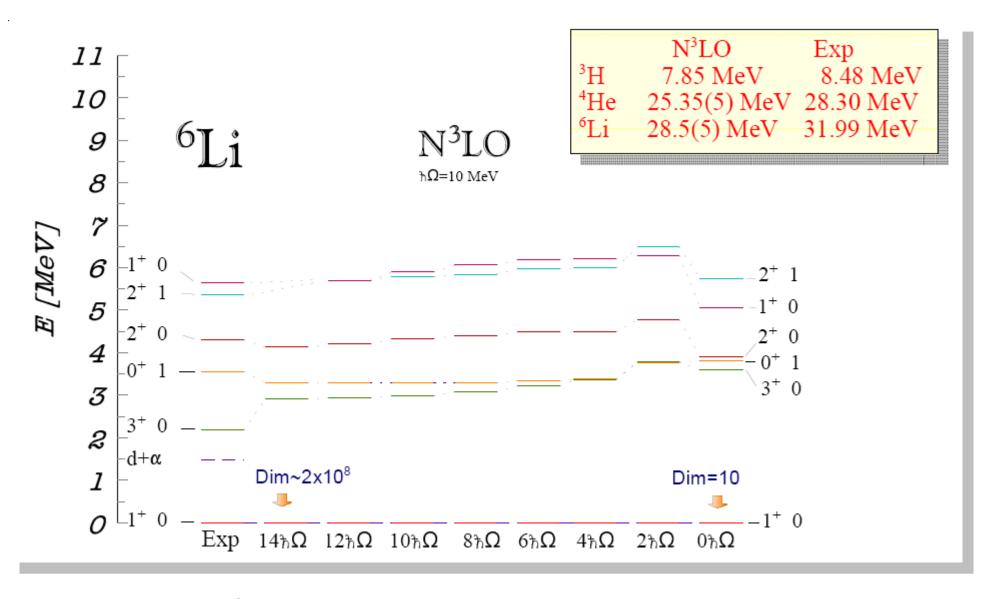
Ab initio No Core Shell Model

Realistic NN & NNN forces

Effective interactions in cluster approximation

Diagonalization of many- body Hamiltonian

Many-body experimental data



P. Navrátil and E. Caurier, Phys. Rev. C 6 9, 014311 (2004)

From few-body to many-body

Ab initio No Core Shell Model

Core Shell Model

Realistic NN & NNN forces

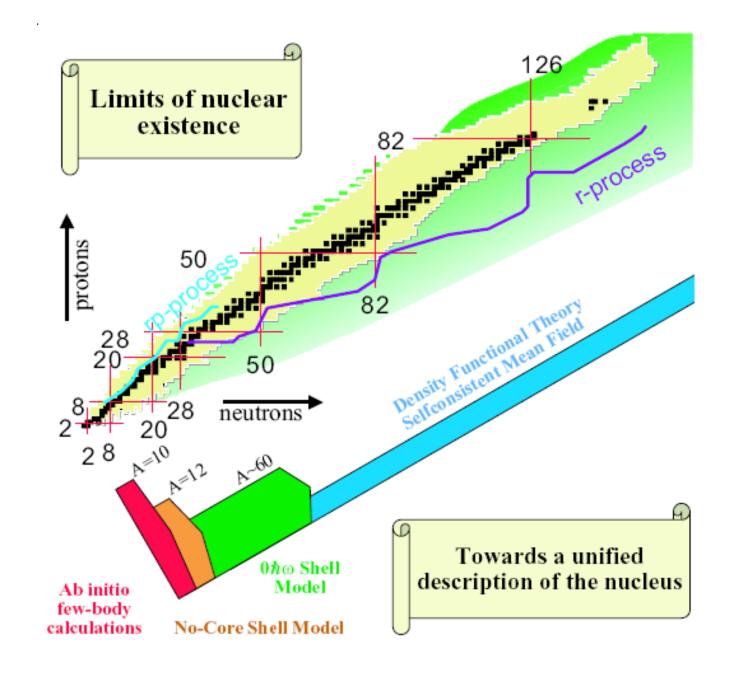
Effective interactions in cluster approximation

