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Abstract
Various automated techniques can be used to gener-
alise from phonemic lexicons through the extraction of
grapheme-to-phoneme rule sets. These techniques are
particularly useful when developing pronunciation mod-
els for previously unmodelled languages: a frequent
requirement when developing multilingual speech pro-
cessing systems. However, many of the learning algo-
rithms (such as Dynamically Expanding Context or De-
fault&Refine) experience difficulty in accommodating al-
ternate pronunciations that occur in the training lexicon.

In this paper we propose an approach for the in-
corporation of phonemic variants in a typical instance-
based learning algorithm, Default&Refine. We investi-
gate the use of a combined ‘pseudo-phoneme’ associated
with a set of ‘generation restriction rules’ to model those
phonemes that are consistently realised as two or more
variants in the training lexicon.

We evaluate the effectiveness of this approach us-
ing the Oxford Advanced Learners Dictionary, a pub-
licly available English pronunciation lexicon. We find
that phonemic variation exhibits sufficient regularity to
be modelled through extracted rules, and that acceptable
variants may be underrepresented in the studied lexicon.
The proposed method is applicable to many approaches
besides the Default&Refine algorithm, and provides a
simple but effective technique for including phonemic
variants in grapheme-to-phoneme rule extraction frame-
works.

1. Introduction

The growing trend towards multilingual speech systems
implies an increasing requirement for linguistic resources
in additional languages. A basic linguistic resource typi-
cally required when developing a speech processing sys-
tem is the pronunciation model: a mechanism for provid-
ing a language-specific mapping of the orthography of a
word to its phonemic realisation.

The process of creating a pronunciation model in
a new language can be accelerated through bootstrap-
ping [1, 2]. Bootstrapping systems utilise automated
techniques to extract grapheme-to-phoneme prediction
rules from an existing lexicon and apply these rules to

predict additional entries, typically in an iterative fashion.
The pronunciation model is further enhanced by extract-
ing grapheme-to-phoneme rules from the final lexicon, in
order to deal with out of vocabulary words.

A variety of techniques are available for the ex-
traction of grapheme-to-phoneme prediction rules from
pre-existing lexicons, including decision trees [3],
pronunciation-by-analogy models [4] and instance-based
learning algorithms [5, 6]. Unfortunately, some of these
techniques, including Dynamically Expanding Con-
text(DEC) [5] and Default&Refine [7], experience diffi-
culty in accommodating alternate pronunciations during
the machine learning of grapheme-to-phoneme predic-
tion rules. For such techniques, the lexicon is typically
pre-processed and pronunciation variants removed prior
to rule extraction.

Pronunciation variants can occur in a continuum
ranging from generally accepted alternate word pronunci-
ations to pronunciation variants that only occur in limited
circumstances – in effect ranging from true homonyms,
to dialect and accent variants, to phonological variants
based on a variety of factors such as speaker and/or
speaking style. It can be difficult to decide which of these
variants to model for a previously unmodelled language,
especially if different levels of variation are to be kept
distinct. While phonological phenomena (such as /r/-
deletion, schwa-deletion or schwa-insertion) can be mod-
elled as predictive rewrite rules, phonemic variation is
most often included in pronunciation lexicons as explicit
alternate pronunciations. It is these explicit alternate pro-
nunciations that are currently not modelled effectively by
many of the techniques used to generalise from an exist-
ing lexicon.

In this paper we investigate the incorporation of ex-
plicit phonemic variants in a typical instance-based learn-
ing algorithm, Default&Refine [7], by generating a com-
bined ‘pseudo-phoneme’ and an associated set of ‘gener-
ation restriction rules’ to model alternate phonemic pro-
nunciations. The remainder of this paper is structured as
follows: in Section 2 we provide background on the De-
fault&Refine rule extraction algorithm used, in Section
3 we describe our approach to the modelling of phone-
mic variation, and in Section 4 we evaluate the effective-
ness of the method when applied to the Oxford Advanced



Learners Dictionary (OALD) [8], a publicly available En-
glish pronunciation lexicon that includes pronunciation
variants. In the concluding section we discuss the impli-
cations of our results and future work.

