
Multilingual Data Configurable Text-to-Speech System for Embedded
Devices

Kimmo Pärssinen & Marko Moberg

Nokia Technology Platforms
Tampere, Finland

{kimmo.parssinen; marko.moberg}@nokia.com

Abstract
In this paper a low footprint multilingual text-to-speech (ML-
TTS) framework is presented. The system is a part of a
speaker independent name dialing system that has been
introduced in Nokia Series 60 mobile phones. In the ML-TTS
systems that are based on the Klatt88 engine there usually
exist sets of language specific rules that are used to modify
the speech synthesis parameters. Usually, the size of the
program code due to the language specific rules becomes
large when the number of languages increases. In addition,
adding TTS support for a new language is not so easy when
the TTS rules are implemented as program code. The
development work would require the modifications of the
source code, which is always prone to errors and time
consuming. The paper presents a novel scheme that both
alleviates the memory problems and also makes the language
development easier compared to the typical existing
solutions. In this framework the language dependent TTS
rules are implemented as a scripting language that is stored in
text files, one file per each language. The files are converted
into a binary form and the rules therefore are implemented as
data. With the approach, only the data of the active language
needs to be kept in memory and typically the size of a single
data file remains small. During synthesis an interpreter is
used to process the rules and modify the synthesis parameters
accordingly. Moreover, adding TTS support for a new
language involves writing the new set of language specific
rules and ideally no modifications to the TTS engine code are
needed. In addition to the language specific rules, all
language dependent information, such as the prosodic model,
is stored into the binary file i.e. the language package. Also
due to the introduction of the language packages, the TTS
engine can be configured to any desired set of languages
simply by preparing and providing the associated language
packages.

1. Introduction
Development of a TTS system is an interdisciplinary effort. It
requires knowledge about human speech production and
languages being developed. The actual implementation of a
fully functional system, on the other hand, requires good
software skills. It is often difficult to find a single person to
master all the areas of TTS development. Instead, the experts
of various fields must work together. Especially the
development of multiple languages tends to require linguistic
knowledge that can only be acquired by consulting the
experts who are familiar with the given language. Therefore it
is necessary to be able to separate the language creation
process from the actual TTS engine development. This

becomes even more evident when the TTS engine needs to
support multiple languages at the same time.

In the low-end ML-TTS systems based on the Klatt88
engine, there are a number of language specific rules that
operate on the synthesis parameters [1][2][3]. These language
specific rules are usually implemented as program code.
However, such an approach has several drawbacks. Firstly,
the size of the program code increases with the number of
supported languages. Therefore, the size of the random access
memory (RAM) that is needed for running a ML-TTS engine
becomes large. Secondly, the rules need to be compiled and
linked together with the rest of the software before the
synthesis output can be obtained and evaluated. Thirdly, the
language development requires a good knowledge of the
programming language and offers many unrestricted ways of
implementing the rules. The excessive “freedom” may result
in a complex and developer specific implementation of the
language rules.

Some of these shortcomings can be alleviated with
dynamically linked libraries (DLLs). In such implementation,
the language specific TTS rules are implemented as one DLL
per language. This approach allows the loading of languages
to the RAM memory just when they are needed instead of
keeping all the languages of a ML-TTS system in the memory
at once. The problem is, however, that the DLLs would still
need to be stored on ROM or FLASH memory. The total size
of the DLLs would still be large while the size of the program
code executed in the random access memory (RAM) would
be reduced. The use of DLLs may also separate the
development of the synthesizer engine software and language
rules. Modification of language specific rule DLLs does not
require recompilation and linking of the main synthesis
engine.

The DLL approach does not solve the issues with the
expressiveness of the programming language and can not
produce platform independent sets of language rules. The
memory footprint is also larger than necessary due to some
code that is needed in all the DLLs. Some restrictions in
linking and in memory configuration may also apply since the
DLLs contain executable code.

