
Is it possible to train a speech recognition system on text only?

Enrico Rubagotti
UCD School of Computer Science and Informatics

UCD, Dublin, Ireland
enrico.rubagotti@ucd.ie

Abstract

According to speech recognition literature, one cause of
recognition error is the difference in training and testing
conditions. One cause of this is the use of speakers with
different accents in training and testing. This is because, in
the stochastic and deterministic approaches, the system is
trained on pairs of acoustic signal- linguistic units. This paper
describes the development of a training system that employs
only graphemes and studies the feasibility of a model that
employs the speech signal, a bigram model, frequencies of
four grams and a distance measure of a text from a specific
language to recognize speech. This system should be
independent of variations in pronunciation and employable in
languages for which a corpus has not yet been developed. A
model was specified in the class of shallow languages and an
experiment was carried out using a phonotypical transcription
in Italian with a 22% WER. The input of the system was not
the acoustic signal but phonemes to reduce the computational
complexity in this preliminary phase. The algorithm
employed in the test maps from phonemes to graphemes
using a map that dynamically changes to minimise the
distance of the output from the expected language. The
difference between conventional phoneme parsing and our
method is that in the conventional method the mapping
phoneme grapheme is given before the recognition procedure,
whereas in our method the map that is chosen is the one that
minimises the distance between the output and the expected
language.

1. Introduction

In speech recognition, the different accents used in training
and testing constitute a significant cause of error. The WER
of actual speech recognition system is influenced by the
difference between training and testing conditions (e.g. [1]
[2:42] [3:28]). The standard speech recognition model
[4:109-126][5:9] [3] deals with the following input:

• a speech signal;
• a language model;
• parameters estimated on a pairs acoustic signal-

linguistic unit from a training corpus.
The corpus contains pairs acoustic signal linguistic unit that
will match some speakers and not others. It is the main
hypothesis of this paper that avoiding the use of the corpus to
estimate the parameters will equalize training and testing
conditions. This paper tests the feasibility of a model that
deals with the following input:

• a string of phonemes;

• statistical information on the graphemes output.
In this case the system is trained on text and tested on
phonemes. The text used for the training is not the text
corresponding to the string of phonemes. To reduce the
computational complexity we substituted the acoustic signal
by a string of phonemes and, as a consequence, only one
small part of the speech recognition task is tackled. The
experiment is done under the assumption that if simplifying
the conditions does not work (using phonemes instead of the
acoustic signal) it will not work in more complex conditions
(using the acoustic signal). If it works using phonemes we
will develop a system that use the acoustic signal as the
input, otherwise this model will be rejected. From this paper
it should be possible to draw the following conclusions:

• The WER in this model is constant because training
and testing conditions do not differ;

• The WER in this model is not constant, so the
model does not equalise training and testing
conditions.

Speech recognition is defined as mapping between a digital
description of the acoustic signal and a sequence of words.
One definition is:
“The ASR problem consists of finding the sequence of words
W associated to a given acoustic sequence. In mathematical
terms, recognition is a function” M “that maps a given X
belonging to the set of the whole acoustic sequences X to a
W that is included in the set w “. [5:8] In the class of shallow
languages there is a one-to-one mapping of phonemes to
graphemes and for this reason Italian was employed in the
experiment [6]. In the next section the concept of shallowness
of a language and its importance in phoneme to grapheme
conversion will be introduced. The paper is organized as
follows: section 2 contains a description of the
cryptospeech model, section 3 contains a description of the
spell-checker, section 4 contains a description of the
experiment, section 5 reports on the model’s performance,
section 6 draws the conclusion.

1.1 Shallowness of a language

Languages in which there is a nearly one to one
correspondence between phonemes and graphemes (Spanish,
Italian, Serbo-Croatian) are described [6] as shallow. It
follows from this definition that in the class of shallow
languages it is possible to map from a single phoneme to a
single grapheme. This is very significant in phoneme to
grapheme conversion. In Cryptography this is called
monoalphabetical substitution [7] and algorithms exist
which, when applied to the phoneme conversion context,
allow the system to learn the phoneme to grapheme mapping
given a string of phonemes and 4-grapheme statistics. A

number of authors studied machine learning techniques to
map from phonemes to graphemes [8][9] but all have in
common a training phase based on phoeneme-grapheme
pairs. The training of this system is on graphemes only and
this is the innovative part.

