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Abstract 

According to speech recognition literature, one cause of 
recognition error is the difference in training and testing 
conditions. One cause of this is the use of speakers with 
different accents in training and testing.  This is because, in 
the stochastic and deterministic approaches, the system is 
trained on pairs of acoustic signal- linguistic units. This paper 
describes the development of a training system that employs 
only graphemes and studies the feasibility of a model that 
employs the speech signal, a bigram model, frequencies of 
four grams and a distance measure of a text from a specific 
language to recognize speech. This system should be 
independent of variations in pronunciation and employable in 
languages for which a corpus has not yet been developed. A  
model was specified in the class of shallow languages and an   
experiment was carried out using a phonotypical transcription 
in Italian with a 22% WER. The input of the system was not 
the acoustic signal but phonemes to reduce the computational 
complexity in this preliminary phase. The algorithm 
employed in the test maps from phonemes to graphemes 
using a map that dynamically changes to minimise the 
distance of the output from the expected language. The 
difference between conventional phoneme parsing and our 
method is that in the conventional method the mapping 
phoneme grapheme is given before the recognition procedure, 
whereas in our method the map that is chosen is the one that 
minimises the  distance between the output and the expected 
language.  

1. Introduction 

In speech recognition, the different accents  used in training 
and testing constitute a significant cause of error. The WER 
of actual speech recognition system is influenced by the 
difference between  training and testing conditions (e.g. [1] 
[2:42] [3:28]).  The standard speech recognition model 
[4:109-126][ 5:9] [3] deals with the following input: 

• a speech signal; 
• a language model;  
• parameters estimated on a pairs acoustic signal-

linguistic unit from a training corpus. 
The corpus contains pairs acoustic signal linguistic unit that 
will match some speakers   and not others. It is the main 
hypothesis of this paper that avoiding the  use of the corpus to 
estimate the parameters will equalize training and testing 
conditions. This paper tests the feasibility of a model that 
deals with the following input: 

• a string of phonemes; 

• statistical information on the graphemes output. 
In this case the system is trained on text  and tested on 
phonemes. The text used for the training is not the text 
corresponding to the string of phonemes. To reduce the 
computational complexity we substituted the acoustic signal 
by  a string of phonemes  and, as a consequence, only one 
small part of the speech recognition task is tackled. The 
experiment is done  under the assumption that if simplifying 
the conditions does not work (using phonemes instead of the 
acoustic signal) it will not work in more complex conditions 
(using the acoustic signal). If it works using phonemes we 
will develop a system that use the acoustic signal as the 
input, otherwise this model will be rejected. From this paper 
it should be possible to draw the following conclusions: 

• The WER in this model is constant because training 
and testing conditions do not differ;  

• The WER in this model is not constant, so the 
model does not equalise training and testing 
conditions. 

Speech recognition is defined as  mapping between a digital 
description of the acoustic signal and a sequence of words. 
One definition is: 
“The ASR problem consists of finding the sequence of words 
W associated to a given acoustic sequence. In mathematical 
terms, recognition is a function” M “that maps a given X 
belonging to the set of the whole acoustic sequences X   to a 
W that is included in the set w “. [5:8] In the class of shallow 
languages there is a one-to-one mapping of phonemes to 
graphemes and for this reason  Italian was employed in the 
experiment [6]. In the next section the concept of shallowness 
of a language  and its importance in phoneme to grapheme 
conversion will be introduced. The paper is organized as 
follows: section 2  contains a description of the 
cryptospeech model, section 3 contains a description of the 
spell-checker, section 4 contains a description of the 
experiment, section 5 reports on  the model’s performance, 
section 6 draws the conclusion. 

