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Abstract 
In order to improve automatic recognition of English 
commands spoken by non-native speakers, we have modeled 
non-native pronunciation variation of Dutch, French and 
Italian. The results of lexical and acoustical modeling 
appeared to be source language and speaker dependent. 
Lexical modeling only resulted in a substantial improvement 
(of 35%) for the French speakers. Acoustic model adaptation 
halved the word error rates for the Italian speakers, whereas 
no improvements were found by lexical modeling of 
frequently observed Italian-accented non-native pronunciation 
variants. The performance for the Dutch speakers only slightly 
improved by lexical and acoustic modeling.   

1. Introduction 
Within the EU project Safesound we studied the possibilities 
of improving safety for ground and flight operations by the 
application of enhanced audio functions in the cockpit of an 
airplane. One of these enhanced audio functions is Direct 
Voice Input, achieved by means of an automatic speech 
recognition (ASR) system. In aviation, English is the lingua 
franca but it is not the native language of most of the pilots. 
Therefore, the speech recognition system should be able to 
cope with non-native pronunciations of speakers from a wide 
variety of language backgrounds. This paper describes a 
number of experiments in which we tried to improve 
recognition performence by modeling the accents of the non-
native pilots. 

2. Non-native pronunciation modeling in ASR 
In [1], [2] extensive overviews are given of approaches of 
modeling (mainly native) pronunciation variation. A 
distinction can be made between data-driven and knowledge-
based approaches. In data-driven studies the information on 
the pronuniciation variation is obtained from the data, 
whereas in knowledge-based studies, the information is 
obtained from sources that are already available, like 
pronunciation dictionaries and linguistic studies. In contrast 
to native pronunciation variation, non-native pronunciation is 
mainly modeled using data-driven approaches. The main 
reasons are probably that non-native pronunciation is 
extremely speaker-dependent and is affected both by the 
mother tongue of the non-native speaker (=source language) 
and by the language that the non-native is trying to speak 
(=target language).  

In [1], [2] also a distinction is made between modeling 
pronunciation at the level of the acoustic models, the lexicon 
and the language model. In the current study, we investigate 

the effectiveness of modeling non-native variation at the level 
of the acoustic and lexical level. Furthermore, we investigate 
whether the use of variants-specific priors in the the language 
model (grammar) can further improve the lexical modeling. 

2.1. Acoustic modeling of non-native accents 

The most obvious way of modeling non-native accents is to 
train acoustic models from scratch using non-native data [3] 
or to adapt the native models with non-native accented speech 
[4]. However, non-native speech material will not always be 
available. Therefore, it has been tried to adapt the acoustic 
models with speech from either the source or target language:  

• Acoustic models from the source language are used [5] 
• A mixture of models from both the source and target 

language are used [6],  
• The native acoustic models are adapted with speech from 

the source language[7]  
• Acoustic models are interpolated with adequate native 

models [8] or native and non-native models [9]. 

2.2. Lexical modeling of non-native pronunciations 

To a certain extent segmental non-native variation can be 
modeled by training context-dependent HMM models. 
However, it has been shown in [10] that some variation such 
as syllable deletion can not be captured in this way. The non-
native pronunciation variation can be obtained in a similar 
way as it is obtained for native pronunciation variation (see 
[1, 2]): 

• Knowledge-based: By using phonological rules which 
describes how the non-native pronunciation deviates from 
the native pronunciation for a source-target language pair 
(see e.g. [6], [11]). 

• Data-driven: By using data-driven rules [11] or manual 
phonetic transcriptions [12] of non-native accented speech, 
or by hypothesis testing, e.g. testing of vocalic substitution 
hypotheses [13]. Goronzky et al. [14] obtain hypotheses on 
non-native pronuniation variation based on non-native 
speech. 

In this study, a data-driven approach for modeling the non-
native pronunciation variation is applied.   