2. The cryptospeech model

I named the model due to the contribution made by
cryptanalysis algorithms [7] to this paper. Speech
recognition consists in mapping a digital representation of the
signal to a series of linguistic units. As shown in figure 1 the
inputs for this model are:

• a string of phonemes;

• 4-grams’ percentages in the language.

The output is a graphemes’ string. It is defined as Ŵ,
function of the input signal X and the mapping M i.e
Ŵ(X,M). To reduce the computational complexity this
implementation of the model does not deal with the acoustic
signal but with phonemes. An implementation of the system
that uses the signal will be developed in future. One example
of mapping phonemes�graphemes is given in table 1.

Table 1: Example of phoneme� grapheme mapping

It is possible to learn phoneme � grapheme mapping by
minimizing a metric that measures the distance of a string
from a subset of a language. The metric will be explained in
section 2.1. The output is spell-checked and the out of
vocabulary words are substituted with the ones in the
vocabulary with a smaller distance. The metric used was the
Levenshtein distance [10]. The estimated sequence of words
is the one that employs a phoneme to grapheme map that
minimizes the distance of the output from a subset of the
language (e.g. an Italian text). This is denoted by the
formula:

Ŵ= arg minM d(Ŵ(X, M),L) (1)

The difference between this approach and template matching
is the specification of the distance measure and the
minimization function. In the former, the distance measures
the similarity between a stored word form and an input. In
the latter the distance measures the similarity between the
output and a language. In the former, the template that
minimizes the distance from the acoustic signal is chosen. In
the latter a map that minimizes the distance of the output
from the output language (e.g. a text in Italian) is chosen. The
minimization algorithm is explained in section 2.2.

2.1 The distance measure between a string and a subset
of a language

The frequency of N-graphemes in a language is
approximately constant [11:7]. As a consequence it is
possible to describe a subset of a language using a vector of
N-grapheme frequencies. For this reason the literature
(cryptanalysis [7] and language identification[12]) uses as a

distance of the similarity of a string from a subset of a
language the sum of the absolute values of the differences in
frequencies (Dijlm) of 4-graphemes:

d(Ŵ,L)= ∑
∧

mlji
ijlmijlm LDD

,,,

)(-M))(X, W(
(2)

Where i, j, l, m are letters of the alphabet

Figure 1:Cryptospeech is described by this flow chart

2.2 The algorithm employed

The software’s documentation does not exactly explain the
algorithm used but, compared with the literature reviewed,
suggests the flow chart in figure 2. The algorithm generates a
random phonemes-graphemes matching, generates all the
possible permutations obtainable swapping 2 characters, and
considers the one corresponding to the least distance to be as
best match. Once all the letter’s pairs are swapped another
random key is generated. The algorithm stops when it reaches
a plateau evaluated by a user. The flow chart for this
algorithm is presented in figure 2. The output is run through
the spell checker described in section 3.
2.3 Example

In this example the distance between a sample of Italian text
and a string will be measured. In table 2 the distance between
the two strings is calculated using, as an example, only the
first eight 4-graphemes. The first column (4-grapheme)
contains the 4-graphemes. The second one (% String)
contains the percentage of those 4-graphemes in the string.
The third one contains the percentage of those 4-grapheme in
the sample of Italian text. The last one contains the absolute
value of the difference between the two percentages. The
absolute values are added to obtain the distance in the last
cell on the right.

4-grapheme % String %Sample |Difference|

BERG 1.8405 1.8405 0

DRFZ 1.8405 0 1.8405

ENBE 1.8405 1.8405 0

FZEC 1.8405 0 1.8405

GIOE 1.8405 0 1.8405

GUTE 0 1.8405 1.8405

IOEN 1.8405 0 1.8405

Tot 9.2025

Table 2: Example of the calculations necessary to compute
the distance. The probabilities are in per cent.

String of phonemes

4-gram frequencies
in the language (e.g.

Italian text):
AFOR : 0.19453
AGGI : 0.18547
.........................
AGHI : 0.03418

/p/�p
/b/�b
/t/�t
/d/�d

…
/k/� c

Map that minimizes the
distance of the output

from the expected
language

String of graphemes

Figure 2: The algorithm employed

3. The spell checker

It relies on a language model used as a grammar: it does not
contain probabilities but only permitted sequences. The
following table is an example of the language model
employed.