This paper presents an alternative, multilingual low
footprint TTS system architecture that separates the synthesis
engine and language rules into separate modules. Languages
are described completely in language specific data files
making the actual synthesis engine language independent.
Similar kind of approaches to TTS system design are for
example the SVOX TTS system described in [4], ETI
Eloquence and its delta language in [5] and [6], and Festival
synthesis system presented in [7] and [8]. Our approach aims
to offer true multilingualism with lower footprint utilizing the

properties of short utterances in limited domain synthesis with
unlimited vocabulary.

2. TTS System Architecture
The TTS system consists of a completely language
independent engine and a language specific data that is loaded
into memory during synthesis. The top-level system diagram
showing the main functional modules is presented in Figure 1.
The text-to-phoneme (TTP) module will not be described in
detail in this paper.

TTP

Interpreter

Prosody

Klatt88

CARTs

Rules

Parameters

TTS engine

Data

Figure 1: Block diagram of the TTS system.

The synthesizer engine includes the following data
configurable and language independent modules: The TTP
module, a prosody module, a rule processing module and an
actual formant synthesizer (Klatt88). The language data
consists of e.g. lookup-tables for TTP, prosody parameters for
prosody creation, and phoneme parameters and language
specific rules to modify them.

The prosody module uses CARTs (Classification And
Regression Trees), which have been encoded into a binary
format [9]. The trees have been automatically generated and
do not require continuous tuning [7][8]. This paper
concentrates mainly on the interpreter module and on the
rules that relate to it.

3. Language Specific Rules

3.1. Speech synthesis control data description

In the final system the control data is stored into a language
dependent and general data packages that are loaded into the
system memory during speech synthesis. The language
dependent data consists of the following data types:

1. CARTs to predict syllable boundaries, syllable accent,

phoneme or segment durations and CARTs to predict the
pitch in the beginning, in the middle and at the end of the
syllable. Instead of CARTs, tonal languages use pitch
templates for each given tone.

2. Klatt88 parameter table to determine Klatt parameters
(e.g. formants, bandwidths, gains, spectral tilt) as
described in [2] and [10], and phoneme attributes (type,

manner, and place for consonants, rounding, frontness,
height and length for vowels) for each phoneme of a
given language [11].

3. Phoneme sequence rules to perform context dependent
phoneme modifications (remove, replace, add), adding
aspiration and short pauses into the phoneme sequence to
be synthesized. The durations of the phonemes can also
be altered.

4. Phoneme class and context dependent rules to modify the
Klatt88 parameter values and implement co-articulation.
These are split into the following rules: phoneme type
rules, phoneme manner rules, previous context dependent
rules, next context dependent rules to modify the formant
synthesizer parameters. The modification is carried out
using specific values and ramps as shown in Figure 2.

start
ramp

end
ramp

target

start
value end

value

value of
parameter x

time

Label: /f/
Type: fricative
Position: 1st

Label: /o/
Type: vowel
Position: middle

Figure 2: Visualization of ramps and values which can
be modified by the rules.

The figure presents the three distinctive sections of a
single Klatt parameter trajectory of a phoneme /f/: 1) start
ramp, 2) steady-state target, and 3) end ramp. The ramps
and the values can be defined and modified in a similar
manner for each Klatt parameter.

The general data consists of phoneme manner and type rules
that are in common with all the languages. It is also possible
to store phoneme and language mapping rules into this data
package.

3.2. Syntax of the Rules

The phoneme sequence and phoneme level rules are first
written using a specific scripting language and then parsed
into a tree like data structure. A part of the simple informal
top down BNF type of grammar for the rules is given in
Figure 3 [12]. The rule description language consists of three
different types of rule nodes (conditions). The nodes can
contain questions and target data. The node types are IF,
ELIF and ELSE and their functionality and properties are
more or less similar to those found in e.g. C. IF and ELIF
nodes always contain a question/condition that is tested. The
questions can be targeted to the phoneme between indices [-
3,3] using relatives PPP, PP, PREV, CUR, NEXT, NN, and
NNN, where the current phoneme has the index zero.