3. Method 

3.1. Recognition task and speech recognizer 

The speech recognition is part of a dialogue system in which 
the simulated avionics instruments react on the voice input. 
The recognition task is a small vocabulary (240 words) 
command and control task. Commands includes for instance: 



page selections, display changes and parameter settings. 
Examples of commands are: 

“HF1 two nine three five” 
“FMS flight plan departure page” 
“set cost index one hundred” 

A rule-based grammar (Java Speech Grammar Format [15]) is 
used to model the command structure. Loquendo ASR 6.0.2 
[16] software is used to perform the recognition experiments. 
Loquendo ASR uses a hybrid Hidden Markow Model (HMM) 
and  Artificial Neural Network (ANN) recognition system 
where each phonetic unit is described in terms of single or 
double state left-to-right automaton with self-loops. The 
acoustic models are based on a set of stationary context-
independent phones and diphone-transition coarticulation 
models [17]. Each 10 ms telephone bandwidth features 
including deratives are calculated; for more details, see [18]. 
The US English acoustic models are trained using the US 
English Macrophone database from LDC [19], consisting of 
200,00 utterances of 5,000 speakers from all regions of the 
US. Phonetic transcriptions are automatically obtained using a 
rule based language-dependent phonetic grapheme to 
phoneme converter. 

3.2. Recognition experiments 

3.2.1. Acoustic modeling 

For the baseline recognition experiments we measured 
recognition performance using the standard US and UK 
English models. Next, the US English acoustic models were 
adapted with non-native accented speech. The Italian 
accented speech from db2 was used in order to adapt the US 
English models to the Italian accent. To adapt the US English 
models to the Dutch accent, the Dutch speakers of db1b were 
used. A multi-speaker adaptation technique was used which is 
an enhanced version of Linear Input Network for Neural 
Networks (see [20]). 

3.2.2. Lexical modeling 

In order to obtain non-native pronunciation variants, manual 
phonetic transcriptions were made of db1b. The transcriptions 
were made by an experienced phonetician with a Dutch 
mother tongue. The task was to map the pronunciations to the 
sequence of US-English phones that closest matches the non-
native pronunciation. In earlier research on modeling of native 
pronunciation variation [21], several measures that might 
predict improvements in recognition results due to 
pronunciation modeling were investigated. It appeared that 
there exists a strong correlation between the absolute 
frequency of occurrence of a pronunciation rule and its 
contribution to the net improvement in recognition 
performance. Therefore, the absolute variant frequency (Fabs) 
is used as a criterion for variant selection. Fabs is defined as the 
variant count divided by total number of words in db1b. The 
threshold for Fabs was varied from 1% to 0.02%. Two testing 
conditions were applied:  

1) All variants have equal probability,  

2) Variants are assigned priors estimated from the 
frequency of occurrence in db1b. In order to obtain 

reliable prior estimates, only priors were used for 
words with a frequency of ten or more. 

3.2.3. Speech Material 

Our speech material was recorded in two different sessions.  
Each speaker had to read a number of commands in English. 
The commands were randomly generated with two different 
versions of the syntax, resulting in two databases: database 1 
(db1) and database 2 (db2) 

Db1 is divided in two independent test sets; db1a and db1b. 
Db1a is used for performing the recognition experiments, 
whereas db1b is used to obtain the non-native pronunciation 
variants. For acoustic model adaptation with the Dutch non-
native accent, the speech of the Dutch speakers from db1b are 
used. The Italian speakers of database 2 (db2) are used for 
acoustic model adaptation of the Italian non-native accent. No 
overlap in speakers exists between the three databases. The 
statistics of the two databases are given in Table 1. 

Table 1: Statistics of non-native speech databases 

 Native 
language #speakers #comm./  

speaker 
#words/ 
comm. 

Italian 4 100 6 
French 6 100 6 db1a 
Dutch 7 100 6 
Italian 4 100 6 
French 6 100 6 db1b 
Dutch 7 100 6 

db2 Italian 11 226 4 

4. Results 
Recognition performance is measured in terms of Word Error 
Rate (WER), which is defined as the total percentage of word 
substitutions, deletions and insertions. For each group of non-
native speakers, mean WERs are reported. For all the 
experiments a recognition lexicon is used containing all 
possible words that can be used in the command syntax (240 
words). 

4.1. Baseline performance 

Baseline recognition performance was measured using the US 
and UK English acoustic models. The results, which are 
summarized in Table 2, show that for all native languages 
optimal performance is obtained using the US English 
models. Furthermore, the WERs indicate that the amount of 
non-native pronunciation variation is largest for the French 
and Italian speakers. 

