Crosslingual Adaptation of Semi-Continuous HMMs using Acoustic Sub-Simplex Projection

Frank Diehl, Asunción Moreno, Enric Monte

TALP Research Center Universitat Politècnica de Catalunya

- Motivation
- The adaptation procedure
- Tests
- Conclusions

- The adaptation procedure
- Tests
- Conclusions

CDHMM

- MLLR / MAP
- Usually Gaussian mean adaptation
- MLLR favored for little adaptation data, regression classes
- MAP: more data needed, prior definition

SCHMM

- One common codebook \rightarrow no regression classes
 - \rightarrow MLLR makes little sense
 - \rightarrow Mean adaptation questionable
- MAP is possible but more data needed, priors needed.
- Prototype weights should be adapted.
 - \rightarrow Solution need to stay in the probabilistic simplex.
- Transformation based solution desired
 - \rightarrow little data necessary

- Motivation
- The adaptation procedure
- Tests
- Conclusions

- Motivation
- The adaptation procedure
 - The data model
 - Maximum Likelihood Convex Regression (MLCR)
 - Model prediction and regression classes
 - Probabilistic Latent Semantic Analysis (PLSA)
 - Maximum a Posteriori Convex Regression (MAPCR)
- Tests
- Conclusions

The data model

- Motivation
- The adaptation procedure
 - The data model
 - Maximum Likelihood Convex Regression (MLCR)
 - Model prediction and regression classes
 - Probabilistic Latent Semantic Analysis (PLSA)
 - Maximum a Posteriori Convex Regression (MAPCR)
- Tests
- Conclusions

Maximum Likelihood Convex Regression (MLCR)

Starting point: Baum-Welsh auxiliary function for the weights \overline{C}_{sk}

$$\begin{aligned}
\mathcal{Q}(\lambda, \overline{c}_{sk}) &= \sum_{k=1}^{K} \sum_{t=1}^{T} \gamma_{sk}(t) \log(\overline{c}_{sk}) \\
\tilde{\mathcal{Q}}(\lambda, \overline{c}_{sk}) &= \sum_{k=1}^{K} \frac{\sum_{t=1}^{T} \gamma_{sk}(t)}{\sum_{t=1}^{T} \sum_{k=1}^{K} \gamma_{sk}(t)} \log(\overline{c}_{sk}) \\
\tilde{\mathcal{Q}}(c_{sk}, \overline{c}_{sk}) &= \sum_{k=1}^{K} c_{sk} \log(\overline{c}_{sk}) \\
\tilde{\mathcal{Q}}(c_{sk}, \underline{\alpha}_{s}) &= \underline{c}_{s}^{T} \log(\underline{U}_{s} \underline{\alpha}_{s})
\end{aligned}$$

Maximum Likelihood Convex Regression (MLCR)

- Motivation
- The adaptation procedure
 - The data model
 - Maximum Likelihood Convex Regression (MLCR)
 - Model prediction and regression classes
 - Probabilistic Latent Semantic Analysis (PLSA)
 - Maximum a Posteriori Convex Regression (MAPCR)
- Tests
- Conclusions

Model prediction and regression classes

Target model prediction

Model prediction and regression classes

Sub-simplex definition by acoustic regression classes

- Motivation
- The adaptation procedure
 - The data model
 - Maximum Likelihood Convex Regression (MLCR)
 - Model prediction and regression classes
 - Probabilistic Latent Semantic Analysis (PLSA)
 - Maximum a Posteriori Convex Regression (MAPCR)
- Tests
- Conclusions

Probabilistic Latent Semantic Analysis (PLSA)

- Problem: The sub-simplex dimension depends on the regression class - Statistical dependencies within a sub-simplex
- Remedy: Probabilistic latent semantic analysis

Probabilistic model: conditional independence given a 'latent' variable

- Motivation
- The adaptation procedure
 - The data model
 - Maximum Likelihood Convex Regression (MLCR)
 - Model prediction and regression classes
 - Probabilistic Latent Semantic Analysis (PLSA)
 - Maximum a Posteriori Convex Regression (MAPCR)
- Tests
- Conclusions

Maximum a Posteriori Convex Regression (MAPCR)

- Problem: MLCR enforces a solution to lie on the solution sub-simplex \underline{U}_s .
 - But, in case of plenty of adaptation data, a solution near to the measurement \underline{C}_s would make more sense.
- Remedy: Probabilistic weighting of the solution between the solution sub-simplex U_s and the measurement $c_s \rightarrow MAP$ solution

