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Abstract
The development of automatic speech recognition systems

requires significant quantities of annotated acoustic data. In
South Africa, the large number of spoken languages hampers
such data collection efforts. Furthermore, code switching and
mixing are commonplace since most citizens speak two or more
languages fluently. As a result a considerable degree of pho-
netic cross pollination between languages can be expected. We
investigate whether it is possible to combine speech data from
different languages in order to improve the performance of a
speech recognition system in any one language. For our in-
vestigation we use recently collected Afrikaans, South African
English, Xhosa and Zulu speech databases. We extend the
decision-tree clustering process normally used to construct tied-
state hidden Markov models to allow the inclusion of language-
specific questions, and compare the performance of systems that
allow sharing between languages with those that do not. We find
that multilingual acoustic models obtained in this way show a
small but consistent improvement over separate-language sys-
tems when applied to Afrikaans and English, and to Xhosa
and Zulu. The improvement for the latter pair of languages is
greater, which is consistent with their larger degree of phonetic
similarity.

1. Introduction
Multilingual speech recognition is a particularly relevant chal-
lenge in South Africa, which has 11 official languages and
among whose population monolinguality is almost entirely ab-
sent. We study the four languages Afrikaans, English, Xhosa
and Zulu, which are spoken as a mother-tongue by 13.3%,
8.2%, 17.6% and 23.8% of the population respectively [1]. This
represents a balance between languages of European descent,
and indigenous African languages. Furthermore, a certain
amount of phonetically and orthographically annotated speech
data is available for these languages.

The first step in the development of speech recognition sys-
tems for a new language is normally the recording and anno-
tation of large quantities of spoken audio data. In general, the
more data is available, the better the performance of the sys-
tems. However, data gathering and especially annotation are
very expensive in terms of money and time.

It is in this light that we would like to determine whether
data from different languages can be combined in order to im-
prove the performance of a speech recognition system in any
single language. This involves determining phonetic similari-
ties between the languages, and exploiting these to determine
more robust and effective acoustic models.

In related work, Schultz and Waibel have tried to share the

data of 10 languages, each spoken in a different country [2, 3,
4]. Under these conditions, it has not been possible to improve
the performance of monolingual speech recognition systems by
means of additional data from another language. Kohler [5] and
Uebler [6] have come to similar conclusions.

We focus on languages spoken within the same country, and
hence related at least to some degree by the extensive phonetic
and lexical borrowing, sharing, and mixing that takes place in
a multilingual society. Furthermore, strong links exist between
certain groups of indigenous languages (such as the Nguni lan-
guage group), which may allow more fruitful sharing of data
that can be exploited in speech recognition applications [7].

2. Databases
We have based our experiments on the African Speech Technol-
ogy (AST) databases, which consist of recorded and annotated
speech collected over both mobile and fixed telephone networks
[8]. For their compilation, speakers were recruited from tar-
geted language groups and given a unique datasheet with items
designed to elicit a phonetically diverse mix of read and spon-
taneous speech. The datasheets included read items such as
isolated digits, as well as digit strings, money amounts, dates,
times, spellings and also phonetically-rich words and sentences.
Spontaneous items included references to gender, age, mother
tongue, place of residence and level of education.

The AST databases were collected in five different lan-
guages, as well as in a number of non-mother tongue variations.
In this work we have made use of the Afrikaans, English, Xhosa
and Zulu mother tongue databases.

Together with the recorded speech waveforms, both ortho-
graphic (word-level) and phonetic (phone-level) transcriptions
were available for each utterance. The orthographic transcrip-
tions were produced and validated by human transcribers. Ini-
tial phonetic transcriptions were obtained from the orthography
using grapheme-to-phoneme rules, except for English where a
pronunciation dictionary was used instead. These were subse-
quently corrected and validated manually by human experts.

2.1. Training and test sets

Each database was divided into a training and a test set. The
four training sets each contain between six and eleven hours of
audio data, as indicated in Table 1. Phone types refer to the
number of different phones that occur in the data, while phone
tokens indicate their total number. Note that a slightly lower
speech rate was observed for Xhosa and Zulu compared with
Afrikaans and English.