2. Background: Default&Refine

The Default&Refine algorithm is a fairly straightforward
instance-based learning algorithm that can be used to ex-
tract a set of grapheme-to-phoneme prediction rules from
an existing pronunciation lexicon. It is very competitive
in terms of both learning efficiency (that is, the accuracy
achieved with a limited number of training examples) and
asymptotic accuracy, when compared to alternative ap-
proaches [7].

The Default&Refine framework is similar to that of
most multi-level rewrite rule sets. Each grapheme-to-
phoneme rule consists of a pattern:

(left context − g − right context) → p (1)

Rules are ordered explicitly. The pronunciation for
a word is generated one grapheme at a time: each
grapheme and its left and right context as found in the
target word are compared with each rule in the ordered
rule set, and the first matching rule is applied.

During rule extraction, iterative Viterbi alignment
is used to obtain grapheme-to-phoneme mappings, af-
ter which a hierarchy of rewrite rules is extracted per
grapheme. The rule set is extracted in a straightforward
fashion: for every letter (grapheme), a default phoneme is
derived as the phoneme to which the letter is most likely
to map. “Exceptional” cases – words for which the ex-
pected phoneme is not correct – are handled as refine-
ments. The smallest possible context of letters that can
be associated with the correct phoneme is extracted as a
refined rule. Exceptions to this refined rule are similarly
represented by further refinements, and so forth, leading
to a rule set that describes the training set with complete
accuracy. Further details can be found in [7].

3. Approach

Our approach to the modelling of explicit pronunciation
variants utilises two concepts that we refer to aspseudo-
phonemes andgeneration restriction rules, respectively.
These are discussed in the remainder of this section.

3.1. Pseudo-phonemes

A pseudo-phoneme is used to model a phoneme that is
consistently realised as two or more variants. In prac-
tise, we use the following process: we align the training
lexicon (as discussed in Section 2), extract all the words
giving rise to pronunciation variants from the aligned lex-
icon, and analyse these words one grapheme at a time.
Since the word-pronunciation pairs have already been

aligned, there is a one-to-one mapping between each
grapheme and its associated phoneme. For each word,
we consider any grapheme that can be realised as two or
more phonemes and map this set of phonemes to a new
single pseudo-phoneme. If a set of phonemes has been
seen before, the existing pseudo-phoneme – already as-
sociated with this set – is used.

Table 1 lists examples of pseudo-phonemes generated
from theOALD corpus. Phonemes are displayed simpli-
fied to the closest ARPABET[9] symbol. The ‘φ’ symbol
indicates phonemic nulls (inserted during alignment).

Table 1: Examples of pseudo-phonemes generated from
the OALD corpus

Word Variants Pseudo- New
phoneme pronunciation

animate ae n ih m ay tφ p1=ay‖ax ae n ih m p1 tφ
ae n ih m ax tφ

delegate d eh l ih g ay tφ p1=ay‖ax d eh l ih g p1 tφ
d eh l ih g ax tφ

lens l eh n z p2=s‖z l eh n p2
l eh n s

close k l ow z φ p2=s‖z k l ow p2φ

k l ow sφ

Once all pseudo-phonemes have been defined, the
aligned training lexicon is regenerated in terms of the new
phoneme set.

3.2. Generation restriction rules

The generation restriction rules are used to restrict the
number of possible variants generated when two or more
pseudo-phonemes occur in a single word. For example
the word ‘second’ can be realised as two variants ‘s eh
k ih n d’ and ‘s ih k aa n d’. According to the pseudo-
phoneme generation process described above, these two
variants will be combined as a single pronunciation: ‘s
p3 k p4 n d’. However, this new pronunciation implies
four different variants, of which ‘s ih k ih n d’ and ‘s eh k
aa n d’ are not included in the training lexicon. The gen-
eration restriction rules are used to identify and limit the
expansion options for such cases, to ensure that the newly
generated training lexicon encodes exactly the same in-
formation as the initial training lexicon.