Diagonalization of many- body Hamiltonian

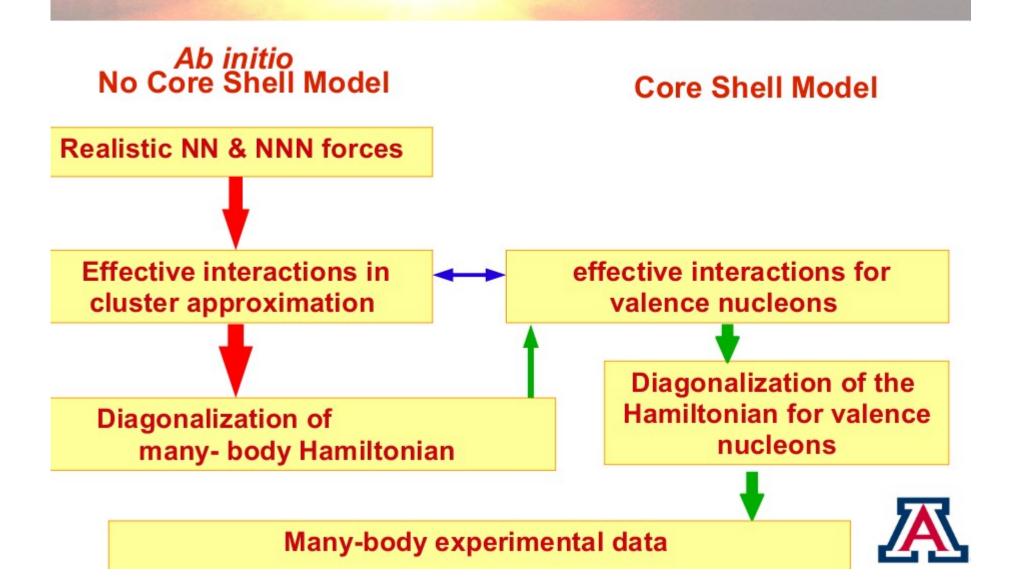
Phenomenological effective interactions

Diagonalization of the Hamiltonian for valence nucleons

Many-body experimental data



From few-body to many-body



No Core Shell Model

Starting Hamiltonian

$$H = \sum_{i=1}^{A} \frac{\vec{p}_i^2}{2m} + \sum_{i < j}^{A} (V_{NN}(\vec{r}_i - \vec{r}_j)) \left(+ \sum_{i < j < k}^{A} V_{ijk}^{3b} \right)$$

Realistic NN and NNN potentials

Momentum space -

Coordinate space - Argonne V18, AV18', CD-Bonn, chiral N³LO,

NNN Tucson - Melbourne NNN chiral N²LO

Binding center-of-mass HO potential (Lipkin 1958)

$$\frac{1}{2} A m \Omega^2 \vec{R}^2 = \sum_{i=1}^A \frac{1}{2} m \Omega^2 \vec{r}_i^2 - \sum_{i < j}^A \frac{m \Omega^2}{2 A} (\vec{r}_i - \vec{r}_j)^2$$

$$H^{\Omega} = \sum_{i=1}^{A} \left[\frac{\vec{p}_{i}^{2}}{2m} + \frac{1}{2} m \Omega^{2} \vec{r}_{i}^{2} \right] + \sum_{i < j}^{A} \left[V_{NN} (\vec{r}_{i} - \vec{r}_{j}) - \frac{m \Omega^{2}}{2 \Lambda} (\vec{r}_{i} - \vec{r}_{j})^{2} \right]$$