1.1 Shallowness of a language 

Languages in which there is a nearly one to one 
correspondence between phonemes and graphemes (Spanish, 
Italian, Serbo-Croatian) are described [6] as shallow. It 
follows from this definition that in the class of  shallow 
languages it is possible to map from a single phoneme to a 
single grapheme. This is very significant in phoneme to  
grapheme conversion. In Cryptography this is called 
monoalphabetical  substitution [7] and algorithms exist 
which, when applied to the phoneme conversion context,  
allow the system to learn the phoneme to  grapheme mapping 
given a string of phonemes and 4-grapheme statistics. A 



number of authors studied  machine learning techniques to 
map from phonemes to graphemes [8][9] but all have in 
common a training phase based on phoeneme-grapheme 
pairs. The training of this system is on graphemes only and 
this is the innovative part.   

2. The cryptospeech model 

I named the model due to the contribution made by 
cryptanalysis algorithms   [7]  to this paper. Speech 
recognition consists in mapping a digital representation of the 
signal to a series of linguistic units. As shown in figure 1 the 
inputs for this model are: 

• a string of phonemes; 

• 4-grams’ percentages in the language. 

The output is a graphemes’ string. It is defined as Ŵ, 
function of the   input signal X and the mapping M i.e 
Ŵ(X,M). To reduce the computational complexity this 
implementation of the  model does not deal with the acoustic 
signal but with phonemes. An implementation of the system 
that uses the signal will be developed in future. One example 
of mapping phonemes�graphemes is given in table 1.  
 
 
 
 
 
 
 
 
 

Table 1: Example of  phoneme� grapheme mapping 
 
It is possible to learn phoneme � grapheme  mapping by 
minimizing a metric that measures the distance of a string 
from a  subset of a language. The metric will be explained in 
section 2.1. The output is spell-checked and the out of 
vocabulary words are substituted with the ones in the 
vocabulary with a smaller  distance. The metric used was the 
Levenshtein distance [10]. The estimated sequence of words 
is the one that employs a phoneme to grapheme map that 
minimizes the distance of the output from a subset of  the 
language (e.g. an  Italian text). This is denoted by the 
formula: 

Ŵ= arg minM d(Ŵ(X, M),L) (1) 
 
The difference between this approach and template matching 
is the specification of the distance measure and the 
minimization function. In the former, the distance measures 
the similarity between a stored word form and an input. In 
the latter the distance measures the similarity between the 
output and a language. In the former, the template that 
minimizes the distance from the acoustic signal is chosen. In 
the latter a map that minimizes the distance of the output 
from the output language (e.g. a text in Italian) is chosen. The 
minimization algorithm is explained in section 2.2. 

2.1 The distance measure between a string and a subset 
of a language 

The frequency of N-graphemes in a language is 
approximately constant [11:7]. As a consequence it is 
possible to describe a subset of a language using a vector of 
N-grapheme frequencies.   For this reason the literature  
(cryptanalysis [7] and language identification[12]) uses as a 

distance of the similarity of a string from a subset of a 
language the sum of the absolute values of the differences in 
frequencies (Dijlm) of 4-graphemes: 

d(Ŵ,L)= ∑
∧

mlji
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Where i, j, l, m are letters of the alphabet 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1:Cryptospeech is described by this flow chart 

2.2 The algorithm employed 

The software’s documentation  does not exactly explain the 
algorithm used but, compared with the literature reviewed, 
suggests the flow chart in figure 2. The algorithm generates a 
random phonemes-graphemes matching, generates all the 
possible permutations obtainable swapping 2 characters,  and 
considers the one corresponding to the least distance to be as 
best match. Once all the letter’s pairs are swapped another 
random key is generated. The algorithm stops when it reaches 
a plateau evaluated by a user. The flow chart for this 
algorithm is presented in figure 2. The output is run through 
the spell checker described in section 3.  
2.3 Example 

In this example the distance between a sample of Italian  text 
and a string will be measured. In table 2 the distance between 
the two strings is calculated using, as an example, only the 
first eight  4-graphemes. The first column (4-grapheme) 
contains the 4-graphemes. The second one (% String) 
contains the percentage of those 4-graphemes in the string. 
The third one contains the percentage of those 4-grapheme in 
the sample of Italian text. The last one contains the absolute 
value of the difference between the two percentages. The 
absolute values are added to obtain the distance in the last 
cell on the right. 