1st word 2nd word

MIO (my) CANE (dog)

GATTO (cat)

CANCELLO (gate)

TELEFONO (telephone)

IL (the) CIOCCOLATO (chocolate)

PRESIDENTE (president)

GELATO (ice cream)

QUADERNO (notebook)

When an out of vocabulary word is found a series of
possible candidates is selected. The candidates are the ones
that, following the language model, should follow the
preceding word. Between them the ones with minor
Levenshtein [10] distances are chosen.

Figure 3 The spell checking algorithm

OOV Word

Series of candidates from a bigram
model

Preceding Word

Group of candidates with minor
Levenshtein distance

Example
The Italian word “PIU” was misspelled as “PJU”.
The preceding word was E, the bi-gram model is:

 A (To)

 ACCANTO (Near, Next)

 ACETO (Vinegar)

 ALLA (To)

E(And) AMATO (Loved)

 AMEN

PIU (More)

...

 ZITTO (Silent)

Figure 4

The Levenshtein distance for each candidate word was
measured, and the ones that minimized the distance from
“PJU” were selected. In this case the number of candidates
was 633 and the software found the right one.

4. The experiment

The experiment has the following objectives:

1 To check that the WER in this model is constant, so the
aim of equalizing training and testing conditions are
achieved;

2 To compare SCBSolvr’s performance with a phoneme-
grapheme parser;

3 To check the performance of Cryptospeech after spell
checking.

4 to prove that is possible to learn the phoneme to
grapheme mapping having as input data a string of
phonemes and statistics of 4-graphemes.

The software employed to convert phonememes to graphemes
was SCBSolvr [13]. I have taken Italian data from the
EUROM_1 corpus which consists of phonotypical Italian
transcription along with corresponding orthographic
transcription. The phonotypical transcription is going to be
used as input and the orthographic transcription will be used
purely for the purpose of evaluation. A corpus of 4-graphemes
for Italian is being constructed from the Guthemberg project.

This is an example of the phonotypical transcription:

"il bra"zile "E "il "reJJo "del ka"kao
ultima"mente "E "pju zgar"bato "del "sOlito

This is the corresponding orthographical transcription:
Il Brasile e’ il regno del cacao

Ultimamente e’ piu’ sgarbato del solito

This is Cryptospeech’s output after 6.000 cycles:
pe wlrhpei i pe lizzt die arart
ceupfrfioui i bzc hsrlwrut die nteput

This is Cryptospeech’s output after 190.000 cycles (10
seconds):
il brazile e il rejjo del cacao ultimamente e pju zgarbato del
solito

Figure 5: The experiment

The software employed (SCBSolvr [13]) deals with 27
symbols and for this reason the number of input phonemes
(Italian SAMPA) was reduced from 43 to 27 representing
phonemes indicated by SAMPA by more than one letter as
multiple phonemes. The following is a list of some SAMPA
symbols that were not represented properly:

SAMPA Symbol Input to the system
/tts/ T,T,S
/ts/ T,S
/dz/ D,Z
/tS/ T,S
/dZ/ D,Z
/ddz/ D,D,Z
/ttS/ T,T,S
/ll/ L,L

This reduction could have influenced the experiment results
and for this reason a SAMPA consistent system will be

Phonotypical
transcription

4-gram Cryptospeech

Grapheme
Orthographical
transcription

42 % WER

Spell Checker

22% WER

developed. The experiment consists of three tests reported
below. The first two were done on two passages of 1121
words (passage 1) and 1174 words (passage 2). It compares
two systems (Cryptospeech and hand defined map) and two
different passages of the corpus. The third one was done on a
reduced sample (93 words) to be used for the spell checker.

Test 1

The phonotypical transcription of passage 1 was used as an
Input to SCBSolvr. The output was compared with the
orthographical transcription resulting in a 40.7 %WER.

The phonotypical transcription of passage 2 was mapped to
graphemes. The output was compared with the orthographical
transcription resulting in a 34.5 %WER.

The two WER are statistically different [14:401]

Test 2

The phonotypical transcription of passage 2 was used as an
Input to SCBSolvr. The output was compared with the
orthographical transcription resulting in a 41.1 % WER. The
phonotypical transcription of passage 1 was mapped to
graphemes. The output was compared with the orthographical
transcription resulting in a 40.7 % WER.

The two WER are not statistically different.

Test 3
93 phonotypical transcribed word from “EUROM_1 Italian”
were used as an Input to Scbsolvr. The resulting WER was
42%. The output of Cryptospeech test 3 was spell checked
using the algorithm described in section 3 and the WER
drops to 22%.