<HO|V_{NN}(,A)|HO>

Cluster Expansion: Two-body cluster approximation

$$H_{\frac{2}{2}}^{\Omega} = \sum_{i=1}^{2} \left[\frac{\vec{p}_{i}^{2}}{2m} + \frac{1}{2} m \Omega^{2} \vec{r}_{i}^{2} \right] + \sum_{i < j}^{2} \left[V_{NN}(\vec{r}_{i} - \vec{r}_{j}) - \frac{m \Omega^{2}}{2A} (\vec{r}_{i} - \vec{r}_{j})^{2} \right]$$

Effective Hamiltonian for NCSM

Solving

$$H_{A, a=2}^{\Omega} \Psi_{a=2} = E_{A, a=2}^{\Omega} \Psi_{a=2}$$

in "infinite space" 2n+l = 450 relative coordinates

P + Q = 1; P - model space; Q - excluded space;

$$E_{A,2}^{\Omega} = U_2 H_{A,2}^{\Omega} U_2^{\dagger} \quad U_2 = \begin{bmatrix} U_{2,P} & U_{2,PQ} \\ U_{2,QP} & U_{2,Q} \end{bmatrix} \quad E_{A,2}^{\Omega} = \begin{bmatrix} E_{A,2,P}^{\Omega} & 0 \\ 0 & E_{A,2,Q}^{\Omega} \end{bmatrix}$$

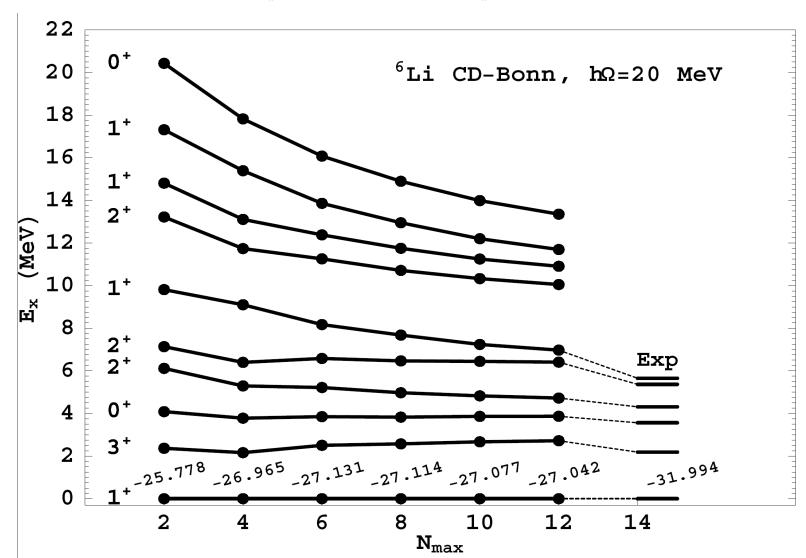
$$H_{A,2}^{N_{\text{max}},\Omega,\text{eff}} = \frac{U_{2,P}^{\dagger}}{\sqrt{U_{2,P}^{\dagger}U_{2,P}}} E_{A,2,P}^{\Omega} \frac{U_{2,P}}{\sqrt{U_{2,P}^{\dagger}U_{2,P}}}$$

