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ABSTRACT

With the demand on providing automatic speech recognition (ASR)
systems for many markets the question of porting an ASR system
to a new language is of practical interest. Transferring already ex-
isting hidden Markov models (HMM) from a source to the target
language is seen as a key step to cope with this task. Typically, such
a crosslingual model adaptation task consists of a three step pro-
cedure. It starts by polyphone decision tree specialisation (PDTS),
specialising the phonetic-acoustic decision tree of the source mod-
els to the target language. In a second step initial target language
models are predicted out of the adjusted decision tree. Finally, the
predicted acoustic models are adapted to the target language using
a limited amount of target data.
In this work we focus on the final model adaptation step in the
case of a system architecture employing semi-continuous HMMs
(SCHMM). In contrast to continuous density HMMs (CDHMM),
adaptation techniques for SCHMMs are not as well developed. In
particular, no powerful transformation based adaptation method for
adjusting the information bearing mixture weights of the common
prototype densities is on-hand. To overcome this problem we in-
troduce a novel adaptation scheme for SCHMM. The method re-
lies on the projection of retrained model parameters to a solution
sub-simplex which is obtained through acoustic regression classes
derived from the decision tree of the source models. The perfor-
mance of the procedure is demonstrated by the transfer of multilin-
gual Spanish-English-German models to Slovenian and to French.
In the full paper, reference results for a standard maximum likeli-
hood linear regression (MLLR) approach are given too.

1. INTRODUCTION

With the demand on providing automatic speech recognition (ASR)
systems for many markets the question of porting an ASR system to
a new language is of practical interest. However, a common trouble,
developers working in this field are faced with, is the availability of
adequate speech material to train the acoustic models. To alleviate
this problem crosslingual speech recognition became an active re-
search area. Instead of relying on a complete speech database in
the target language one tries to manage with less target material by
transforming existing acoustic models of a source language to the
target language [1], [2], [3].
In the work on hand we follow the approach which was pointed out
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in [3]. It consists in a three step procedure using a limited amount of
target data to convert acoustic models from the source language to
the target language. The method starts by polyphone decision tree
specialisation (PDTS) [4], specialising the phonetic-acoustic deci-
sion tree of the source models to the target language. In a second
step initial target language models are predicted out of the adjusted
decision tree. Finally, the predicted acoustic models are adapted to
the target language using a limited amount of target data.
Until now almost all results reported on language adaptation of hid-
den Markov models (HMM) refer to the use of continuous density
HMMs (CDHMM). However, semi-continuous HMMs (SCHMM)
are still widely-used. Their lower complexity paired with high per-
formance make them an attractive alternative to CDHMMs espe-
cially for small and medium scale systems. Unfortunately, adapta-
tion techniques for SCHMMs are not as well-developed as in the
case of CDHMMs. Besides MAP adaptation proposed in [5], a
powerful transformation based method is still not established. Of
course, MLLR [6] may be applied. However, its use is of limited
effect due to SCHMMs rely on one common codebook. Applying
regression class specific MLLR transformations for different model
groups is impossible. Only common transformations are feasible
weakening the strength of MLLR significantly.
The basic problem when adapting SCHMMs lies in the way they
code the acoustic information. The probability density functions
of the individual states are modelled as superpositions of proto-
type densities taken from a common codebook. Each state contains
a probability vector of mixture weights referring to the prototype
densities. Hence, adapting SCHMMs means adapting these vectors
under standard probabilistic constraints hampering the design of an
appropriate method significantly.
Recently two methods were introduced to overcome this problem.
In [7] it was proposed to decompose the B-matrix− i.e. the weights
matrix composed of the weights vectors of the states of all HMMs
− by probabilistic latent semantic analysis (PLSA) [8]. The adap-
tation procedure is then reduced to a subset of the resulting com-
ponent matrices. For solving the final optimisation problem expec-
tation maximisation is used, implicitly satisfying the probabilistic
constraints on the weights.
A second solution to the problem was presented in [9]. The method
tries to identify reasonable solution sub-simplexes according to a
regression scheme using the underlying phonetic-acoustic decision
tree of the source models. Having defined these solution spaces, so
called measurements, actually the source models retrained by the
adaptation data, are projected onto the solution spaces resulting in
the final adapted models.