Extension of the solution sub-simplex by \underline{C}_s :

$$\overline{\underline{C}}_{s} = [\underline{U}_{s}, \underline{C}_{s}][\alpha_{s1}, \dots, \alpha_{sL}, \alpha_{sL+1}]^{T}$$

Prior definition: 'ad hoc'

- uniform for $\alpha_{s1}, \dots, \alpha_{sL}$
- gamma distribution for α_{sL+1}

$$p(\alpha_{sL+1}) = C \alpha_{sL+1}^{0.5} \exp(-\alpha_{sL+1})$$

For all tests set to: $\eta = 7$

- Motivation
- The adaptation procedure
- Tests
- Conclusions

Tests

- System overview
 - SCHMM, mMFCC, Δ , $\Delta\Delta$, Δ energy
 - Gaussian mixtures with 256 / 32 prototypes
 - 3-state state-tied left-to-right demiphones
 - IPA-based phonetic questions
- Test setup
 - Multilingual Spanish-English-German source models
 - Training: 1000 speaker per language, phonetically rich sentences
 - Target languages: Slovenian, French (45/43 phonemes)
 - Adaptation material: 10/10 and 25/25 men/women, 170/425 phonetically rich sentences
 - Test setup: A list of phonetically rich words and application words, grammar size 372/445 (Slovenian/French)
 - Test material: Independent of the adaptation material, 50 men, 50 women, 614 and 670 sentences (Slovenian/French)
- All results are given in WER

Tests without PDTS

	Slovenian		French		
#Speaker	20	50	20	50	
MONO	9.	61	6.12		
PRED	50.49		45.37		
PRED-I1	26.71	20.68	27.91	22.84	
MLLR	26.38	21.50	27.01	21.64	
MLCR	32.41	32.08	31.19	31.79	
MAPCR	20.03	18.89	22.84	19.40	

- Conclusions
 - Model retraining is most effective
 - MLLR does not help
 - MLCR worses the situation
 - MAPCR improves the situation significantly
 - MAPCR is most effective for little adaptation data

Tests applying PDTS

• PDTS-5/10/15 \rightarrow minimum model count in the newly generated leaves: 5/10/15

	Slovenian		French	
#Speaker	20	50	20	50
MAPCR	20.03	18.89	22.84	19.40
PDTS-5	32.57	26.06	21.19	14.03
PDTS-10	26.71	20.36	19.40	12.39
PDTS-15	25.57	19.22	19.25	11.94
MAPCR-PDTS-5	28.50	23.94	18.21	14.33
MAPCR-PDTS-10	23.13	19.71	16.12	11.79
MAPCR-PDTS-15	21.01	18.40	16.27	11.79

Conclusions

- French 20 speaker: performance boost due to PDTS and MAPCR
- French 50 speaker: performance boost due to PDTS, MAPCR helps
- Slovenian: Deterioration by PDST, MAPCR remedies the outcome somewhat
- Robust measurements are favored over an improved context modeling

Tree size analysis (number of leaves)

	Slovenian		French	
#States	1500/1017		1500/696	
#Speaker	20	50	20	50
PDTS-5	1884	2672	1890	2516
PDTS-10	1468	2118	1516	2112
PDTS-15	1260	1828	1315	1834

- Slovenian seems to make better use of the initial not adapted tree than French (use of 1017 instead of 696 leaves out of 1500)
- The final tree sizes are comparable between Slovenian and French → PDTS generates more leaves for French
- Possible explanation of the bad Slovenian PDTS behavior
 - Predicting initial Slovenian models consumes useless-proven questions without improving the system performance
 - The wasted questions are missing during PDTS resulting in a badly adapted tree

- Motivation
- The adaptation procedure
- Tests
- Conclusions

Conclusions

- We have presented a novel adaptation scheme for the cross-lingual adaptation of SCHMM.
- The method is based on the projection of a measurement vector to an expected solution space (smoothing).
- The method makes use of prior information by incorporating acoustic regression classes derived form the decision tree of the source language/s.
- The method is proven to perform well in two cross-lingual test scenarios (reduction of WER of up to ca. 20%).
- Applying PDTS led to ambivalent results. Though substantial improvements are obtained for French, a performance degradation is observed for Slovenian.

Thank you for your attention