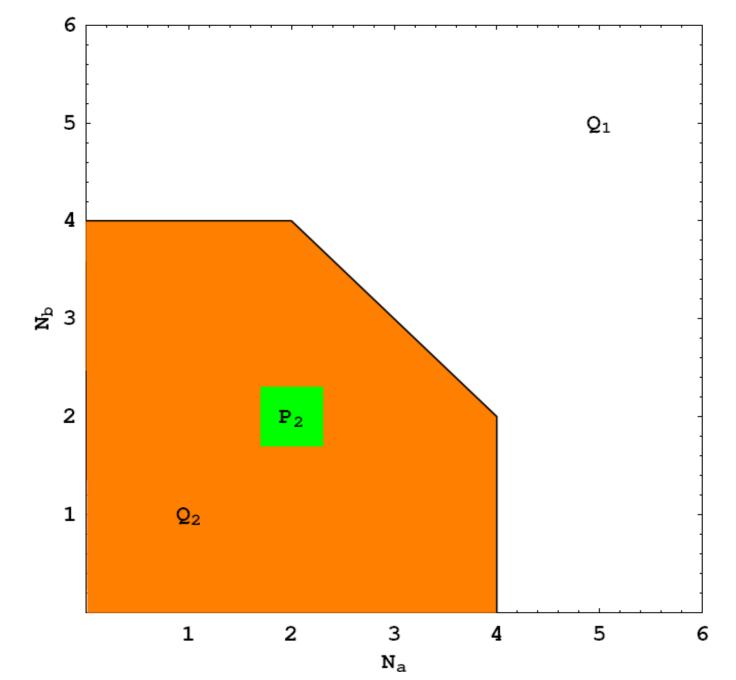
Two ways of convergence:

- 1) For $P \rightarrow 1$ and fixed a: $H_{A,a=2}^{eff} \rightarrow H_A$
- 2) For a \rightarrow A and fixed P: $H_{A,a}^{eff} \rightarrow H_{A}$

NCSM results for 6Li with CD-Bonn NN potential

<u>Dimensions</u> p-space: 10; $N_{max} = 12$: 48 887 665; $N_{max} = 14$: 211 286 096





Effective Hamiltonian for SSM

Two ways of convergence:

- 1) For P \rightarrow 1 and fixed a: $H_{A,a=2}^{eff} \rightarrow H_A$: previous slide
 - 2) For $a_1 \rightarrow A$ and fixed P_1 : $H^{eff}_{Aa1} \rightarrow H_A$

$$P_1 + Q_1 = P$$
; P_1 - small model space; Q_1 - excluded space;

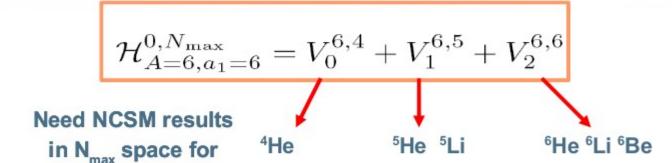
$$\mathcal{H}_{A,a_{1}}^{N_{1,\max},N_{\max}} = \frac{U_{a_{1},P_{1}}^{A,\dagger}}{\sqrt{U_{a_{1},P_{1}}^{A,\dagger}U_{a_{1},P_{1}}^{A}}} E_{A,a_{1},P_{1}}^{N_{\max},\Omega} \frac{U_{a_{1},P_{1}}^{A}}{\sqrt{U_{a_{1},P_{1}}^{A,\dagger}U_{a_{1},P_{1}}^{A}}}$$

Valence Cluster Expansion

 $N_{1,max} = 0$ space (p-space); $a_1 = A_c + a_v$; a_1 - order of cluster; A_c - number of nucleons in core; a_v - order of valence cluster;

$$\mathcal{H}_{A,a_1}^{0,N_{\max}} = \sum_{k}^{a_{\text{v}}} V_k^{A,A_c+k}$$

Two-body VCE for 6Li



With effective interaction for A=6 !!!

 $H_{A=6,2}^{N_{\mathrm{max}},\Omega,\mathrm{eff}}$

Core Energy

$$V_0^{6,4} = -51.644 \text{ MeV}$$

$$V_1^{6,5} = \mathcal{H}_{6,5}^{0,N_{\text{max}}} - V_0^{6,4} \quad \langle ab; JT | V_1^{6,5} | cd; JT \rangle = (\epsilon_a + \epsilon_b) \delta_{a,c} \delta_{b,d}$$

Single Particle Energies

$$\epsilon_{p3/2}$$
 = 14.574 MeV $\epsilon_{p1/2}$ = 18.516 MeV

$$V_2^{6,6} = \mathcal{H}_{6,6}^{0,N_{\text{max}}} - \mathcal{H}_{6,5}^{0,N_{\text{max}}}$$