If the condition is found to be true possible target
functions and operations specified in the target data field are

called to modify the phoneme sequence and/or phoneme’s
Klatt parameters. ELSE node differs from IF and ELIF so that
it only contains target data and in this case the target data is
not optional.

The logicals (AND, OR) allow the testing of several
conditions in one question node. The node can have multiple
occurrences of both ANDs and ORs thus providing a
powerful way of expressing complex questions.

RULE ::= [NODE]+

NODE ::= NODETYPE:
QUESTION[:QUESTION:LOGICAL]*

[NODEDATA]*

[NODE]*

NODETYPE ::= "IF"|"ELIF"|"ELSE"

QUESTION ::= RELATION"|"RELATIVE"|"
FEATURE"|"VALUE

NODEDATA ::= TARGETS : RELATIVE
[OPERANDS | NUMBER] [OPERANDS |
NUMBER]*

RELATION ::= "IS"|"NEQUAL"|"GREATER"|
"LESS"

RELATIVE ::= "PPP"|"PP"|"PREV"|
"CUR"|"NEXT"|"NN"|"NNN"

FEATURE ::= "LABEL"|"TYPE"|"MANNER"
|"PLACE"|"LENGTH"|"HEIGHT"|
"FRONTNESS"|
"POSITION_IN_THE_SEQUENCE"|
"KLATT_PARAMETER"|…

VALUE ::= PHONEMECLASSES|STRESS|
BOOLEAN|KLATTIND|NUMBER|PHONEMELABEL|…

TARGETS ::= "START_RAMP"|"END_RAMP"|
"START_VAL"|"END_VAL"|
"MODIFY_DURATION"|"SET_DURATION"|
"PHONEME_CHANGE"|"ADD_ASPIRATION"|…

OPERANDS ::= "Target function specific
values and identifiers"

LOGICALS ::= "AND"|"OR"

Figure 3: Syntax of the synthesis rule language.

An example illustrating how the rules are used can be found
in Figure 4. The first IF node checks whether the manner of
the current phoneme is plosive. In case the condition matches,
the second nested IF node is evaluated. If the current
phoneme label is "b", the actions are taken to modify the
ramps and values (see also Figure 2) using the specified target
functions with given arguments.

The rule framework does not set any restrictions on the
number of matching conditions. If the conditions are not
mutually exclusive there might be several rules affecting the

same set of parameters. In such cases, the succeeding settings
overwrite the preceding ones. This property must be taken
into account when designing the rules. For example, the
general rules should be applied before the more specific ones.
 IF:
{
 (
 IS|CUR|MANNER|PLOSIVE
)
 IF:
 {
 (
 IS|CUR|LABEL|"b"
 START_VAL_ABS:CUR
 AV 30
 START_RAMP:CUR
 AV 40
 END_VAL:CUR
 AV 80 F1 80 F2 80 F3 80
)
 }
}

Figure 4: Extract from the Finnish phoneme manner
based rules

3.3. Coding and Applying the Rules

Given that the language dependent TTS rules are stored in a
text file for a single language, the text file needs to be
converted into a binary data file that can be interpreted with
the computer program. The idea is that each variable,
condition, operation, and operand described in the grammar
of the rules is enumerated and converted into the numerical
representation according to the enumeration list. During
synthesis the binary file is loaded and the synthesizer’s data
structures are initialized according to the data package. An
interpreter performs the operations specified in the rules. The
interpreter scans trough a phoneme sequence and checks if
the condition of a rule matches. If the condition matches,
“true” is pushed to stack that holds the values of the
conditions. Otherwise “false” is pushed to the stack. When a
logical operator is met in the condition field of the rule, the
stack is evaluated and the final value is stored again on top of
the stack. Finally, when the conditions have been met, the
correct modifications to the Klatt88 parameters are done by
calling the enumerated target functions with given parameters
that are stored in the node data of the rule.