In this work we pick up the second method. First we recall its
derivation and emphasise its maximum likelihood character justi-
fying the name, maximum likelihood convex regression (MLCR),
of the method. In a second step the method is extended by intro-
ducing prior information to take better advantage of the adaptation
data. The resulting method is called maximum a posteriori convex
regression (MAPCR). Finally, the performance of the two methods
is demonstrated for a crosslingual model adaptation task with and
without the use of PDTS.

2. THE DATA MODEL

In a SCHMM speech recognition system the output densitiesp(x|s)
associated to the statess ∈ {1, ..., S} are expressed as superposi-
tions of prototype densitiesGk (x) taken from a common codebook

p(x|s) =

KX

k=1

cskGk (x) s ∈ {1, ..., S} (1)

with k ∈ {1, ...,K} naming the prototypes. For calculating an
adapted versioncs = [cs1, ..., csK ]T of the mixture weightscs =

[cs1, ..., csK ]T of states we model them as a convex combination

cs = Usαs (2)

of a set ofL prototype weights vectorsusl forming matrixUs. I.e.,
matrixUs models our belief of the acoustic neighbourhood ofcs.
TheL-dimensional vectorαs represents the combination weights
which need to be estimated under standard probabilistic constraints.
As indicated by the subscripts theusl and theαs depend on the
current states. We setL << K to get the desired reduction in the
number of free parameters.

3. MAXIMUM LIKELIHOOD CONVEX REGRESSION

For estimating the mixture weightscsk under the Baum-Welsh rees-
timation framework one finds [6] the well known auxiliary function

Q (λ, csk) =

TX
t=1

KX

k=1

γsk (t) log (csk) (3)

which has to be maximised with respect to thecsk subject to

KX

k=1

csk = 1 ∀s ∈ {1, .., S},

csk ≥ 0 ∀s ∈ {1, ..., S} ∧ ∀k ∈ {1, ..,K}.
In (3) the termγsk (t) defines the occupation probability of mixture
componentk of states at time t given the observation sequence
O = o1...oT and the current parametrisationλ. csk is the objective
to estimate, namely the mixture weight for thekth prototype density
of states. In a standard Baum-Welsh training the solution for the
mixture weights is given by

csk =

PT
t=1 γsk (t)PT

t=1

PK
k=1 γsk (t)

(4)

[10]. Dividing (3) by the denominator of(4) we get the modified
auxiliary function

Q̃ (csk, csk) =

KX

k=1

csk log (csk) . (5)

In (5) we have replaced the general placeholderλ by csk too. Ex-
pressing(5) in vector notation and plugging in(2) the auxiliary
function changes to

Q̃ (cs, cs) = cTs log (Usαs). (6)

The interpretation of(6) is as follows. Thecs correspond to mea-
surements taken from the adaptation data. Theαs are the parame-
ters to estimate, andUs represents the model constraint in form of a
solution sub-simplex which is based on prior knowledge taken from
the underlying source models.
In light of (6) the final optimisation problem is stated as

arg min
αs
−cTs log (Usαs) (7)

subject to

LX

l=1

αsl = 1

and αsl ≥ 0 ∀l ∈ {1, .., L}
which need to be solved for eachs ∈ {1, ..., S}. Though we found
no closed form solution for the problem, it is identified as convex
and can be solved by convex optimisation [11].
As depicted in Fig. 1, solving problem(7) consists in projecting
the measurementcs to the probabilistic sub-simplex spanned by the
convex combination ofUs, minimising the distance, i.e. the cross-
entropy, between the measurementcs and the solutioncs.

embedding
probabilistic
simplex

spanned
sub−simplex

cross−entropy
projection

1u

2u 3u

0

cs

cs

Fig. 1. Graphical interpretation of the optimisation problem.