4-grapheme % String %Sample  |Difference| 

BERG 1.8405 1.8405 0 

DRFZ 1.8405 0 1.8405 

ENBE 1.8405 1.8405 0 

FZEC 1.8405 0 1.8405 

GIOE 1.8405 0 1.8405 

GUTE 0 1.8405 1.8405 

IOEN 1.8405 0 1.8405 

Tot   9.2025 

Table 2: Example of the calculations necessary to compute 
the distance. The probabilities are in per cent. 

String of phonemes 

4-gram frequencies 
in the language (e.g. 

Italian text): 
AFOR : 0.19453 
AGGI :  0.18547 
......................... 
AGHI :  0.03418 

/p/�p 
/b/�b 
/t/�t 
/d/�d 

… 
/k/� c 

Map that minimizes the 
distance of the output 

from the expected 
language 

String of graphemes 



 

 

Figure 2: The algorithm employed  

3. The spell checker 

It relies on a language model used as a grammar: it does not 
contain probabilities but only permitted sequences. The 
following table is an example of the language model 
employed. 

 

 

1st word 2nd word 

MIO (my) CANE (dog) 

GATTO  (cat) 

CANCELLO (gate) 

TELEFONO (telephone) 

IL (the) CIOCCOLATO (chocolate) 

PRESIDENTE (president) 

GELATO  (ice cream ) 

QUADERNO (notebook) 

When an out of vocabulary word is found  a series of  
possible candidates is selected. The candidates are the ones 
that, following the language model, should follow the 
preceding word. Between them the ones with minor 
Levenshtein [10] distances are chosen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 The spell checking algorithm 

 

 

 

 

 

 

 

 

OOV Word 

Series of candidates from a bigram 
model 

Preceding Word 

Group of candidates with minor 
Levenshtein distance 



Example  
The Italian word “PIU” was misspelled as “PJU”. 
The preceding word was E, the bi-gram model is: 

 

   A (To) 

 

   ACCANTO (Near, Next) 

 

   ACETO (Vinegar) 

 

   ALLA (To) 

 

E(And)   AMATO (Loved) 

 

   AMEN 

PIU (More) 

... 

    ZITTO (Silent) 

Figure 4 

The Levenshtein distance for each candidate word was 
measured, and the ones that minimized the distance from 
“PJU” were selected. In this case the number of candidates 
was 633 and the software found the right one. 

4. The experiment 

The experiment has the following objectives: 

1 To check that the WER in this model is constant, so the 
aim of equalizing  training and testing conditions are 
achieved; 

2 To compare SCBSolvr’s performance  with a phoneme-
grapheme parser; 

3 To check the performance of Cryptospeech after spell 
checking. 

4 to prove that is possible to learn the phoneme to 
grapheme mapping having as input data a string of 
phonemes and statistics of 4-graphemes.  

 
The software employed to convert phonememes to graphemes  
was SCBSolvr [13]. I have taken Italian data from the 
EUROM_1 corpus which consists of phonotypical Italian 
transcription along with corresponding orthographic 
transcription. The phonotypical transcription is going to be 
used as input and the orthographic transcription will be used 
purely for the purpose of evaluation. A corpus of 4-graphemes 
for Italian is being constructed from the Guthemberg project. 
 
