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Abstract 
We present a technique to train acoustic models for a target 
language using speech data from distinct source languages. In 
this approach, no native training data from the target language 
is required. The acoustic model candidates for each target-
language phoneme are automatically selected from a group of 
existing source languages by means of a combined phonetic-
phonological (CPP) metric, developed by incorporating 
statistically-derived phonetic and phonological distance 
information (Liu and Melnar, Interspeech 2005). The method 
assumes availability of sufficient native training data for the 
source languages and pronunciation lexica for both the target 
and source languages. Once the model candidates are 
determined for each target-language phoneme, the target 
HMMs are trained with the speech data from the source 
languages by means of a “silkie-hen-on-duck-eggs” strategy – 
namely the target phoneme model training is embedded in the 
source phoneme model training. The recognition performance 
of the resultant models is comparable to that of our 
previously-reported CPP-derived models built through multi-
mixture construction while the size of the current models is 
only a fraction of the previous models, depending on the 
number of HMM candidates used for each target phoneme. 
Utilizing the CPP metric, both versions of the models reach 
the performance of models generated by a data-driven 
acoustic-distance mapping approach, far above the general 
phoneme symbol-based cross-language transfer strategies. 

1. Introduction 
As ASR-enabled voice products are quickly gaining 
importance and popularity, building acoustic models 
efficiently and effectively for a new language becomes a 
required technology. However, acquiring sufficient native 
speech data can be costly and time consuming, and may 
become a bottleneck to model development. Although speech 
data is commercially available for many world languages in 
established markets, numerous voice products are increasingly 
targeting new markets that are often associated with resource-
poor languages. 

Researchers have long been striving to produce a practical 
cross-language solution to the problem of data unavailability.  
Efforts have largely been focused on borrowing resources 
from resource-rich languages to build acoustic models for a 
resource-poor language. Representative approaches are 
roughly divided into two categories, linguistic and acoustic. In 
the former, phonetic or phonological knowledge is used to 
select phonemes from the source languages as substitutes for 
the target-language phonemes. The selection procedure is 
normally determined either through IPA symbol commonality 
[1][2] or through a more in-depth consideration of 

phonological factors by a language expert [3]. On the other 
hand, the acoustic approach is data-driven, where some native 
data from the target language is required. The native data is 
either employed to further improve the performance of the 
models built with the linguistic approach, or it is used to train 
raw models, which in turn are used to locate the best candidate 
models in the source languages through acoustic distance 
measurement [3]. Generally, data-driven approaches have 
yielded cross-language models with superior performance 
relative to approaches using only knowledge-based phoneme 
mappings [4][5]. 

However, we previously demonstrated an automated 
linguistic approach with performance results comparable to 
acoustic approaches [6][7] that selects the best phoneme 
candidates efficiently and consistently without any access to 
target-language speech data. The candidate selection is based 
on a combined phonetic-phonological (CPP) metric which 
incorporates phonetic and phonological distance information. 
Obtaining inter-phoneme distance results solely based on 
statistically derived linguistic knowledge, the CPP metric is 
shown to be effective in characterizing similarity between 
phonemes across languages. The recognition performance of 
the target models built with the selected candidates reaches the 
performance level of acoustic approaches.  

One practical issue with the previous approach is the 
resulting large model size. The target models are built directly 
from the well-trained source models; specifically, each target 
HMM is a multimixture assembly of the corresponding 
candidate HMMs. Our experiments show that the performance 
of the target models increases with the number of source 
models used for each target phoneme. To obtain a superior 
performance, normally two or three candidates are used to 
assemble a target HMM; hence the size of the target HMMs 
may double or triple. This consequently increases the demand 
on memory space and also slows down the computation speed 
by the same magnitude. 

In this paper, we present a cross-language training 
technique by which the acoustic models selected for the target 
language are trained with existing speech data from the source 
languages. The first step of the method, CPP candidate 
selection for each target phoneme, is the same as the previous 
approach. In the model building step, the target HMMs are 
trained directly on the source data, and the size of the HMMs 
therefore stays constant. Our experiments show that model 
performance relative to the multimixture assembly method 
remains constant. 

In the next section, we review the CPP metric that is 
presented in detail in [6][7]. In section 3, we introduce the 
“silkie-hen-on-duck-eggs” cross-language model training 
method. Then, in section 4, we present the experiments and 
results of our cross-language transfer utilizing the CPP metric 



and silkie-hen-on-duck-eggs training strategy. We give our 
conclusions in section 5. 