It is illuminating to remember that thecsk can be interpreted as
normalised counts [10]

csk =
nsk
ns

, (8)

with nsk denoting the expected number of times in states and pro-
totype densityk is active, andns the expected number of times in
states. Plugging(8) into (5) and removing the state countns, not
affect the maximisation of(5), we get the log-likelihood expression

L(αs) =

KX

k=1

nsk log (csk) (9)

= log

KY

k=1

csk
nsk (10)

= log

KY

k=1

csk
cskns . (11)



Defining an observation as ”a feature is caused by prototype den-
sity k given states”, and remembering thatcsk is actually defined
as the probability of such an observation, we see that minimising
expression(7) is equivalent to maximising the likelihood of the se-
quence of these observations as given by(10). The event counts
nsk or csk, respectively, provide the necessary statistics and are es-
timated by retraining the source models with the adaptation data of
the target language justifying the notation”measurement”for the
csk.

4. TARGET MODEL PREDICTION AND ACOUSTIC
REGRESSION CLASSES

Crosslingual model adaptation starts with the prediction of suitable
target models out of the decision tree of the source language. In our
system we use a phonetic-acoustic decision tree for state tying. It is
constructed during the training of the source models constituting a
function from a generic phonetic feature space to a state space. The
input domain consists of phonetic feature vectors assigned to the
central phone and the phonetic contexts of a state. The features are
generic, i.e. to a large degree independent of the used language. An
example might be(plosive, bilabial, voiced). The output domain
holds the weights vectors of the states.
With the input domain being of generic nature the tree can also be
used to predict the tied states of the models of a new language. Af-
ter setting up the feature vectors for the new language one calls the
tree applying the features. Afterwards the predicted weights vectors
are assigned to the models of the target language. This procedure
effectively defines the target modelscs and initialises their training.
In a further step the decision tree is also used to define the solution
sub-simplexesUs by exploiting the acoustic neighbourhood knowl-
edge given by neighbouring leaves of the tree. Acoustic regression
classes are defined by cutting the tree above its leaves constructing
a set of subtrees. In Fig. 2 we depict this situation. It shows a
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Fig. 2. Sub-simplex construction.

fictitious decision tree which is cut by the dashed line. It results in
three subtrees with6, 3, and2 leaves and the corresponding mixture
weights of the base states{b1, b2, b3, b4, b5, b6}, {b7, b8, b9} and
{b10, b11}. The cut is accomplished searching the complete tree for
the subtree giving minimal accumulated model entropy. The search,
starting from the tree’s root, stops after having reached the number
of desired regression classes, i.e. nodes.
All leaves of a subtree share one or more common phonetic features
or, in other words, are to some degree acoustically similar. In con-
sequence, the mixture weights vectorsbi associated to the leaves
of a subtree form a more or less consistent acoustic sub-simplex.
Furthermore, for the adaptation task we assume that the base mod-

els we use for initialisation are already close to the target models.
From these considerations we claim that each target model should
lie within the space spanned by its initialisation state and its neigh-
bouring states occupying the same subtree.
Although each set of base statesbi already constitutes a possible
solution space for acs we do not stack them directly toUs. We ac-
tually prefer to have the same number of base vectors for eachUs,
and we would like to reduce stochastic dependencies withinUs. To
cope with these demands we use PLSA to retrieve theUs out of the
bi assigned to a regression class.

5. PROBABILISTIC LATENT SEMANTIC ANALYSIS

The starting point for PLSA is the so called aspect model [8]. For
a pair of random variables(x, y) ∈ (X,Y ) = {(xk, ys)|1 ≤ k ≤
K ∧ 1 ≤ s ≤ S} an underlying production mechanism involving
a hidden variablez ∈ Z = {z1, .., zL} is assumed. The hidden
variable is called factor or latent variable, and the production mech-
anism assumes conditional independence betweenX andY given
the latent variableZ. With this model the joint probabilityP (x, y)
is expressed as

P (x, y) =
X
z∈Z

P (x|z)P (y|z)P (z). (12)

The parameters of(12) are estimated using the EM-algorithm as de-
scribed in [8]. With the termsP = [P (xk, ys)]k,s, Ũ = [P (xk|zl)]k,l,
Σ̃ = diag [P (zl)]l, andṼ = [P (ys|zl)]s,l, (12) can be arranged
in matrix form as