TBMEs

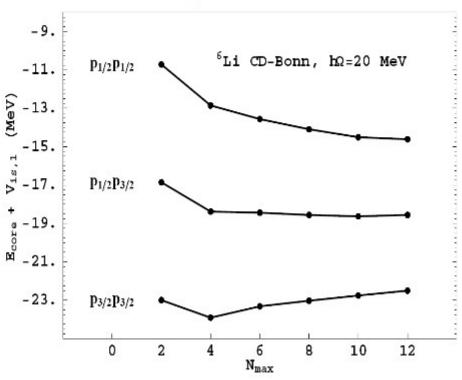
$$\langle p_{3/2}p_{3/2}|V_{2}^{6,6}|p_{3/2}p_{3/2}\rangle_{J=3,T=0} = -1.825 \text{ MeV}$$

$$\langle p_{3/2}p_{3/2}|V_2^{6,6}|p_{3/2}p_{3/2}\rangle_{J=2,T=1} = 2.762 \text{ MeV}$$

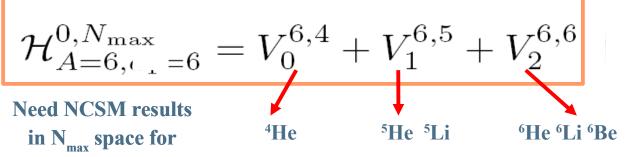
2-body Valence Cluster approximation for A>6

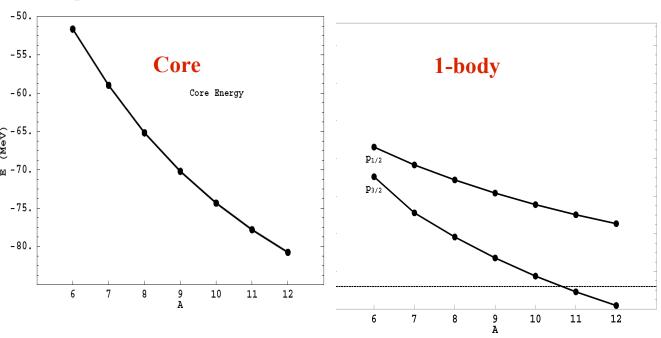
$$\mathcal{H}_{A,a_{1}=6}^{0,N_{\text{max}}} = V_{0}^{A,4} + V_{1}^{A,5} + V_{2}^{A,6}$$