3.4. Configuration of the TTS System

The TTS system presented can be configured for the set of
target languages by preparing the TTS rules and other
language dependent information and compiling those into the
binary language package. Each package needs to be listed in a
configuration file that determines which languages are
supported. The configuration is composed of the general,
language independent data package, and the language
dependent data packages. The general data package stores the
TTS rules that are in common with all the languages. The
language dependent data packages include all the language
dependent information. When the language configuration
changes the configuration file needs to be updated
accordingly. Ideally, there is no need to change the

implementation of the TTS engine when the set of TTS
languages changes.

4. Development Process
The development of a TTS language requires certain steps,
which can be partially automated. The training of the prosody
model is an automated process that is usually carried out
once. The definition of phoneme parameters and language
specific transition rules require manual work and several
rounds of iteration.

CARTs were used to encode and predict the location of
the syllable boundary, syllable stress and, in case of the
CART based intonation also syllable pitch. The trees were
automatically trained using a variety of different level
features extracted from the annotated training set. For tonal
languages, pitch templates were used to model the intonation.
These templates were hand tuned by a native speaker. The
parameter driven Klatt88 synthesis engine uses a set of values
to generate each frame of synthetic speech. The current
implementation has 39 modifiable parameters associated with
each different speech sound i.e. phoneme. The phonemes
usually differ between languages so that there needs to be
separate phoneme sets for each given language. The back end
of the synthesis system uses those phoneme parameters and
modifies them according to some context dependent rules that
were described in section 3. Since the development process of
the rules is highly iterative by nature a graphical user
interface was created to speed up the rule development. It
provides an easy access for creating, converting and testing
the synthesis rules in practice. The system is described in
more detail in [13].

The system also provides a module to create mappings
between languages or, in practice, between different set of
phonemes. This mapping module provides the rules for
presenting the sounds of the source language with the given
set of phonemes of the target language. Since the sounds of
the source language are presented using the phonemes of the
target language through applying a specific set of mapping
rules, the languages should be relatively similar both in the
prosodic and the phonetic sense. The goal of the phoneme
mapping is to use the phonemes of the target language to
create a sequence of phonemes that would sound as close to
the original source language as possible. This method is
described in [14] and referred to as language morphing.

5. Results
The memory requirements of the language specific parts of
the DLL and the rule based approach are presented in Table
1. The same functionality i.e. the same set of language rules
was implemented using both the DLLs and the rules script
language. The DLL sizes were obtained using a GNU
compiler with size optimizations. Strip was used to remove
their symbol tables to make the binaries more compact. The
size of the rule interpreter is approximately 50 kB, which
need to be taken into account when comparing the figures
presented in the table. For example, language specific
processing in a monolingual system for Finnish would require
45 kB as DLL implementation and 63.3 kB (13.3 kB + 50 kB)
as rules. However, a multilingual system supporting Finnish,
UK English, German and French would take 196.6 kB as
DLL but only 108.8 kB as rules including the interpreter.

Table 1: List of TTS languages and their sizes.

Language DLL size
(kB)

Rule size
(kB)

Brazilian Portuguese 60.9 14.3
Canadian French 55.2 16.6
Cantonese 42.0 14.3
Czech 27.1 11.7
Finnish 45.0 13.3
French 48.7 14.1
German 49.9 15.4
Greek 48.8 11.8
Italian 57.8 12.0
Mandarin 49.1 14.6
Portuguese 48.0 13.3
Russian 35.6 17.4
Spanish 60.3 13.6
Swedish 34.3 16.4
Taiwanese 49.1 14.6
UK English 53.0 16.0
US English 53.9 16.6
US Spanish 60.7 13.9

The average sizes of a language specific DLL and a language
specific rule file are approximately 49 kB and 15 kB,
respectively. The memory reduction of a language specific
data/program code was 69% in the average.