P = ŨΣ̃Ṽ
T
. (13)

Equation(13) shows some formal similarities to singular value de-
composition (SVD). The matrices̃U andṼ constitute bases for the
X- andY -spaces. TheL elements of matrix̃Σ act similar to singu-
lar values, controlling the relative strength of the base vectors when
mixing them together to matrixP .
But there are also some significant differences with respect to a
SVD. Besides being solely a model provided with a model error
the mixture approximation gives well defined probabilistic distribu-
tions. I.e. the column vectors of̃U andṼ as well as the diagonal
of Σ̃ accomplish all probabilistic constrains to be interpreted as dis-
crete distribution. As a consequence, the base vectors given byŨ
form a probabilistic sub-simplex instead of a subspace as in the case
of a SVD. Furthermore, we are free to choose the model complex-
ity. That means especially that we can choose the number of latent
variablesL for controlling the size of̃U .
In light of our search for suitable basis vectorsusl, we use PLSA as
follows. After having identified the neighbouring base vectors for
a specific states they are stacked together forming matrixBs. E.g.
for the first subtree shown in Fig. 2 we get

Bs = [b1, b2, b3, b4, b5, b6] . (14)

The components of matrixBs stand for the conditional probabili-
tiesP (k|s, Ts), i.e. the probability of mixture densityk given state
s and subtreeTs. To get the joint probabilitiesP (k, s|Ts) we multi-
ply the columns ofBs by theP (s|Ts), the occupation probabilities
of the states conditioned on the current subtreeTs. Usually, the
P (s|Ts) can easily be derived during the training of the base mod-
els. Finally, after having fixed the model complexity by the number
of latent variablesL, the resulting matrixB̃s is decomposed by
PLSA providingŨ being actually the desired baseUs in (6).



6. MAXIMUM A POSTERIORI CONVEX REGRESSION

A critical point of the ML solution is the definition of the solution
sub-simplexUs. It embodies our expectation that a good solution
is more likely to lie close toUs than tocs. Though this might be
a reasonable assumption in case of little adaptation data, it loses its
justification as more data becomes available. If we had plenty of
data we would anticipate that the solution for the adaptation prob-
lem iscs itself. A natural way to take this relationship into consid-
eration is the introduction of prior information about our confidence
in the solution sub-simplexUs, i.e. extending the ML approach to
a MAP approach.
For a MAP formulation of the problem we start by includingcs into
the solution sub-simplex by extendingUs by cs, demanding the ex-
tension ofαs byαsL+1, too. I.e. the data model changes to

cs = [Us, cs] [αs1, ..., αsL, αsL+1]T . (15)

In case of the prior distributionp(αs) we are actually only inter-
ested in weighting the solutions betweenUs andcs. In practise this
means that we can setp(αs) = p(αsL+1), being equivalent to a
non-informative, uniform prior for the originalαs.
Hence, starting from(11), the objective functionM(α) to max-
imise can be stated as

M(α) = p(αsL+1)

KY

k=1

csk
cskns (16)

wherecsk refers to the extended data model of(15). The prior is
chosen in an ad hoc manner as a gamma distribution

p(αsL+1) = CαµsL+1exp(−ηαsL+1) (17)

with αsL+1 ∈ [0, 1], µ, η ≥ 0 andC a suitable normalisation con-
stant. Parameterµ andη serve to control the shape of the prior. For
η close to zero the prior gets uniform expressing our uncertainty
respectiveUs. But, asη gets bigger the prior changes its shape to
a peak concentrating its probability mass near zero. In this case
αsL+1 is forced to be small, reflecting our suspicion regarding the
measurementcs. The value ofµ is of minor importance especially
if η gets big. Using vector notation and definition(17), the final
optimisation problem according to(16) becomes

arg min
αs

−nscTs log
ş

[Us, cs] [αs1, ..., αsL+1]T
ť

−µ logαsL+1 + ηαsL+1 (18)

subject to

L+1X

l=1

αsl = 1

and αsl ≥ 0 ∀l ∈ {1, .., L+ 1}

which is convex, i.e. can also be solved by convex optimisation.
A key role in the interpretation of(18) inheres in the state countns.
It is the factor balancing the information reflected by the measure-
ment and the prior. As a reliable measurement comes with a high
state count, a highns gives emphasise to the likelihood part of(18)
shifting the solution tocs. On the other hand, ifns is small the prior
terms will dominate. This forcesαsL+1 to be close to zero leading
to a solution close to the original not extended sub-simplex.