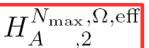


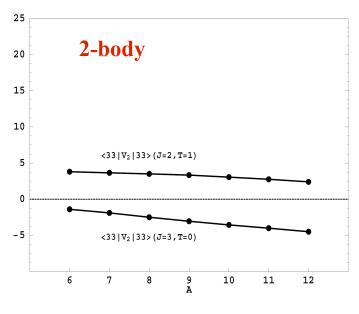


2-body Valence Cluster approximation for A=6

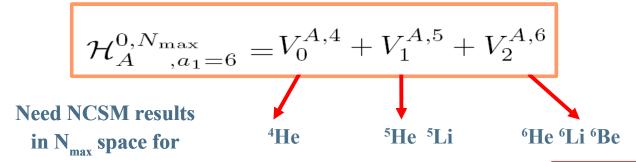






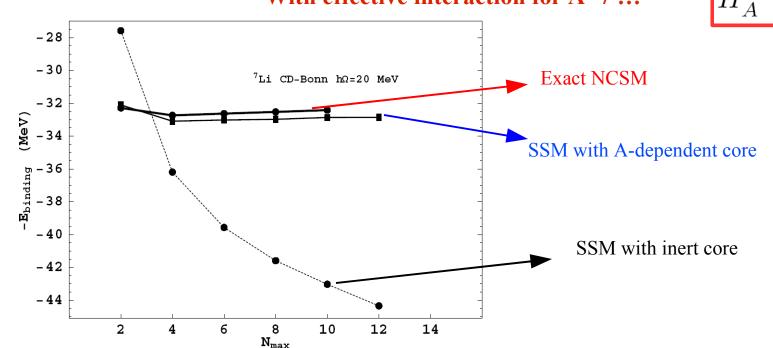


2-body Valence Cluster approximation for A=7



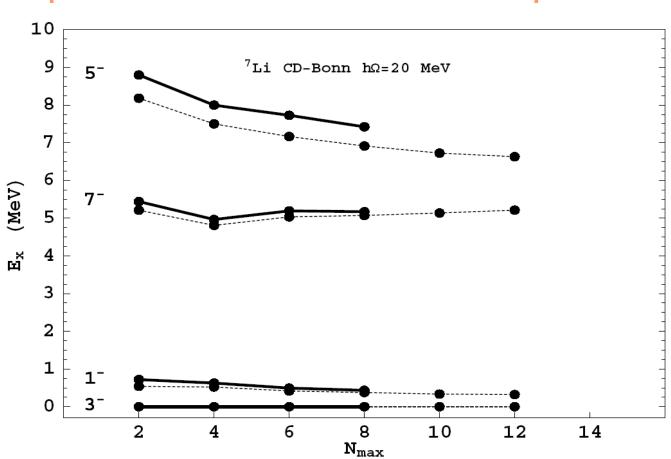
With effective interaction for A=7 !!!

 $H_A^{N_{
m max},\Omega,{
m eff}}$

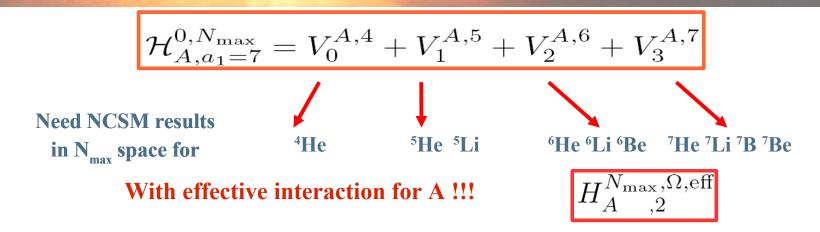


2-body Valence Cluster approximation for A=7

$$\mathcal{H}_{A,a_{1}=6}^{0,N_{\text{max}}} = V_{0}^{A,4} + V_{1}^{A,5} + V_{2}^{A,6}$$



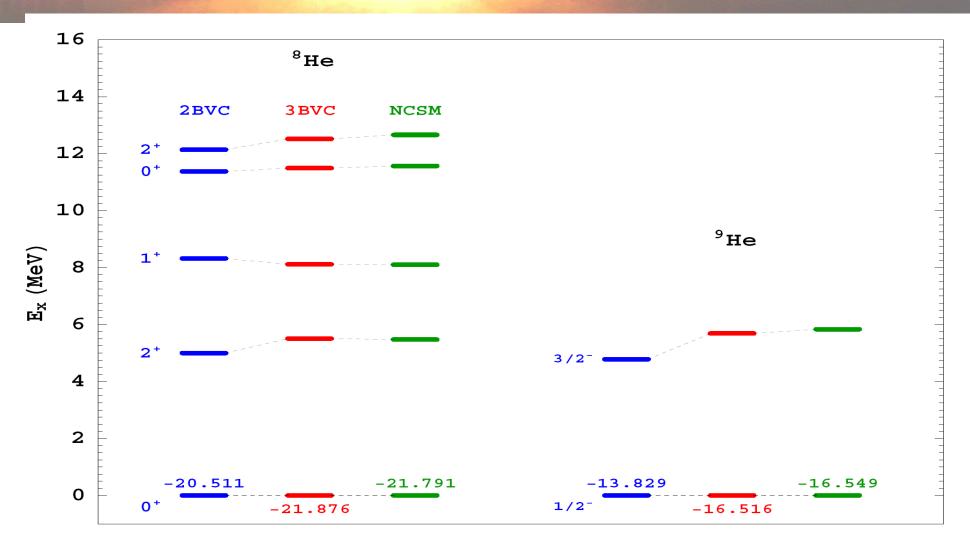
3-body Valence Cluster approximation for A>6