6. Conclusion
With the structure and implementation of the TTS engine
described in this paper the TTS system can be configured to
any desired set of languages ideally without modifications to
the engine code. The configuration takes place by preparing
the language specific rules and compiling those together with
the rest of the language dependent information into the
language specific packages. The language dependent
packages are listed in the configuration file that is parsed by
the engine code. By changing the configuration file, the TTS
engine can be configured for any set of target languages.
Adding new TTS languages is also simple. A language
package is compiled from the rule files of the new language
and the configuration file is updated accordingly.

In addition to the easier configuration and simplified
language development, the advantages include reduced RAM
and ROM/FLASH memory footprints. Since there is no
longer language dependent code, the size of the executable is
significantly reduced. It was also shown that the TTS rules
can be represented in a more compact form using the new
implementation. Therefore both the size of the executable
code and the size of the language data are reduced. The
amount of saved memory in the rule based system increases
with the number of supported languages. Another benefit is
that when the languages are described as data they are
platform independent thus making it easier to support
multiple hardware configurations and operating systems.

7. References
[1] Keller, E. (ed.), Fundamentals of speech synthesis and

speech recognition, John Wiley & Sons Ltd, West
Sussex, England, 1994, pp. 23-40.

[2] Klatt, D. H., “Software for a cascade/parallel formant
synthesizer”, J. Acoust. Soc. Amer., 67(3) , pp. 971-995,
1980.

[3] Allen, J., Hunnicutt, S. M. and Klatt, D., From text to
speech: The MITalk system, Cambridge University Press,
Cambridge, 1987.

[4] SVOX Ag, SVOX Technical White Paper,
http://www.svox.com, 2003, pp. 4-5.

[5] Hertz, S. R., “The delta programming language: An
integrated approach to non-linear phonology, phonetics
and speech synthesis”, Papers in Laboratory Phonology
I, Cambridge University Press, 1990.

[6] Hertz, S. R., Younes, R. J. and Zinovieva N., “Language-
Universal and Language-Specific components in the
Multi-Language ETI-Eloquence Text-To-Speech
System”, In Proceedings of XIV International Congress
of Phonetic Sciences, Vol 3, pp. 2283-2286, San
Francisco, 1999.

[7] Taylor, P., Black, A. and Caley, R., The Architecture of
the Festival Speech Synthesis System, In Proceedings of
the 3rd ESCA Workshop on Speech Synthesis, Jenolan
Caves, Australia, pp. 147-151, 1998.

[8] Black, A., Taylor, P. and Caley, R., The festival speech
synthesis system, system documentation, Centre for
Speech Technology Research, University of Edinburgh,
1999.

[9] Breiman, L., Friedman, J. H., Olshen, R. A. and Stone, C.
J., Classification and Regression Trees, Wadsworth Inc.,
Belmont, CA, USA, 1984.

[10] Klatt, D. H. and Klatt, L. C. “Analysis, synthesis, and
perception of voice quality variations among female and
male talkers”, J. Acoust. Soc. Amer., 87(2), pp. 820-857,
1990.

[11] Ball, M. J. and Rahilly J., Phonetics, the science of
speech. Oxford University Press Inc., New York, USA,
1999, pp. 40-59, 85-91.

[12] “Augmented BNF for Syntax Specifications: ABNF”,
http://www.ietf.org/rfc/rfc2234.txt

[13] Moberg, M. and Pärssinen, K., “Integrated Development
Environment for Multilingual Data Configurable
Synthesis System”, In Proceedings of International
Conference of Speech and Computer 2005, Patras,
Greece, pp. 155-158, 2005.

[14] Moberg, M., Pärssinen, K. and Iso-Sipilä, J., “Cross-
Lingual Phoneme mapping for Multilingual Synthesis
Systems”, In Proceedings of ICSLP 2004, Jeju, Korea,
2004.