7. POLYPHONE DECISION TREE SPECIALISATION

In [4] it was pointed out that the different phonotactic of languages
significantly hamper the use of context dependent acoustic models
in crosslingual speech recognition. A phonetic context which ap-
pears frequently in one language may be rare in another language
or might even not exist. When predicting target models out of the
decisions tree of the source language one is therefore confronted
by the problem that some models which are needed to model ad-
equately the target language can not be predicted. Instead, one as-
signs acoustically significant different target models to the same tree
leaves. This results in immoderate broad models unable to model
adequately the acoustic properties of the target language.
To cope with this problem the authors of [4] proposed PDTS. PDTS
consists of the crosslingual adaptation of a phonetic-acoustic deci-
sion tree to a target language. One restarts the tree growing process
of the source tree, using some adaptation data of the target language.
By this, one introduces phonetic context information into the deci-
sion tree which is not present in the source language but is important
for the target language.
In the present work and in the light of MAPCR, PDTS is applied as
follows. For a given source tree the tree growing process is restarted
applying the adaptation data of the target language. Afterwards, the
models associated to the new leaves are trained by one iteration
Baum-Welsh training on the adaptation data. The resulting models
are the measurementscs. Finally, MAPCR is applied for each mea-
surementcs. The only difference to the case of MAPCR without
applying PDTS is the presence of more leaves i.e. measurement. In
other words, we need to adapt more models.

8. SYSTEM OVERVIEW

We use a SCHMM system calculating every 10ms twelve mel-cepstrum
coefficients (MFCC) (and the energy) using cepstral mean subtrac-
tion. First and second order differential MFCCs plus the differential
energy are employed. For each stream a codebook is constructed
consisting of 256 and 32 (delta energy) Gaussian mixtures, respec-
tively. Hence, each stream is adapted, meaning that the adaptation
procedure is run four times for each state.
The model topology consists of 3-state state-tied left-to-right demi-
phones. Demiphones [12] can be thought of as triphones which are
cut in the middle giving a left and a right demiphone. For state ty-
ing we apply a binary decision tree to each state position but over all
source phonemes resulting in six trees. Thus, beside context ques-
tions also questions respective the central phoneme of a model are
asked. The phoneme sets for Slovenian and French consist of47
and43 phonemes, respectively. The questions for the decision tree
are of phonetic character and are derived from the IPA-chart.

9. THE ADAPTATION TASK

Starting point for the crosslingual model adaptation is a set of multi-
lingual speaker independent source models trained on Spanish, En-
glish and German data. Slovenian and French serve as target lan-
guages. For training and testing we apply SpeechDat-II fixed tele-
phone databases. The multilingual base system is trained on pho-
netically rich sentences of3000 speaker,1000 from each language.
For the crosslingual adaptation we use a model set comprising1500
tied source states.
For both target languages two different sized adaptation set are used.
One comprises20 and the other50 speakers. The adaptation sets are



balanced respective sex. They consist of phonetically rich sentences
containing170 and426 sentences in case of Slovenian, and169 and
422 sentences in case of French. The two independent test sets,50
women and50 men for each language, consist of phonetically rich
words mixed with application words. They comprise614 sentences
for Slovenian and670 sentences for French. The resulting gram-
mar, just a word list, exhibit a word based perplexity of372 and
445 for Slovenian and French, respectively.