Each test set contains approximately 25 minutes of speech
data, as shown in Table 2. There was no speaker-overlap be-



tween the test and training sets, and each contained both male
and female speakers.

Database Speech No. of Phone Phone
name (hours) speakers types tokens

Afrikaans 6.18 234 84 180,904
English 6.02 271 73 167,986
Xhosa 6.98 219 107 177 843
Zulu 10.87 203 101 285,501

Table 1: Training sets for each database.

Database Speech No. of Phone
name (minutes) speakers tokens

Afrikaans 24.4 20 11 441
English 24.0 18 10 338
Xhosa 26.8 17 10 925

Zulu 27.1 16 11 008

Table 2: Test sets for each database.

A separate development set, consisting of approximately 15
minutes of speech from 10 speakers in each language was also
prepared. This data was used only in the optimisation of recog-
nition parameters, before final evaluation on the test-set. There
is no overlap between the development set and either the test or
training sets.

3. General experimental method
The HTK tools were used to develop and test recognition sys-
tems [9]. The speech audio data was parameterised as Mel-
frequency cepstral coefficients (MFCCs) and their first and sec-
ond differentials, with cepstral mean normalisation (CMN) ap-
plied on a per-utterance basis. From this parameterised training
set and its phonetic transcription, diagonal-covariance cross-
word triphone models with three states per model and eight
Gaussian mixtures per state were trained by embedded Baum-
Welch re-estimation and decision-tree state clustering [10].
Since decision-tree state clustering is central to the work we
present, it will be described shortly.

The process normally begins by pooling all context-
dependent phones found in the training corpus that have the
same basephone, effectively resulting in monophone models. A
set of linguistically-motivated questions is defined with which
these clusters can be split. Such questions may, for example, ask
whether the left context of a particular context-dependent phone
is a vowel, or whether the right context is a silence. The clusters
are subdivided repeatedly, at each iteration applying the ques-
tion that affords the largest improvement in training set likeli-
hood. The process ends either when this likelihood gain falls
below a certain threshold, or when the number of occurrences
remaining in a cluster becomes too small. Hence the cluster-
ing process results in a binary decision tree for each state of
each basephone. The leaves of this tree are clusters of context-
dependent phones whose training data must subsequently be
pooled.

A great advantage of this clustering method is that context-
dependent phones not encountered in the training data at all can
easily be synthesised by means of the decision trees that have
been determined for the corresponding basephone. This is im-

portant when using cross-word context dependent models, or
when the phone set is large or the training set small and hence
sparse.

Since the vocabularies in the AST databases vary widely
between languages, comparison of recognition performance
will be based on phoneme error rates, as is also proposed in
[2, 11]. All speech recognition experiments are performed using
a backoff bigram language model obtained for each language
from the training set phoneme transcriptions [12].

Database Bigram types Perplexity

Afrikaans 1420 11.84
English 1900 14.08

Xhosa 2003 12.72
Zulu 1886 12.57

Table 3: Bigram language model perplexities measured on cor-
responding test-sets.

Absolute discounting was used for the estimation of lan-
guage model probabilities [13]. Language model perplexities
are shown in Table 3. Word-insertion penalties and language
model scale factors were optimised on the development test-set.

4. Language-specific acoustic models
To serve as a baseline, a fully language-specific system was de-
veloped, that allows no sharing between languages. Model de-
velopment begins by pooling all triphones with the same base-
phone separately for each language. The decision tree cluster-
ing process then employs only questions relating to to the pho-
netic character of the left and the right context. The structure of
the resulting acoustic models is illustrated in Figure 1 for two
languages (Xhosa and Zulu) and a single triphone.
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Figure 1: Language-specific acoustic models.

Since no overlap is allowed between the triphones of differ-
ent languages, this baseline corresponds to a completely sepa-
rate set of acoustic models for each language.



5. Multilingual acoustic models
In order to obtain multilingual models, the state tying process
begins by pooling all triphones of all languages correspond-
ing to the same basephone. The set of decision-tree questions
now take into account not only the phonetic character of the
left or right context, but also the language of the basephone.
Two phonemes with the same IPA symbol but from different
languages can therefore be kept separate if there is a signifi-
cant acoustic difference, or can be merged if there is not. For
example, a pool of triphones with basephone [a] can be split
by a question asking whether the triphone is a Zulu triphone or
not. This allows tying across languages when the triphone states
are acoustically similar, and separate modelling of the same tri-
phone state for different languages when there are differences.