2. A combined phonetic-phonological metric 

2.1. Weighted phonetic distance 

2.1.1. Quantitative representation of phonemes 

To measure phonetic distance between phonemes, each 
phoneme is quantitatively represented by a vector of a fixed 
set of binary-valued phonetic features that characterize 
articulatory characteristics, such as voicing, place of 
articulation, and manner of articulation [8][10]. The binary 
value indicates the presence or absence of an articulatory 
feature of the phoneme. A phoneme is denoted by )(ipl , 
where l (=1,…,L) represents the language that includes the 
phoneme, and i (=1,…,Il) represents the index of the phoneme 
in language l. Thus, the phoneme inventory of language l is 
 },,1|)({ ll Iiip �= . (1) 

A phoneme )(ipl  is represented by a vector of J features  
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where each ),( jivl  is a binary feature, lIi ,,1�= , 

Jj ,,1�= , Ll ,,1�= , and the superscript T denotes vector 
transposition. 

Two characteristics of the quantitative phonemic 
representation system are noted here. First, the feature set has 
internal structure whereby hierarchical relations are 
expressed. In such a system, the presence of one feature 
presupposes the presence of those hierarchically dominant 
features. This feature structure warrants that the feature-based 
phonetic distance consistently reflects realistic articulation 
contrast among phones. 

Second, corollary features are invented to account for 
allophonic variation. This innovation allows for feature 
contradiction between allophones corresponding to the same 
phoneme. For example, a phoneme /k/ may have two 
principal phonetic realizations depending on the absence or 
presence of aspiration (the feature ‘spread glottis’): [k] and 
[kh], respectively, in IPA notation [10]. The value of the 
feature ‘spread glottis’ is equal to 0 for the [k] allophone and 
1 for the [kh] allophone. To resolve this type of feature 
contradiction, corollary features are introduced to specify the 
occasional, allophonic realization of phonetic features. We 
use J=30 features in our system; these include 26 primary 
phonetic features and four corollary features. Features are 
chosen so that no two phonemes have identical feature 
vectors in any given language. 

2.1.2. Weighted phonetic distance 

A drawback of using binary systems directly is that they 
neglect the relative importance of individual features. 
Calculation of phonetic distance with binary vectors might 
give incorrect results [11][12][13]. To solve this problem, we 
use weights, or salience, on individual features. The value of a 
weight for a feature is derived from the frequency of the 
feature in the lexica of all the source and target languages. Let 

)]([ ipc ll  denote the occurrence count of a phoneme )(ipl  in 
a lexicon of language l, then the frequency of each feature j 
contributed by the phoneme )(ipl  is ),()]([ jivipc lll , and the 
frequency of each feature j contributed by all the phonemes in 

language l is � =
lI

i lll jivipc1 ),()]([ . The global weights derived 

from all the phonemes in the entire source and target 
languages are 
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where diag(vector) gives a diagonal matrix with elements of 
the vector as the diagonal entries. In the definition each 
language is treated equally. Thus the weights are not subject 
to the relative size of each language’s lexicon. 

We define the phonetic distance between phonemes )(ipl  

and )(kpt  in the form of a Manhattan distance, which is 
expressed as 
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  (5) 
where lIi ,,1�= , tIk ,,1�= , and the weights, given in a 

diagonal matrix )( jW , are dependent upon the feature 
identity j. 

2.2. Phonological distances 

Although phonetic features are very important in phoneme 
specification, a phoneme’s realization is ultimately dependent 
on the overall phonology of the language to which it belongs. 
For example, a phoneme identified as /i/ in a language that has 
five vowel phonemes, /i e a o u/, is more likely to correspond 
to an /i/ in another language that has the same vowel contrasts 
than, say, to some other language that has only a three-way 
contrast. Phoneme inventories, then, naturally provide 
constraints on subphonemic variance. Using this logic, 
inventory similarity between languages can assist in indicating 
allophonic similarity between phonemes already 
corresponding in feature specification. In this section, we 
define two distance metrics to characterize cross-language 
phonological similarity. 

2.2.1. Monophoneme distribution distance 

Monophoneme distribution distance characterizes the 
difference in lexical phoneme distribution between two 
languages. Specifically, the distribution, or normalized 
histogram, of the phonemes is obtained from a large lexicon of 
a language, with the probability in the distribution 
corresponding to the frequency of a phoneme in the lexicon. 
The monophoneme metric is a typological comparison that is 
based on two principal classes of information: (1) types of 
sounds and (2) frequencies of these sounds in the lexicon. The 
former class, types of sounds, is directly associated with 
phoneme inventory correspondence while the latter, phoneme 
frequency, concerns relative phoneme importance. Note that 
in order for the distribution to be an unbiased representative of 
a language, we derive it from a typical lexicon instead of a 
database. 

