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Motivation

CDHMM
• MLLR / MAP
• Usually Gaussian mean adaptation
• MLLR favored for little adaptation data, regression classes
• MAP: more data needed, prior definition
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Motivation

SCHMM
• One common codebook � no regression classes

� MLLR makes little sense
� Mean adaptation questionable

• MAP is possible but more data needed, priors needed.
• Prototype weights should be adapted.

� Solution need to stay in the probabilistic simplex.
• Transformation based solution desired 

� little data necessary
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The data model
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Maximum Likelihood Convex Regression (MLCR)
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Embedding
Probabilistic

simplex
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Model prediction and regression classes

Target model prediction

Regression of the target models:

“p” (con, unvoi, plo, bila)
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Model prediction and regression classes

Sub-simplex definition by acoustic regression classes
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Cut fixing the regression classes State-tied decision tree
of the source models
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“A solution sub-simplex         is given by the     of a regression class”ibU s
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Probabilistic Latent Semantic Analysis (PLSA)

Problem:   - The sub-simplex dimension depends on the regression class
- Statistical dependencies within a sub-simplex

Remedy:     Probabilistic latent semantic analysis

Probabilistic model:   conditional independence given a ‘latent’ variable
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- SVD-like matrix decomposition
- Definition of sub-simplex bases 
- Free eligible order
- Solved by the EM algorithm
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Maximum a Posteriori Convex Regression (MAPCR)

Remedy:     Probabilistic weighting of the solution between the solution sub-simplex
and the measurement        � MAP solutionscsU
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Tests

• System overview
• SCHMM, mMFCC, ∆, ∆∆, ∆energy
• Gaussian mixtures with 256 / 32 prototypes
• 3-state state-tied left-to-right demiphones
• IPA-based phonetic questions

• Test setup
• Multilingual Spanish-English-German source models
• Training: 1000 speaker per language, phonetically rich sentences
• Target languages: Slovenian, French (45/43 phonemes)
• Adaptation material: 10/10 and 25/25 men/women, 170/425 phonetically rich 

sentences
• Test setup: A list of phonetically rich words and application words, grammar size

372/445 (Slovenian/French)
• Test material: Independent of the adaptation material, 50 men, 50 women, 614

and 670 sentences (Slovenian/French)

• All results are given in WER



Tests without PDTS

• Conclusions
• Model retraining is most effective
• MLLR does not help
• MLCR worses the situation
• MAPCR improves the situation significantly
• MAPCR is most effective for little adaptation data

45.3750.49PRED

6.129.61MONO

22.8427.9120.6826.71PRED-I1

21.6427.0121.5026.38MLLR

19.4022.8418.8920.03MAPCR

31.7931.1932.0832.41MLCR

50205020#Speaker

FrenchSlovenian



Tests applying PDTS

• Conclusions
• French 20 speaker: performance boost due to PDTS and MAPCR
• French 50 speaker: performance boost due to PDTS, MAPCR helps
• Slovenian: Deterioration by PDST, MAPCR remedies the outcome somewhat
• Robust measurements are favored over an improved context modeling

12.3919.4020.3626.71PDTS-10

11.9419.2519.2225.57PDTS-15

14.3318.2123.9428.50MAPCR-PDTS-5

19.4022.8418.8920.03MAPCR

14.0321.1926.0632.57PDTS-5

11.7916.2718.4021.01MAPCR-PDTS-15

11.7916.1219.7123.13MAPCR-PDTS-10

50205020#Speaker

FrenchSlovenian

• PDTS-5/10/15  � minimum model count in the newly generated leaves: 5/10/15



Tree size analysis (number of leaves)

1500/6961500/1017#States

2516189026721884PDTS-5

1834131518281260PDTS-15

2112151621181468PDTS-10

50205020#Speaker

FrenchSlovenian

• Slovenian seems to make better use of the initial not adapted tree than French (use  
of 1017 instead of 696 leaves out of 1500)

• The final tree sizes are comparable between Slovenian and French � PDTS 
generates more leaves for French

• Possible explanation of the bad Slovenian PDTS behavior
• Predicting initial Slovenian models consumes useless-proven questions without 

improving the system performance
• The wasted questions are missing during PDTS resulting in a badly adapted tree
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Conclusions

• We have presented a novel adaptation scheme for the cross-lingual adaptation
of SCHMM.

• The method is based on the projection of a measurement vector to an expected 
solution space (smoothing).

• The method makes use of prior information by incorporating acoustic regression 
classes derived form the decision tree of the source language/s.

• The method is proven to perform well in two cross-lingual test scenarios (reduction
of WER of up to ca. 20%).

• Applying PDTS led to ambivalent results. Though substantial improvements are 
obtained for French, a performance degradation is observed for Slovenian.
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