In practice, all words that contain two or more
pseudo-phonemes are extracted from the training lexi-
con and the pseudo-phoneme combinations analysed. If
a pseudo-phoneme combination (such as p3-p4 above)
is realised as one or more specific phoneme combina-
tions (eh-ih or ih-aa) for all words in the training lex-
icon, the p3-p4 combination will always be expanded
as these two phoneme combinations, and these only. If
a specific phoneme combination exists for some words
in the training lexicon and not for others, more com-



plex generation restriction rules are required. Fortunately
the Default&Refine algorithm is well suited to extracting
such rules from the pseudo-phoneme combination infor-
mation. The smallest possible rule is extracted to indicate
the context in which a pseudo-phoneme combination is
realised as one phoneme combination or another.

4. Evaluation and Results

In order to evaluate the practicality of the proposed ap-
proach, we model the pronunciation variants occurring in
the Oxford Advanced Learners Dictionary (OALD) [8].
We use the exact 60,399 word version of the lexicon as
used by Black [3], and do not utilise stress assignment.

In all experiments we perform 10-fold cross-
validation, based on a 90% training and 10% test set. The
exact training and test word lists are used as reported on
in [7]. We report on phoneme correctness (the number of
phonemes identified correctly), phoneme accuracy (num-
ber of correct phonemes minus number of insertions, di-
vided by the total number of phonemes in the correct pro-
nunciation) and word accuracy (number of words com-
pletely correct). We also report on the standard deviation
of the mean of each of these measurements, indicated by
σ10

1.

4.1. Benchmark systems

In previous experiments in which Default&Refine was
applied to the OALD corpus [7], the first version of each
pronunciation variant was kept and other variants deleted
prior to rule extraction. Results for this approach are
listed in Table 2 as ‘one variant’. Before applying the
new approach, we evaluate the effect on predictive accu-
racy if all variants are simply removed from the training
lexicon, and list the results in Table 2 as ‘no variants’.
As can be seen, results are comparable, with the variant-
containing scores consistently somewhat lower because
of the extra complexity introduced by variants. These two
systems are used as benchmarks to evaluate the effect that
the new approach to variant modelling has on predictive
accuracy.

Table 2:Predictive accuracy is comparable whether one
variant is retained or all variants removed during train-
ing. (Tested on full test set.)

Approach Word Phoneme Phoneme
accuracy accuracy correct

σ10 σ10 σ10

one variant 86.46 0.15 97.41 0.03 97.67 0.03
no variants 86.87 0.16 97.49 0.03 97.74 0.03

1If the mean of a random variable is estimated fromn independent
measurements, and the standard deviation of those measurements isσ,
the standard deviation of the mean isσn =

σ
√

n

.

4.2. Prediction of non-variants

First, we consider whether the additional modelling of
the variants may have a detrimental effect on the pre-
diction of non-variants. We align the original training
lexicon, generate a set of pseudo-phonemes, rewrite the
aligned lexicon in terms of the new pseudo-phonemes,
extract Default&Refine rules for the rewritten lexicon,
and extract generation restriction rules based on the orig-
inal lexicon. We then use these two rule sets to predict
the pronunciation of the test word lists: standard De-
fault&Refine prediction is used to generate a test lexicon
specified in terms of pseudo-phonemes, and the pseudo-
phonemes are expanded to regular phonemes according
to the generation restriction rules, resulting in the final
test lexicon. Using both the generated lexicon and the
reference lexicon, we generate a list of all variants in the
test set. We remove these words from the test word list,
and compare the accuracy of the baseline system(‘no
variants’) and the pseudo-phoneme approach(‘pseudo-
phone’). Results are listed in Table 3. We see that the ac-
curacy with which non-variants are predicted is not neg-
atively influenced by the pseudo-phoneme modelling ap-
proach.

Table 3: The pseudo-phoneme approach does not have
a detrimental effect on the accuracy with which non-
variants are predicted. (Tested on test set without vari-
ants.)