Because the phoneme inventories of the two languages to 
be compared may not be identical, we first need to define a 
combined inventory for them 

},,1|)({},,1|)({},,1|)({ ttllltlt IkkpIiipImmp ��� =∪===   
 (6) 



where )(mplt  is a phoneme in the combined inventory where 

there are total ltI  phonemes. 

The frequency of the phoneme )(mplt  in language l can 
be expressed as 
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where )]([ mpc ltl  is the occurrence count of phoneme 

)(mplt  in a lexicon of language l. If a phoneme )(mplt  does 
not exist in the language, its frequency would be zero. The 
difference of phoneme frequencies between the two languages 
can be calculated as  

)]([)]([)]([ mpmpmpd lttltlltlt ρρρ −=      ltIm ,,1 �=  (8) 

Then the monophoneme distribution distance between the 
target language t and source language l is 
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The distance is calculated between the target language and 
every one of the source languages. 

In view of the known differences in phonological 
characteristics between vowels and consonants, we make 
separate calculations for the vowel and consonant categories. 
Thus Eq. (9) becomes 
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where g=vowels or consonants. 

2.2.2. Biphoneme distribution distance 

The biphoneme distribution distance metric characterizes the 
difference in lexical distribution of phoneme pairs, or 
biphonemes, between two languages. It explicitly provides a 
biphoneme inventory, permissible phonotactic sequences, and 
phonotactic sequence importance. It also implicitly 
incorporates phoneme inventory and phonological complexity 
information. 

Similar to the monophoneme distribution distance, the 
distribution of biphonemes in a language is obtained based on 
the frequency of a biphoneme in a large lexicon. The 
biphoneme inventory for the target language t is expressed as 
 },,1|)({ tt Ikkq ′= �  (11) 
while the biphoneme inventory for a source language l is 
 },,1|)({ ll Iiiq ′= �  (12) 
Then the combined biphoneme inventory for the two 
languages to be compared is 

},,1|)({},,1|)({},,1|)({ ttllltlt IkkqIiiqInnq ′=∪′==′= ���

 (13) 
where )(nqlt  is a biphoneme in the combined inventory 

where there are total ltI ′  biphonemes. For a phoneme at the 

beginning or end of a word, )(nqlt  takes the format of 
“void+phoneme” or “phoneme+void”, respectively. 

The frequency of a biphoneme )(nqlt  in language l can 
be expressed as 
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where )]([ nqc ltl  is the occurrence count of biphoneme 

)(nqlt  in a lexicon of language l. The difference of 
biphoneme frequencies between the two languages is 
 )]([)]([)]([ nqnqnqd lttltlltlt γγγ −=   ltIn ′= ,,1 �  (15) 

Then the biphoneme distribution distance between the target 
language t and source language l is 
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Similarly, the distance is better characterized within the 
categories of vowels and consonants separately. In our 
algorithm we count each biphoneme twice, the first time as a 
left-contact biphoneme and second time as a right-contact 
biphoneme. Thus 

 ��
∈∈

+=
gnq

ltlt
gnq

ltlt
g
lt

ltlt

nqdnqdD
)( ofleft )( ofright 

)]([)]([ γγγ  (17) 

where g=vowels or consonants. 
Use of phonological metrics ensures that the overall model 

pool will have a bias toward a reduced set of phonologically 
similar languages. Because our final model pool is meant to 
represent a single language system, i.e., the target language, it 
is reasonable to expect that similarity in languages of the 
model pool provides consistency in the target HMM system 
[14]. 

2.3. A combined phonetic-phonological (CPP) metric 

Finally, a metric is developed by combining the above-
mentioned phonetic and phonological distances. Since the 
three distances are from different domains, normalization is 
necessary before combination. The normalization, aimed at 
extracting the relative ranking between candidate phonemes 
and languages, is a linear processing that scales the score 
range from each domain into the range [0 1]. 