Zulu HMM for triphone [b]−[a]+[d]

22
a

33

23

Xhosa HMM for triphone [b]−[a]+[d]

S SS2 31

a
11

a

a a
22

23

33

a
12

S SS2 31

a
11

a
12

a

a

Figure 2: Multilingual acoustic models.

The structure of such multilingual acoustic model set is
shown in Figure 2. Here the centre state of the triphone
[b]-[a]+[d] is tied, but the first and last states are modelled sep-
arately for each language. In our experiments, the transition
probabilities of all triphones with the same basephone were tied,
regardless of language.

6. Results
We have applied the acoustic modelling approaches described
in Sections 4 and 5 first to the combination of Afrikaans and
English, and then to the combination of Xhosa and Zulu. Since
the optimal number of parameters for the acoustic models was
not known, several sets of HMMs were produced by varying
the likelihood-improvement threshold used during decision-tree
clustering, as described in Section 3. Decision-tree clustering
was carried out using HMM sets with single-mixture Gaussian
densities per state. Clustering was followed by five iterations
of embedded Baum-Welch reestimation. The number of mix-
tures per state was then gradually increased to eight, each such
increase being followed by a further five iterations of embed-
ded training. The performance, in terms of phone accuracy,
of the final 8-mixture HMM sets for the Afrikaans/English and

the Xhosa/Zulu combinations are shown in Figures 3 and 4. In
each case, a single curve indicating the average accuracy over
both language’s test-sets is shown, and the number of states in
the language-specific systems was taken to be the sum of the
number of states in each component language-specific HMM
set. The number of states in the multilingual system is the total
number of unique states remaining after decision-tree cluster-
ing, and hence takes cross-language sharing into account.
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Figure 3: Phone accuracies of language-specific and multilin-
gual systems for Afrikaans and English as a function of the total
number of distinct HMM states.
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Figure 4: Phone accuracies of language-specific and multilin-
gual systems for Xhosa and Zulu as a function of the total num-
ber of distinct HMM states.

7. Discussion and conclusions
It is evident from Figures 3 and 4 that the multilingual sys-
tems achieved performance improvements for both the En-
glish/Afrikaans and the Xhosa/Zulu combinations. However,
the improvement is greater and achieved over a a larger range of
HMM set sizes for Xhosa and Zulu. We believe that this may be
ascribed to the much greater phonetic similarity between the lat-
ter pair of languages, which both belong to the Nguni language



group. Figures 5 and 6 illustrate a measure of this similarity
for Afrikaans and English, and for Xhosa and Zulu respectively.
The graphs show the extent to which the most frequent training-
set triphones cover the test-set triphones of each language.
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Figure 5: Proportion of triphones in Afrikaans and English test
sets covered by the most frequent triphones in the Afrikaans and
English training sets.
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Figure 6: Proportion of triphones in Xhosa and Zulu test sets
covered by the most frequent triphones in the Xhosa and Zulu
training sets.

The best coverage of test-set triphones is in every case
achieved by the corresponding language itself. However from
Figure 5 we see that the cross-language triphone coverages for
Afrikaans and English are below 30%, while these figure ex-
ceed 80% for Xhosa and Zulu. In the light of the small phonetic
commonality between Afrikaans and English, we believe even
the small improvement in phone recognition accuracy achieved
by the Afrikaans/English multilingual model to be promising.

8. Summary and conclusions
We have demonstrated that decision tree state clustering can be
employed to obtain multilingual acoustic models by allowing

sharing between basephones of different languages and intro-
ducing decision tree questions that relate to the language of a
particular basephone. This mode of clustering was used to com-
bine Afrikaans and English, as well as Xhosa and Zulu acoustic
models. In both cases, improvements over separate-language
systems were observed. Furthermore, this improvement was
greater for the Xhosa/Zulu combination, which agrees with the
empirically-observed greater phonetic similarity between these
languages.
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