10. EXPERIMENTS

The experiments carried out to test the proposed adaptation proce-
dure group into the ones with and the ones without applying PDTS.
Beside the reference results stemming from pure monolingual sys-
tems and systems with predicted but not adapted models, all other
results divide in two groups. One for the small,20 speaker, and
one for the big,50 speaker, adaptation set. Except for the monolin-
gual reference results all other outcomes are based on the use of the
same multilingual source tree comprising1500 leaves, i.e. a model
set of1500 tied states. In case of MLCR and MAPCR the number
of regression classes, i.e. sub-simplexes, was chosen to100. PLSA
was carried out on theBs, i.e. assuming equal probable source
states. After some initial testing the PLSA-order was fixed to25
for MLCR and to10 for MAPCR. During these tests we also fixed
the hyper parameters. Finally they were set toµ = 0.5 andη = 7.
All simulation results are reported by word error rates (WER). The
corresponding confidence intervals range from by ca.±2% WER
up to ca.±3.5% WER.

10.1. Experiments without applying PDTS

Tab. 1 summarise the results obtained for the tests without us-
ing PDTS. The MONO results refer to pure monolingual systems
trained with900 speakers. PRED and PRED-I1 state the results
when directly using the predicted source models and after retraining
them by one iteration Baum-Welsh training on the adaptation data.
MLLR, MLCR and MAPCR give the WERs after applying the cor-
responding adaptation technique. In case of MLLR the PRED-I1
models serve to initialise the MLLR training. In case of MLCR and
MAPCR the PRED-I1 models are the measurements as explained
in section 3 and 6.

Table 1. Tests not applying PDTS, WERs in[%].

Slovenian French

#Speaker 20 50 20 50

MONO 9.61 6.12
PRED 50.49 45.37

PRED-I1 26.71 20.68 27.91 22.84
MLLR 26.38 21.50 27.01 21.64
MLCR 32.41 32.08 31.19 31.79

MAPCR 20.03 18.89 22.84 19.40

When inspecting Tab. 1 one finds WERs of50.49% and45.37%
for the not adapted, solely predicted models (PRED). Though these
numbers are too bad for any reasonable application, they are in line
with analogue experiments reported in [2], and [3]. Comparing the
PRED with the PRED-I1 results it turns out that simple retraining
of the predicted models by one iteration Baum-Welsh training on
the adaptation data reduces the WER by ca.40%− 60%.

As expected and lined out in Section 1, MLLR does hardly help.
Though, up to1.20% improvement is obtained for French, in case
of Slovenian yet degradation of0.82% is observed. Hence, merely
adapting the common codebook, as done by MLLR, is barely a good
adaptation policy for SCHMMs.
Proceeding by inspecting the MLCR and MAPCR results one finds
that MLCR significantly worsens the situation. On the other hand,
MAPCR gives the best results, providing, respective the PRED-I1
case, improvements in WER of5.07% and6.68% for the small, and
1.79% and1.69% for the big adaptation set. The results for MLCR
and MAPCR show up, that directly assuming a good solution in
the sub-simplexes defined by the predicted source models, as in the
case of MLCR, is too simple. But, searching the solution between
the MLCR solution space and the PRED-I1 models, as done by
MAPCR, turns out to be very effective, resulting in the best adapted
models. Comparing the best adapted models with the monolingual
ones, one still finds a performance gap of ca.9% − 18%. We at-
tribute this behaviour, at least partly, to the crosslingual phonetic
context mismatch as lined out in Section 7.

10.2. Experiments applying PDTS

To investigate the influence of PDTS on the acoustic modelling a
second test series was carried out. Tab. 2 summarises the corre-
sponding test results. Beside the MAPCR results obtained with-
out PDTS, results when using PDTS without adaptation, PDTS-

Table 2. Tests applying PDTS, WERs in[%].

Slovenian French

#Speaker 20 50 20 50

MAPCR 20.03 18.89 22.84 19.40
PDTS-5 32.57 26.06 21.19 14.03
PDTS-10 26.71 20.36 19.40 12.39
PDTS-15 25.57 19.22 19.25 11.94