There follows an evaluation of the hypothesis after the
results of the experiment .

Hypothesis 1

The difference between the SCBSolvr’s WER in tests 1, 2
and 3 results are not statistically significant . So the first
hypothesis that in this model training and testing conditions
are the same and will have consistent WER is accepted.

Hypothesis 2

The first two tests give contradictory indications on the
performance of Cryptospeech against a phoneme-grapheme
parser and for this reason successive studies are necessary.

Hypothesis 3

The third test shows that Cryptospeech’s WER decreases
notably when using a spell checker.

Hypothesis 4

In the experiment phonemes were converted to graphemes
without a previous mapping with a WER of nearly 40%
before spell checking and 22% after spell checking.

The performance

In the tests the WERs of Cryptospeech were between 34%
and 41%. The two tests give a contradictory result on the
equivalence of Cryptospeech and of a phoneme parser and for
this reason more investigation in this area is needed. In the
third test Cryptospeech’s output was spell checked and the
WER drops to 22%.

5. Conclusion

The objective of this paper was not to show that the system
implemented has a low WER but that in this system training
and testing conditions were the same and as a consequence it
has a constant WER. This aim was achieved. The
experiments were performed by reducing the number of
phonemes from 50 to 27 - due to the limitations of the
software employed. To understand it’s influence on the WER
a new software will be developed that deals with 50 symbols.
In future it will be necessary to study algorithms able to deal
with languages using deep orthographies. This will be done
following the path paved by W. Daelemans and A.van den
Bosch [15] for grapheme to phoneme conversion.

References

[1]F.Schiel-A.Kipp-H.G.Tillmann-Statistical modelling
pronunciation: it’s not the model, it’s the data-Modelling
pronunciation variation for Automatic Speech Recognition
Rolduc, 4-6 May 1998
[2]S.Young-G.Evermann-D.Kershaw-G.Moore-J.Odell-
D.Ollason-V.Vatchev-P.Woodland-The HTK Book-
Cambridge University Engeneering Department-2002
[3] F.Jelinek-Statistical methods for speech recognition-The
MIT Press-1997
[4]J.Holmes, W. Holmes-2001-Speech synthesis and
recognition- Taylor and Francis
[5] C.Becchetti and L.P.Ricotti-Speech Recognition Theory
and C++ implementation-John Wiley & Sons 1999
[6] A. van den Bosch-A.Content, W.Daelemans, B.de Gelder-
Measuring the complexity of writing systems- Journal of
Quantitative Linguistics, 1994
[7]T.Jakobsen-A fast method for the cryptanalysis of
substitution ciphers- Cryptologia, 19(3), 1995.
[8] B. Decadt, J.Duchateau, W.Daelemans, Patrick
Wambacq
Memory-based phoneme-to-grapheme conversion Reference:
In M. Theune, A. Nijholt, and H. Hondrop (Eds.),
Computational Linguistics in the Netherlands 2001. Selected
Papers from the Twelfth CLIN Meeting, Amsterdam - New
York: Rodopi, pp. 47-61
[9] Rentzepopoulos, P. A., & Kokkinakis, G. K. (1996).
Efficient multi-lingual phoneme-to-grapheme
conversion based on HMM. Computational Linguistics,
22(3), 351–376.
[10] V. I. Levenshtein, Binary codes capable of correcting
deletions, insertions, and reversals, Doklady Akademii Nauk
SSSR, 163(4):845-848, 1965 (Russian). English translation
in Soviet Physics Doklady, 10(8):707-710, 1966
[11]Ted Dunning Statistical Identification of Language
Computing Research Laboratory New Mexico State
University March 10, 1994
[12]W. B. Cavnar, John M. Trenkle N-Gram-Based Text
Categorization (1994) Proceedings of SDAIR-94, 3rd Annual
Symposium on Document Analysis and Information Retrieval
[13]Monoalphabetic Substitution Cipher Solver Program
http://secretcodebreaker.com/download.html
[14]G.Cicchitelli M.A.Pannone Complementi ed esercizi di
statistica descrittiva ed inferenziale-1991-Maggioli editore -
Rimini
[15] W. Daelemans-A. van den Bosch- A language
independent, data oriented Architecture for grapheme to
phoneme conversion-Proceedings ESCA-IEEE speech
synthesis conference, New York, September 1994

	sevenJel97
	seven
	Jel
	one
	bosch
	Jak95
	minDist
	SCBSolvr