This is an example of the phonotypical transcription: 
 
"il bra"zile "E "il "reJJo "del ka"kao 
ultima"mente "E "pju zgar"bato "del "sOlito 
 
This is the corresponding orthographical transcription: 
Il Brasile e’  il regno del cacao 

Ultimamente e’ piu’ sgarbato del solito 
 
This is  Cryptospeech’s output after 6.000 cycles: 
pe wlrhpei i pe lizzt die arart 
ceupfrfioui i bzc hsrlwrut die nteput 
 
This is Cryptospeech’s output after 190.000 cycles (10 
seconds): 
il brazile e il rejjo del cacao ultimamente e pju zgarbato del 
solito 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: The experiment 
 
The software employed (SCBSolvr [13]) deals with 27 
symbols and for this reason the number of input phonemes 
(Italian SAMPA) was reduced from 43 to 27 representing 
phonemes indicated by SAMPA by more than one letter as 
multiple phonemes. The following is a list of some SAMPA 
symbols that were not represented properly: 
 
SAMPA Symbol Input to the system 
/tts/ T,T,S 
/ts/ T,S 
/dz/ D,Z 
/tS/ T,S 
/dZ/ D,Z 
/ddz/ D,D,Z 
/ttS/ T,T,S 
/ll/ L,L 

This reduction could have influenced the experiment results 
and for this reason a SAMPA consistent system will be 

Phonotypical 
transcription 

4-gram Cryptospeech 

Grapheme
Orthographical 
transcription 

42 % WER 

Spell Checker 

22% WER 



developed. The experiment consists of three tests reported 
below. The first two were done on two passages of 1121 
words (passage 1) and 1174 words (passage 2). It compares 
two systems (Cryptospeech and hand defined map) and two 
different passages of the corpus. The third one was done on a 
reduced sample (93 words) to be used for the spell checker. 

Test 1 

The phonotypical transcription of passage 1 was used as an 
Input to SCBSolvr. The output was compared with the 
orthographical transcription resulting in a 40.7 %WER. 

The phonotypical transcription of passage 2 was mapped to 
graphemes. The output was compared with the orthographical 
transcription resulting in a 34.5 %WER.  

The two WER are  statistically different [14:401]  

Test 2  

The phonotypical transcription of passage 2 was used as an 
Input to SCBSolvr. The output was compared with the 
orthographical transcription resulting in a 41.1 % WER. The 
phonotypical transcription of passage 1 was mapped to 
graphemes. The output was compared with the orthographical 
transcription resulting in a 40.7 % WER.  

The two WER are not statistically different.   

Test 3 
93 phonotypical transcribed word from “EUROM_1 Italian” 
were  used as an Input to Scbsolvr. The resulting WER was 
42%. The output of Cryptospeech test 3  was spell checked 
using the algorithm described in section 3 and the WER 
drops to 22%.  
 
There  follows an evaluation of the hypothesis after the 
results of the experiment . 

Hypothesis 1 

The difference between the SCBSolvr’s WER in tests 1, 2 
and 3 results are not statistically significant . So the first 
hypothesis that in this model training and testing conditions 
are the same  and will have consistent WER is accepted. 

Hypothesis 2 

The first two tests give contradictory indications on the 
performance of Cryptospeech against a phoneme-grapheme 
parser and for this reason successive studies are necessary. 

Hypothesis 3 

The third test shows that Cryptospeech’s WER decreases 
notably  when using a spell checker.  

 
Hypothesis 4 
 
In the experiment phonemes were converted to graphemes 
without a previous mapping with a WER of nearly 40% 
before spell checking and 22% after spell checking. 

The performance 

In the tests the WERs of Cryptospeech were between 34% 
and 41%. The two tests give a contradictory result on the 
equivalence of Cryptospeech and of a phoneme parser and for 
this reason more investigation in this area is needed. In the 
third test Cryptospeech’s  output was spell checked and the 
WER drops to 22%. 

5. Conclusion 

The objective of this paper was not to show that the system 
implemented has a low WER but that in this system training 
and testing conditions were the same and as a consequence it 
has a constant WER.  This aim was achieved. The 
experiments were performed by reducing the number of 
phonemes from 50 to 27 - due to the limitations of the 
software employed. To understand it’s influence on the WER 
a new software will be developed that deals with 50 symbols. 
In future it will be necessary to study algorithms able to deal 
with languages using deep orthographies. This will be done  
following the path paved by W. Daelemans and A.van den 
Bosch [15] for grapheme to phoneme conversion. 
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