Table 2: Baseline WERs (db1a) 

Native language US UK 
Italian 7.1% 9.2% 
French 6.5% 8.0% 
Dutch 1.4% 2.4% 

 

4.2. Acoustic model adaptation 

The results in Table 3 show that the error rates are improved 
by acoustic model adaptation. The improvement for the Dutch 
speakers is small, whereas a significant improvement is 



obtained for the Italian speakers: the WERs are halved by 
using adapted models. However, the improvements due to 
acoustic model adaptation are speaker dependent; the relative 
WER reductions per speaker varies from 27-71%. These 
results are in line with the improvements found when HMM 
recognizers are adapted with non-native accented speech [5]. 
 
Table 3: WERs using baseline and adapted models 

Native 
language baseline  adapted 

Italian 7.1% 3.3% 
Dutch 1.4% 1.2% 

4.3. Lexical modeling 

In Table 4 the Phone Mismatch Rates (PMR) for the various 
source languages are reported. The PMR is defined as the 
percentage of substituted (S), inserted (I) and deleted (D) 
phones in the manually obtained phonetic transcriptions 
compared to the automatically derived phonetic 
transcriptions. The PMRs seems to be determined by a large 
number of substitutions. 

Table 4: PMRs for the manual vs. automatic 
transcriptions of  db1b 

Native 
language S D I PMR 

Italian 12.1% 2.6% 2.0% 16.6% 
French 13.3% 1.8% 1.3% 16.4% 
Dutch 13.4% 2.8% 0.4% 16.5% 

 

The most frequent non-native pronunciation mismatches as a 
percentage of the total PMR are shown in Table 5 (IPA 
notation is used [22]). In Table 5 , only percentages ≥ 3.0% 
are given; "-" means that the percentage is smaller than 3.0%.  

Table 5: Most frequent non-native pronunciation 
mismatches 

Rule Dutch Italian French 
/�/ � /�/ 6.3% 7.6% 19.0% 
/�/ � /�/ 5.1% 3.4% 6.7% 

/���/ � /��	/ 7.6% 7.1% 4.6% 
/
�/ � /��/ 4.1% 3.0% 4.2% 
/�/-deletion 5.4% 3.8% - 
/�/ � /�/ 11.3% - - 
/
/ � /�/ 5.1% - - 
/�/ � /�/ 4.2% - - 

/
�/ � /�/ 3.6% - - 
/�/-deletion - 7.0% - 
/�/ � /
�/ - 3.6% - 
/�/ � /
�/ - 3.4% - 
/�/ � /
�/ - 3.3% - 
/�/ � /�/ - 3.0% - 

/�/ � /�/ - - 4.1% 
 
It can be seen that for all of the non-native accents some 
common native variations were found (e.g. /�/ � /�/). Other 
variations are typically non-native variations, like vowel-

lengthening (e.g. /�/ � /�/). Some of the non-native 
variations are typically dependent on the native language, e.g. 
the voiced-unvoiced confusions (/
/ � /�/ and /�/ � /�/) for 
the Dutch speakers. 

4.3.1. Number of variants in decoder output 

In Figure 1, the percentage of variants counted in the decoder 
output is displayed as a function of Fabs. A variant is a 
pronunciation that is different than the automatically 
generated pronunciation. In going from left to right in Figure 
1, Fabs becomes smaller, meaning that the number of added 
variants  becomes higher. The percentages of variants are 
given as a percentage of the total number of correctly and 
incorrectly recognized words. It can be seen that in general the 
inclusion of more variants in the lexicon results in a higher 
percentage of variants that are recognized. For Fabs= 0.025%, 
the percentages of variants for the incorrect words are higher 
than for the correct words, which might indicate the number of 
errors that are solved becomes higher than the number of 
errors that are introduced. 
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Figure 1: Percentage of alternative variants counted in the 
decoder output as a function of Fabs 

4.3.2. Lexical modeling results per native language 

Figure 2 shows the mean WERs per source language as a 
function of the number of variants that has been added (the 
lower Fabs, the larger the number of added variants). For all 
native languages, the same general pattern is found: the more 
variants are added, the larger the improvement. However, 
when a large amount of variants is included, performance can 
actually deteriorate. This pattern has been found in other 
studies as well (e.g. [23]).  