The combined phonetic-phonological metric (CPP) is 
defined as 

N
g
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 (18) 
where ),( kiCPPlt  represents the distance between phoneme 

)(ipl  from language l and phoneme )(kpt  from language t, 
and both phonemes belong to the same phonological category 
g (vowels or consonants). The weights dα , ρα , and γα  

represent the relative importance of each quantity. We equate 
the overall importance of phonetics with that of phonology by 
using the weight values ( dα , ρα , γα )=(2,1,1). The symbol 

[�]N denotes that the quantity inside is linearly scaled into the 

range [0 1]. For g
ltDρ  and g

ltDγ , the original range is 

determined by scores of all the source languages. Their 
scaling is done once for a target language t. While for 

),( kidlt , we found that it is better to do scaling once for each 

target phoneme )(kpt , and the original range is determined 
by scores of a group of candidate phonemes that includes at 
least one phoneme from each source language. 

3. A “silkie-hen-on-duck-eggs” training 
method 

We employ the regular 3-state, left-right, multimixture, 
continuous-Gaussian HMMs for the acoustic models and 
assume that the models from all the source and target 
languages have the same topology. Once the top candidates 



are determined from the CPP metric for each target phoneme, 
the next step is to build the target HMMs using the candidate 
information. In our previous method [6], the candidate models 
are well trained with their native speech data. Each target 
HMM is constructed in the form of a multimixture model with 
the mixture components for a certain state adopted from the 
pdfs of the candidates corresponding to the same state. The 
original mean and variance values are maintained while the 
mixture weights are scaled down so that the new weights add 
up to one for each state. 

Normally the performance of the assembled target models 
increases with the number of candidates used. For example, 
the performance of models built for Spanish (the details of the 
experiment are given in the next section) is 70.09% WER with 
one candidate, 93.06% WER with two candidates, and 93.50% 
WER with three candidates, per target phoneme, respectively. 
However, the size of the target models increases drastically 
with the number of the candidates, which consequently results 
in greater computation load and memory requirement. 
Therefore, this model building method is principally suited for 
research stage development. The obvious advantage of 
building target models with ready-to-use source models is that 
the procedure is very fast in that it entirely circumvents model 
retraining. However, for implementation, the issue of size 
must necessarily be addressed. 

One immediate remedy to the size challenge is to merge 
the mixtures in close proximity. However, given the lack of 
native target-language data, it is impossible to tune and update 
the models through training, which is a necessary step after 
merging.  

Instead, we have developed a method of training the target 
models with data from just those source languages from which 
the models are selected, hereinafter “donor languages”. All the 
speech data from the donor languages is collectively referred 
to as mega data, and is used in training. The key to this 
method is the composition of a mega phoneme inventory. All 
the phoneme symbols of the donor languages are attached 
with an ID tag indicating the languages they belong to, except 
for those phonemes that have been selected as candidates for 
the target phonemes, which are tagged with the target-
language ID. The ID-tagged mega phoneme inventory (as 
illustrated in Fig. 1) includes all the phonemes from the donor 
languages and is used to retranscribe all the pronunciation 
lexica and phoneme transcriptions. Thus, for the mega data, 
we build a mega inventory, a mega lexicon, and a mega 
transcription set. 

The mega inventory is expressed as 
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where )()( kpip tl �′  means )(ipl′  is a selected candidate for 

the target phoneme )(kpt . Multiple candidates are 
permissible for a single target phoneme. As shown in Fig. 2, 
the target inventory is embedded as a subset in the mega 
inventory.  

Once the mega inventory, mega lexicon, and mega 
phoneme transcription set are created, any generic training 
strategy, such as Baum-Welch training and Viterbi training, 
can be employed naturally on the mega data in the same way 
as training a set of acoustic models for a single language. If 
we liken the model training to an egg-hatching procedure, the 
training of the embedded target models is analogous to a silkie 
hen hutching some duck eggs besides her own eggs. Hence we 
call the method a “silkie-hen-on-duck-eggs” strategy. 

 

 
 

 

4. Experiments 
We use 17 languages in the experiments testing the CPP 
approach to cross-language transfer: Italian, Canadian French, 
US English, Swedish, European Portuguese, Mandarin, Latin-
American Spanish, Japanese, Korean, Danish, German, 
Cantonese, British English, Parisian French, Brazilian 
Portuguese, Dutch, and Egyptian Arabic. For each language, a 
native monolingual model set is generated by training with its 
native speech data. The acoustic features are 39 regular 
MFCC features including cepstral, delta, and delta-delta. The 
databases include CallHome, EUROM, and SpeechDat, 
among others. The benchmark performance of the native 
models approximates 95% for most languages. In each of the 
following experiments, we first pick one language as the target 
language, leaving the remaining languages as candidate source 
languages. The CPP scores are then calculated for each target-
language phoneme and the top two candidate source-language 
phonemes are chosen. Their associated acoustic models are 
used for acoustic model construction. Experiments are 
performed on the following four target languages: Italian, 
Latin-American Spanish, European Portuguese, and Danish. 
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Figure 1: Tagging phoneme symbols with language ID. 
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Each recognition task includes about 3000 utterances of digit 
strings, command words, and sentences. 