Construct 3-body interaction in terms of 3-body matrix elements: Yes

$$V_3^{A,7} = \mathcal{H}_{A,7}^{0,N_{\text{max}}} - \mathcal{H}_{A,6}^{0,N_{\text{max}}}$$

3-body Valence Cluster approximation for A>6



Summary

- 3-step technique to construct effective Hamiltonian for SSM with a core:
 - #1 2-body UT of bare NN Hamiltonian (2-body cluster approximation)
 - #2 NCSM diagonalization in large N_{max} space for A = 4,5,6,7
 - #3 many-body UT of NCSM Hamiltonian (up to 3-body valence cluster approximation)

Results:

- 1) strong mass dependence of core & one-body parts of Heff
- 2) 3-body effective interaction plays crucial role
- 3) negligible role of 4-body and higher-order interactions for identical nucleons

COLLABORATORS

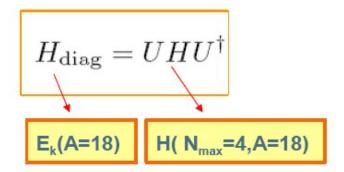
Alexander Lisetskiy, U. of Arizona Michael Kruse, U. of Arizona Ionel Stetcu, LANL Petr Navratil, LLNL James Vary, Iowa State U.

From 4hΩ NCSM to sd CSM for ¹⁸F

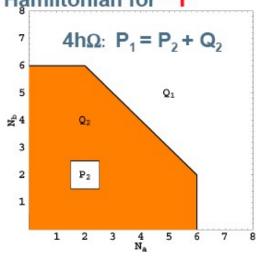
Petr Navrátil, Michael Thoresen, and Bruce R. Barrett, Phys. Rev. C 55, R573 (1997)

Step 2: Projection of 18-body 4hΩ Hamiltonian onto 0hΩ 2-body Hamiltonian for ¹⁸F

$$\begin{aligned} & \textbf{H}_{\text{eff}}([\text{sd}]^2) = \sum_{k} |\textbf{k}, \textbf{N}_{\text{max}} = 4, \textbf{A} = 18 > \textbf{E}_{k} \; (\textbf{A} = 18) < \overline{\textbf{k}}, \textbf{N}_{\text{max}} = 4, \textbf{A} = 18)| \\ & |\textbf{k}, \textbf{N}_{\text{max}} = 4, \textbf{A} = 18 > = \textbf{U}_{k, kp2} |\textbf{k}_{p2}[0h\Omega, 18] > + \textbf{U}_{k, kq2} |\textbf{k}_{q2}[2 + 4h\Omega, 18] > \\ & \text{dim}(\textbf{P}_1) = 6 \; 706 \; 870 \qquad \text{dim}(\textbf{P}_2) = 28 \qquad \text{dim}(\textbf{Q}_2) = 6 \; 706 \; 842 \end{aligned}$$



$$U = \begin{pmatrix} U_{pp} & U_{pQ} \\ U_{QP} & U_{QQ} \end{pmatrix}$$



$$H_{\text{eff}} = \frac{U_p^{\dagger}}{\sqrt{U_p^{\dagger} U_p}} H_{\text{diag}}^p \frac{U_p}{\sqrt{U_p^{\dagger} U_p}}$$

$$H_{\text{eff}} = H_{\text{eff}}(1b) + H_{\text{eff}}(2b) + H_{\text{eff}}(3b) + H_{\text{eff}}(4b) + \dots$$