Approach Word Phoneme Phoneme
accuracy accuracy correct

σ10 σ10 σ10

no variants 86.93 0.16 97.50 0.03 97.75 0.03
pseudo-phone 86.92 0.15 97.50 0.03 97.76 0.03

4.3. Prediction of variants

Given the modelling process, it is clear that the origi-
nal training lexicon and the training lexicon rewritten us-
ing pseudo-phonemes are equivalent. (This can be veri-
fied by expanding the rewritten training lexicon with the
same process used to expand the test lexicon, and com-
paring the expanded lexicon with the original version.)
The pseudo-phoneme approach therefore provides a tech-
nique to encode pronunciation variants within the De-
fault&Refine framework, without requiring any changes
to the standard algorithm. While this in itself is a use-
ful capability, we are more interested in the effectiveness
with which the approach is able to generalise from vari-
ants in the training data. In order to evaluate the above,
we count the number of variants occurring both in the
reference lexicon and the generated test lexicon accord-
ing to the number of variantscorrectly identified in the
test lexicon, the number of variantsmissing from the test
lexicon, and the number ofextra variants occurring in the



test lexicon, but not in the reference lexicon.
On average we find that58% of expected variants are

correctly generated and that67% of generated variants
are correct. In Table 4 we list the detailed results for four
of the cross-validation sets.

Table 4: Correct, missing and extra variants generated
during cross-validation. The percentage of expected vari-
ants that were correctly generated, and percentage of
generated variants that were correct are also displayed.

Correct Missing Extra % correct % correct
of expected of generated

58 43 23 57.43 71.60
56 40 20 58.33 73.68
64 45 32 58.72 66.67
53 34 28 60.92 65.43

These results indicate that the pseudo-phoneme approach
indeed generalises from the training data and can gen-
erate a significant percentage of the variants occurring in
the reference lexicon. When the variants classified as‘ex-
tra’ are analysed, it soon becomes clear that some of the
generated variants may be legitimate variants that have
simply not been included in the original lexicon. For ex-
ample,OALD contains the two pronunciations ‘iy n k r iy
s’ and ‘iy ng k r iy s’ as variants of the word ‘increase’,
but allows only the single pronunciation ‘iy n k r iy s t’ as
a pronunciation of ‘increased’. When the prediction sys-
tem generates the alternative pronunciation ‘iy ng k r iy
s t’, it is flagged as erroneous. These two pronunciations
are close to each other, and will not necessarily affect the
quality of a speech recognition or text-to-speech system
developed using these pronunciations. However, incon-
sistencies in the pronunciation lexicon lead to unneces-
sarily complex pronunciation models, and consequently,
suboptimal generalisation.

The above discussion suggests an interesting ap-
proach for the validation of variants: all variants that are
generated using the pseudo-phoneme approach and are
marked as erroneous can be verified manually. Correct
variants can be added to the training set and the process
repeated until all generated variants have been verified,
resulting in a more consistent lexicon.

5. Conclusions

In this paper we have described a process that allows
for the incorporation of explicit phonemic variants in the
Default&Refine algorithm. This is done in a way that
requires no adjustments to the standard algorithm, but
rather utilises pre- and post-processing of the training
data and testing data. As the data is re-configured to
a format expected by the standard algorithm, the same
approach can be used for other grapheme-to-phoneme
learning algorithms such as Dynamically Expanding

Context (DEC).
Evaluated on theOALD corpus, we find that the incor-

poration of variants does not have a detrimental effect on
the accuracy with which non-variants can be predicted.
Additionally, the proposed approach was able to identify
58% of expected variants, and of the variants generated
67% were correct. These results do not take into account
that some of the33% variants identified as incorrect may
be legal variants not included in the version ofOALD
used here.

Initial results indicate that the approach is simi-
larly applicable to other lexicons studied (the Flemish
FONILEX lexicon [10] and the Carnegie Mellon Pronun-
ciation dictionary [11]). In future work we would like to
verify this more rigorously, and also obtain a more quan-
titative indication of the amount of possibly inconsistent
variants occurring in these dictionaries.
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