The amount of improvement found due to lexical modeling are 
dependent on the native language: For the Italian and Dutch 
speakers, only small improvements are found. For the French 
speakers a large, significant reduction in WER of 2.3% (35% 
relative improvement) is obtained.  

Figure 2 also shows that using variant-specific priors only 
slightly influence recognition performance compared to using 
equal weights. 
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Figure 2: Lexical modeling results per native language 

4.3.3. Speaker dependent results 

Closer inspection of the recognition rates reveals that the 
results are speaker-dependent. For the Dutch speakers, only 
small changes in WERs are found. For the Italian speakers, the 
changes in mean WERs are mainly caused by the worst 
performing speaker. Figure 3 shows the speaker-dependent 
results for the French speakers. Figure 3 shows that the mean 
WER reduction pattern is reflected in the individual patterns 
of all French speakers, but the pattern is most prominent for 
the four worst performing speakers. For these speakers, WERs 
reductions of 30-45% relative are found. 
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Figure 3: Lexical modeling results for the individual French 
speakers. Each curve represents results for one speaker. 
 

5. Discussion 
An interesting question that arises from this study is why the 
French speakers benefit from lexical modeling, whereas this is 

not the case for the Italian and Dutch speakers. For the Dutch 
speakers, the result can be explained by the fact that less non-
native variation need to be modeled as the WERs are quit low. 
The results of acoustic modeling might indicate that for the 
Italian speakers, the acoustic differences deviate more from 
the US English pronunciation and can only be accurately 
modeled by acoustic model adaptation. Other factors that 
might play a role will be discussed below.  

Closely related to speaker-dependency is the generalizability 
of the non-native pronunciation variation. Is the variation 
found for a set of non-native speakers representative for other 
speakers with the same native language? For the results 
analyzed in this study, the answer is yes. The general rules as 
reported in Table 5 seem to be consistent among speakers. 
Furthermore, a self test (db1b) shows similar results as for the 
independent test set (db1a).  

Another explanation why the lexical modeling in this study is 
not always successful is related to the acoustic variability of 
the non-native variation. The PMRs in Table 4 show that the 
number of substitutions is much higher than the number of 
deletions and insertions. Modeling substitutions at the level of 
the lexicon is probably less adequate since the modeling units 
still deviates from the non-native pronunciation. Another 
factor that plays an important role is the complexity of the 
acoustic models. He et al. [24] showed that for modeling of 
non-native variation with existing models of the target 
language, highly complex models are less adequate than 
models with a moderate complexity. The explanation for this 
finding can be that there is a mismatch between the commonly 
used triphones used by natives and the triphones used by non-
natives. In this study, coarticulation is modeled in the 
diphone-transition models. The non-native pronunciation 
variants that are added to the lexicon contain diphone contexts 
that are rarely used by the non-natives or that do not match 
with the native coarticulations.  

Yet another, probably less important factor is that both native 
as non-native pronunciation processes are modeled in this 
study. For instance, the vowel reduction process /�/ � /�/ 
occurs often in native US English and was already implicitly 
modeled in the acoustic models. In this case, explicit modeling 
of the vowel reduction process can be counter productive. 

Other authors (e.g. [23] pp.118, [25], [26]) have pointed out 
that variant-specific priors need to be used in order to ensure 
recognition improvements for lexical modeling. The reason 
why the use of variant priors is not beneficial in our 
experiments is probably the recognition task: For the 
command & control application a final state grammar is used. 
The use of a strict grammar reduces lexical confusability 
compared to, for instance, a connected speech large 
vocabulary recognition task. 

In future work, we will combine lexical modeling and acoustic 
model adaptation. Goronzy [12] showed that lexical modeling 
of non-native pronunciation can further improve acoustic 
models that have been adapted with non-native accented 
speech. Furthermore, we plan to perform acoustic model 
adaptation with lower complexity models. 



6. Conclusions 
The results from this study show that both lexical and 
acoustic model adaptation with non-native accented can 
substantially improve recognition performance. However, the 
results are source language and speaker dependent. Using 
variant-specific priors in combination with lexical modeling 
does not further improve recognition performance. 
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