4.1. Baselines 

Two benchmark results are used as baselines. Baseline #1 is 
the performance of the native monolingual, context-
independent models from each target language. 
 

Table 1: Performance of baseline models. 

Target 
Language 

Baseline #1 
(Native 
models) 

Baseline #2 
(Acoustic 
mapping) 

Spanish 94.49 88.61 
Italian 98.42 98.27 
Danish 94.36 72.95 
Portuguese 96.31 77.91 

 
Baseline #2 is the performance of a constructed model set 

for each target language. These models are built with the top 
two candidate models chosen from source languages based on 
their acoustic distance from the corresponding natively trained 
target model (i.e., Baseline #1 version). The Baseline #2 
models are built as multimixture assemblies. Hence, Baseline 
#2 provides a benchmark about the capacity of the source 
language models in replacement of the target language 
models. However, the Baseline #2 benchmark is not a 
theoretically strict upper bound for cross-language transfer 
because the distribution measurement in the acoustic space is 
probabilistic. We adopt the widely used Bhattacharyya metric 
for the distance measurement [15]. 

4.2. Experiments on cross-language models 

The first experiment is conducted on target models built in the 
form of multimixture assemblies. Based on the CPP scores, 
the top two candidate HMMs are used for each target 
phoneme. The results are given in the first column of Table 2. 
 

Table 2: Performance of the cross-language models. 

Target 
Language 

CPP-based 
(Assembled) 

CPP-based 
(Trained) 

Model 
size ratio 

Spanish 93.06 94.21 0.51 
Italian 98.52 98.01 0.51 
Danish 70.15 68.54 0.52 
Portuguese 72.74 73.43 0.50 

 
In the second set of experiments, target models are trained 

with a set of mega data using the silkie-hen-on-duck-eggs 
approach, where a distinct mega phoneme inventory and mega 
data set is constructed for each of the four target languages. 
Recall that for each target language, the mega data consists of 
the native speech data from the donor source languages, which 
are in turn determined by the mega inventory. That is, only 
source languages that donate HMMs for corresponding target-
language phonemes contribute to the mega data. As in the 
previous experiment set, the two top source-language 
candidates are selected for each target-language phoneme. The 
models are trained with the normal Baum-Welch method. The 
results are given in the second column of Table 2. In spite of 
using two candidates per target phoneme, the number of 
mixtures in each target HMM can be restored to the same 
level as the number of mixtures in a source HMM. Therefore, 

the size of the trained target models is half of the size of the 
assembled target models (see the third column of Table 2). As 
shown in Table 2, however, the performance of the models is 
not affected by the size reduction. 

4.3. Discussion 

Comparison of the results in Table 2 with the baseline results 
in Table 1 shows that the performance of cross-language 
models based on the CPP metric is equivalent overall to the 
performance of models constructed by an acoustic distance 
strategy, regardless of the way the cross-language models are 
generated. The performance of CPP-based cross-language 
models reaches the performance of the native models for 
Spanish and Italian, while it is far lower for the other three 
languages. We explain this difference by noting that neither 
Spanish nor Italian have phonemes that are unattested in the 
other languages in our dataset while Japanese, Danish, and 
Portuguese all contain phonemes that are absent in the source 
languages (see [7] for further discussion). 
 

5. Conclusions 
In this paper, we presented a cross-language training method, 
the “silkie-hen-on-duck-eggs” strategy, where target-language 
acoustic model training is embedded in source-language 
acoustic model training. The candidate phonemes are initially 
selected from source languages using the CPP metric, an 
automated, purely linguistic-based approach. The silkie-hen-
on-duck-eggs training technique replaces the previous cross-
language strategy where two or more source models are used 
directly (without retraining) for each target-language phoneme 
and achieve recognition results comparable to data-driven 
methods. The silkie-hen-on-duck-eggs strategy proves to be 
effective at building target-language models as small as 
natively trained models and achieving recognition 
performances as high as the much larger combination of source 
models. 
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