

# Non-native Pronunciation Modeling in a Command & Control Recognition Task: A Comparison between Acoustic and Lexical Modeling



Judith M. Kessens

TNO Human Factors, Department of Human Interfaces, Soesterberg, The Netherlands

judith.kessens@tno.nl

## **INTRODUCTION**

source language = mother tongue of the non-native speaker target language = language the non-native is trying to speak

- Safesound project: Non-native pilots speaking English commands
- · Non-native accents deteriorate Automatic Speech Recognition (ASR)
- · Pronunciation variation might improve ASR performance
- · Non-native accents are modeled at three levels:

| 1. Acoustic model, | e.g. adaptation or sharing models  |
|--------------------|------------------------------------|
| 2. Lexicon,        | e.g. adding non-native variants    |
| 3. Language model, | e.g. using variant-specific priors |

- → This study: all three levels + in various combinations
- Pronunciation variants can be obtained:
  - 1. Knowledge-based, e.g. pronunciation dictionaries, linguistic studies
- 2. Data-driven, e.g. automatic/manual transcription of data
- → This study: data-driven, manual transcriptions

## DATA

• 100 English commands, on average 6 words per command e.g. "Frequency one one eight decimal nine"

Three source languages:
8 Italian, 12 French and 14 Dutch speakers

- Database divided in two independent sets
  - a development (dev) and a test set (test)
  - equally-sized, no overlap in speakers

## RECOGNIZER

Loquendo ASR version 6.7:

- Hybrid Hidden Markow Model (HMM) and Artificial Neural Network (ANN) recognition system
- Stationary context-independent phones and diphone-transition coarticulation models
- Baseline US English models trained on Macrophone database (200,00 utterances of 5,000 speakers from all regions of the US)
- · Baseline transcriptions automatically obtained

### GOAL

- · Improve recognition performance
- Compare the effect of modeling non-native accents at all three levels (acoustic models, lexicon, language model)

### METHOD

#### Lexical modeling

- Manual phonetic transcriptions of dev set
- · Variants are selected based on absolute frequency:

 $F_{abs} = 100\% \times \frac{variant count}{total number of words}$ 

#### Acoustic model adaptation

· Linear Input Network for Neural Networks

#### Modeling at the level of the language model

- Use variant-specific prior probabilities
- · Estimate priors on frequency of occurrence in dev set
- Reliable estimation: only priors for pronunciation variants of words with frequency >10

## **EXAMPLES OF NON-NATIVE ACCENTS**

 Rules are derived by comparing the pronunciations from the manual transcriptions to the baseline transcriptions

| Rule                                      | Dutch | Italian | French |
|-------------------------------------------|-------|---------|--------|
| $/I/ \rightarrow /i/$                     | 6.3%  | 7.6%    | 19.0%  |
| $\rm /e/ \rightarrow \rm /e/$             | 5.1%  | 3.4%    | 6.7%   |
| $/d3/ \rightarrow /t^{3}/$                | 7.6%  | 7.1%    | 4.6%   |
| $ \alpha:\rangle \rightarrow  o:\rangle$  | 4.1%  | 3.0%    | 4.2%   |
| /ə/-deletion                              | 5.4%  | 3.8%    | -      |
| $/a/ \rightarrow /e/$                     | 11.3% | -       | -      |
| $/V/ \rightarrow /f/$                     | 5.1%  | -       | -      |
| $/d/ \rightarrow /t/$                     | 4.2%  | -       | -      |
| $/\alpha$ : $/ \rightarrow /\Lambda/$     | 3.6%  | -       | -      |
| /t/-deletion                              | -     | 7.0%    | -      |
| $/a/ \rightarrow /\alpha!/$               | -     | 3.6%    | -      |
| $/ \ominus / \rightarrow / \alpha ! /$    | -     | 3.4%    | -      |
| $/\Lambda/ \rightarrow /\alpha$ :/        | -     | 3.3%    | -      |
| $/ \mathscr{X} / \rightarrow / \Lambda /$ | -     | 3.0%    | -      |
| $/ x / \rightarrow / = /$                 | -     | -       | 4.1%   |

# Table 1: Most frequent non-native pronunciation rules with rule frequencies ("-" means that the rule frequency < 3.0% )

## LEXICAL AND ACOUSTIC MODELING

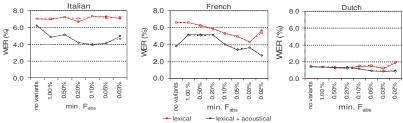



Figure 1: Effect of lexical modeling separately and in combination with acoustic modeling (dashed lines = WERs using variant-specific prior probabilities).

## SUMMARY OF RESULTS

| acoustic | no   | no   | yes  | yes  |
|----------|------|------|------|------|
| lexical  | no   | yes  | no   | yes  |
| Italian  | 7.1% | 6.8% | 6.2% | 4.0% |
| French   | 6.5% | 4.3% | 3.8% | 2.7% |
| Dutch    | 1.4% | 1.2% | 1.4% | 0.8% |

Table 2: Summary of WERs for all combinations of acoustic and lexical modeling

| Summary of relative WER reductions (compared to baseline) |           |  |
|-----------------------------------------------------------|-----------|--|
| Lexical modeling:                                         | 4 - 34%   |  |
| Acoustic modeling:                                        | 0 - 42%   |  |
| Combination acoustic and lexical modeling:                | 43 - 58%  |  |
| Variant-specific priors:                                  | no effect |  |

## CONCLUSIONS

- · Results are source language dependent
- · Best results for combination of acoustic and lexical modeling
- · No improvement for using variant-specific prior probabilities

## **FUTURE WORK**

- · Automatic generation of non-native transcriptions
- · Investigate dependency on amount of non-native speech material
- ( More details about work presented on this poster, see paper submitted to ICSLP'06)