Artificial intelligence: scientific and engineering perspectives

Etienne Barnard

Overview

- AI: the vision
 - Scientific / philosophical
 - Engineering
- Approaches
 - Symbolic (represent & search)
 - Statistical (classifiers, neural networks &c)
- Applications
- Achievements & prospects

Scientific / philosophical goals of AI

- Understand cognitive capabilities of biological organisms
 - Brains, neurons, neurotransmitters, ...
- Resolve mind/body dualism
 - Consciousness, determinism, mental vs physical worlds

Engineering goals of AI

- Develop tools that can mimic capabilities of "intelligent" entities (e.g. humans)
 - Sensory responsiveness
 - Speech, vision, ...
 - Manipulation (control) of environment
 - Planning, actions, feedback
 - Complex data processing
 - Retrieval, filtering, creativity

Approaches to AI

- Symbolic AI:
 - Intelligence = manipulation of symbols
 - AI: symbolic representation of knowledge, search through representations
 - (Two categories: rationality vs. imitation)
- Statistical AI:
 - Intelligence = extraction of statistical regularities in data
 - AI: simulation of biological "information filters"

The symbolic approach ("classical AI")

"Yes, yes, I know that, Sidney ... everybody knows that!...But look: Four wrongs squared, minus two wrongs to the fourth power, divided by this formula, do make a right."

Knowledge representation

- Goal: develop data structures that make it easy to represent diverse, "real-world" knowledge
- Typical approaches
 - Logic (propositional, predicate, HO)
 - Semantic networks (nodes, named links, hierarchies)
- Major challenge is automation of knowledge capture ("knowledge engineering")

Search

- Goal: find efficient ways to operate on data structures to extract conclusions
- Approaches:
 - "Uninformed": systematic enumeration of all possibilities (*typically exponentially expensive*)
 - "Informed": use problem-specific information to accelerate process
 - Exact solutions: A*- search
 - Approximate solutions: greedy search
- For most realistic problems, approximation required
 - Main challenge: design of "heuristic function"

The statistical approach

"OK, Mr. Dittmars, remember, that brain is only a temporary, so don't think too hard with it."

Classification / regression

- Goal: "learn" approximation of classification / function from examples
- Approach:
 - Select functional form (parameterization), training & evaluation data, measure of fit
 - Optimize parameters (conventional / novel approaches) – fit of training data
 - Evaluate on distinct data

Classification / regression (2)

- Categories of solutions (functional forms):
 Linear
 - "Instance-based" (nearest-neighbor, kernel, support vector machines)
 - Neural networks (hierarchy of simple nonlinear elements)
 - Decision trees

Density estimation

- Goal: estimate probability density of categories of events / tokens
 - Provably optimal basis for decision making
 - Provably exponentially "hard" under "realistic" circumstances
- Core algorithms similar to estimation of classifiers / regressors
- Key innovation is representation of independence
 Bayesian networks and generalizations

Feature extraction

- Goal: represent relevant information numerically
- Criteria:
 - Compactness of single categories
 - Separability of different categories
- Examples:
 - Vision: intensities in appropriately chosen geometrical regions
 - Cell biology: identities of amino acids in a window
 - Web search: number, status of linked pages
- For many practical systems, discovery of suitable features is key to success

Solving problems with AI

"I asked you a question, buddy . . . What's the square root of 5,248?"

Application: scheduling

- Goal: assign set of **resources** to sequence of **tasks**, subject to **constraints** in order to optimize **goal function**
- Examples: campaign planning, design of timetables
- Typical solution:
 - Represent as nodes and operators
 - Search through assignments with domain-independent (most-constrained, least constraining, ...) + domaindependent heuristics

Scheduling: state of the art

- Large problems (1000s of resources and tasks, 100s of constraints) regularly solved
 - Hubble scheduling of observations 3 weeks \rightarrow 10 minutes
 - Standard practice for logistics & travel companies
 - Military planning has "paid the bill" for AI

Application: speech recognition

- Goal: understand human speech
- Examples: control, dictation, telephone-based information retrieval
- Typical solution:
 - Density estimate of acoustics of speech sounds (phonemes)
 - Dictionary to represent pronunciations of words
 - Grammar or statistical model of expected utterances

Speech recognition: State of the art

- Desktop dictation
 - > 99% accuracy on unconstrained text
 - $-\pm 1$ hour of speaker training
 - Widely used in specialized areas (e.g. legal / medical) or where typing is a problem
- Telephone-based information access
 - Speaker-independent, task specific
 - Answers $>10^6$ telephone calls per day
 - Major potential in developing world?

Looking back, looking ahead

• "Within ten years a digital computer will be the world's chess champion"

• "Within ten years a digital computer will be the world's chess champion"

– Newell, 1957

- "Within ten years a digital computer will be the world's chess champion"
 Newell, 1957
- *"There are now in the world machines that think, that learn and create"*

- "Within ten years a digital computer will be the world's chess champion"
 Newell, 1957
- *"There are now in the world machines that think, that learn and create"*

– Simon & Newell, 1958

Achievements

- Grandmaster-level chess (and valued competitor in computer games)
- Standard part of logistics planning
- Telephone agent; security inspector; credit verifier
- Google!

The pessimistic view

- Computers will never match human intelligence because:
 - They are not "grounded" (Searle, Dreyfus)
 - They lack the appropriate quantum-mechanical machinery (*Penrose*)
 - Dualism was right after all (*Chalmers*)

The optimistic view (1)

- Tasks that have been considered *intelligent*:
 - Solving algebraic problems
 - Playing chess
 - Understanding speech
- AI keeps moving the frontier!
- Incremental approach will take us past *X*, for any *X*

The optimistic view (2)

- Intuitively definable tasks that we cannot accomplish artificially:
 - Turing test
 - Survival of mosquito
- Fundamental gap in understanding

- [?? Induction / learning how to learn ??]

What next?

- Continued uptake of "AI" methods & tools in computing
 - Search, relational methods, neural networks → Bayesian networks, agent-based processing
- Growth of AI as more tasks must be automated
 - Internet bots, ubiquitous networks, security networks, 24 x 7 customer service, ...
- A return to fundamental research

References:

- *"The age of intelligent machines"*, R Kurzweil, MIT Press, 1990 (**Popular**)
- "Artificial Intelligence: A Modern Approach", 2nd ed., S Russell & P Norvig, Prentice Hall, 2003 (Overview)
- IEEE Trans. on Neural Networks, Machine Learning, IEEE Trans. on PAMI, Artificial intelligence (**Technical**)