MAPCR-PDTS-5 28.50 23.94 18.21 14.33
MAPCR-PDTS-10 23.13 19.71 16.12 11.79
MAPCR-PDTS-15 21.01 18.40 16.27 11.79

5/10/15, and with adaptation, MAPCR-PDTS-5/10/15, are given.
In fact, the PDTS-5/10/15 models are the measurements needed for
MAPCR-PDTS-5/10/15, i.e. obtained by one iteration Baum-Welsh
training on the adaptation data. In both cases the numbers 5/10/15
refer to the stopping criterion for extending the tree by PDTS. They
give the minimum number of models which need to fall into a leaf.
As smaller this number as more additional leaves and thus contexts
are generated. But, as higher this number as more reliable are the
new, retrained PDTS-5/10/15 models.
We start our discussion of Tab. 2 with the French results. We find
that PDTS always outperforms MAPCR, and, expect of one case,
MAPCR-PDTS always outperforms PDTS. In case of MAPCR-
PDTS the final WERs are given by16.27% and 11.79%, corre-
sponding to an absolute reduction of the WER of6.55% and7.61%
respective simple MAPCR without PDTS. Interestingly, in case of
the small adaptation set the performance gain stems to more or less
equal parts form PDTS and MAPCR. In contrast, in case of the big
adaptation set the gain stems nearly completely from PDTS. This
observation underlines that adaptation is most efficient if little adap-
tation data is on hand. On the other hand, as more data is available
as more effective becomes simple retraining of the models.



The results also indicate that robust measurements are favoured over
an improved context modelling. Comparing the recognition perfor-
mances of Tab. 2 with the corresponding tree sizes, i.e. number of
leaves, see Tab. 3, it is obvious that smaller, more robust trees are

Table 3. Number of leaves after applying PDTS.

Slovenian French

#States 1500/1017 1500/696
#Speaker 20 50 20 50

PDTS-5 1884 2672 1890 2516
PDTS-10 1468 2118 1516 2112
PDTS-15 1260 1828 1315 1834

preferred over the big, highly specialised PDTS-5 trees.
Next we focus on Slovenian. When analysing Tab. 2 we conclude
that PDTS fails completely in that case. Running PDTS and retrain-
ing the models always results in models performing significantly
worse than the MAPCR models. Though, MAPCR is able to rem-
edy this outcome to some extend, a significant improvement over
the MAPCR case is never obtained.
It is not the first time that such behaviour is reported for PDTS. In
[13] the authors describe their attempt to port English and Span-
ish models to Indonesian. Though they do not report degradation,
PDTS did not lead to any improvement. As possible explanation
the authors doubt on the way PDTS adapted a decision tree. It is
argued that the most important splits of a decision tree happen near
to the tree’s root, whereas PDTS merely results in a refinement of
the leaves.
Also we believe that the bad PDTS performance for Slovenian is
related to the fact that PDTS develops on a decision tree which
was initially constructed for a different language. Considering that
Slovenian, as a Slavic language, belongs to a different language
group than any of the source languages whereas French as well as
Spanish are Romanic, one would expect that the source tree matches
better the French than the Slovenian acoustics. Though this is con-
firmed by the PRED results of Tab. 1, the#States-line of Tab.
3 indicates the opposite. With Slovenian using1017 of the origi-
nal 1500 leaves but French just696 it looks like Slovenian takes
better advantage of the source tree than French. This antagonism
may be interpreted in such a manner that predicting initial Slove-
nian models out of the decision tree yet consumes useless-proven
questions without improving the system performance. On the other
hand, the wasted questions are missing during PDTS resulting in a
badly adapted tree. We therefore conclude that PDTS has to be ap-
plied with caution. It is not guaranteed that it improves crosslingual
model performances. Further research is necessary to understand
its interaction with the decision tree it is based on.

11. SUMMARY

In this work we studied crosslingual acoustic model adaptation in
the context of a speech recognition system applying SCHMMs. We
lined out that a traditional technique as MLLR might be inadequate
for this task and introduced MLCR and MAPCR as new adaptation
techniques for SCHMMs. During evaluation both techniques were
tested by converting multilingual Spanish-English-German models
to Slovenian and to French. Analysing the test results MAPCR
turned out to be the most efficient method making more effective
use of limited adaptation data than the comparison methods.

The use of PDTS resulted ambivalent. Though greatly improving
the French outcomes, significant degradations were observed for
Slovenian. From where the bad PDST behaviour in the Slovenian
case stems from remains an open question. Though we suspect an
inadequate underlying decision tree, no clear final conclusion can
be drawn.
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