
Computational Science &
Engineering DepartmentCSE

Parallel Algorithms on a cluster of PCs

Ian Bush
Computational Science & Engineering Department

Daresbury Laboratory
I.J.Bush@dl.ac.uk

(With thanks to Lorna Smith and Mark Bull at EPCC)

mailto:I.J.Bush@dl.ac.uk

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

2

Overview

• This lecture will cover
– General Message passing concepts

• Message passing model
• SPMD
• communication modes
• collective communications

• An extremely brief look at what MPI actually looks like

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

3

Message Passing Model

• The message passing model is based on the notion of processes
– can think of a process as an instance of a running program, together with

the program’s data
• In the message passing model, parallelism is achieved by having many

processes co-operate on the same task
• Each process has access only to its own data
• Processes communicate with each other by sending and receiving

messages

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

4

Process Communication
Process 1 Process 2

Recv(1,b)a=23Program
a=b+1Send(2,a)

23

23

24

23
Data

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

5

SPMD

• Most message passing programs use the Single-Program-Multiple-Data
(SPMD) model

• All processes run the same program
• Each process has a separate copy of the data
• To make this useful, each process has a unique identifier
• Processes can follow different control paths through the program,

depending on their process ID
• Usually run one process per processor

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

6

Messages

• A message transfers a number of data items of a certain type from the
memory of one process to the memory of another process

• A message typically contains
– the ID of the sending processor
– the ID of the receiving processor
– the type of the data items
– the number of data items
– the data itself
– a message type identifier

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

7

Communication modes

• Sending a message can either be synchronous or asynchronous
• A synchronous send is not completed until the message has started to be

received
• An asynchronous send completes as soon as the message has gone
• Receives are usually synchronous - the receiving process must wait until

the message arrives

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

8

Synchronous or Blocking send

• Analogy with faxing a letter.
• Know when letter has started to be received.

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

9

Asynchronous or Non-Blocking send

• Analogy with posting a letter.
• Only know when letter has been posted, not when it has been received.

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

10

Point-to-Point Communications

• We have considered two processes
– one sender
– one receiver

• This is called point-to-point communication
– simplest form of message passing
– relies on matching send and receive

• Close analogy to sending personal emails

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

11

Collective Communications

• A simple message communicates between two processes
• There are many instances where communication between groups of

processes is required
• Can be built from simple messages, but often implemented separately, for

efficiency

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

12

Broadcast

• From one process to all others

8

8 8

8
8

8

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

13

Scatter

• Information scattered to many processes

0 1 2 3 4 5

0

1

3

4

5

2

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

14

Gather

• Information gathered onto one process

0 1 2 3 4 5

0

1

3

4

5

2

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

15

Reduction

• Form a global sum, product, max,min etc.

0

1

3

4

5

2
15

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

16

Issues

• Sends and receives must match
– danger of deadlock

• Possible to write very complicated programs
– most scientific codes have a simple structure
– often results in simple communications patterns

• Use collective communications where possible
– may be implemented in efficient ways

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

17

Summary of Message Passing Concepts

• Messages are the only form of communication
– all communication is therefore explicit

• Most systems use the SPMD model
– all processes run exactly the same code
– each has a unique ID
– processes can take different branches in the same codes

• Basic form is point-to-point
– collective communications implement more complicated patterns that

often occur in many codes

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

18

Pros And Cons Of Message Passing

• Pros
– It’s very general

• Can express any parallel algorithm in this form, irrespective of archtiecture
– As a consequence it is very portable

• Cons
– It’s very general

• Can result in quite complex code
– Best to `hide’ message passing as far as possible in its own layer

– Difficult to run resulting code on a serial processor
• But not impossible, just need an MPI library

– But does that impair the serial performance
– It’s two sided

• What if one CPU wants data from another CPU, but that CPU has no idea when it will
want it. The receiving process may have to wait a LONG time

• One sided protocols exist in MPI 2, but not universally available and quite inefficient on
some machines

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

19

The Message Passing Interface (MPI)

• MPI is a de facto standard for message passing
– All vendors supply it
– A number of free implementations available (e.g. MPICH, LAM) which run

on Linux, FreeBSD, Windows …

• MPI Forum founded in 1992
– Comprised of all major vendors and many major academic parallel

computing centres around the world.

• MPI 1.0 introduced in 1994, first implementation the next day !

• MPI 1.1 and 1.2 introduced corrections and clarifications. MPI 1.2 is the
standard I would recommend

• MPI 2.0 introduced in 1997, but implementations are less common

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

20

What does MPI Include ?

• Point to Point
– Blocking and non-blocking

• Collectives
• Communicators
• Process topologies
• User defined data types
• Intracommunicators
• Profiling interface
• Fortran, C, C++ interfaces
• The kitchen sink !

MPI has around 150 routines in the library.

You need to know six to get started.

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

21

Hello World in MPI

Program Hello
Implicit None
Include ´mpif.h’
Integer :: me, numprocs, error
Call mpi_init(error)
Call mpi_comm_rank(mpi_comm_world, me, error)
Call mpi_comm_size(mpi_comm_world, numprocs, error)
Write(*, *) ´Hello from ‘, me, ´ of ’, numprocs
Call mpi_finalize(error)

End Program Hello

Compile (typically) by
mpif90 –o progname hello.f90
Run by
mpirun –np 4 ./progname

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

22

The Output

Hello from 1 of 4
Hello from 3 of 4
Hello from 2 of 4
Hello from 0 of 4

NB: You can make no assumption about at what time what part of the process
will run relative to any other. They are all independent tasks. They do not
need to follow process 0. They don’t need to follow any process at all !

(Unless you program them to)

Hence the ordering above. Run it again and you might get a totall different
ordering.

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

23

MPI – the big six (1)

• Call mpi_init(error)
– Initialize MPI

• Call mpi_finalize(error)
– Close down MPI

• Call mpi_comm_rank(mpi_comm_world, me, error)
– Obtain my processor ID. 0 ≤ me < numprocs run on

• Call mpi_comm_size(mpi_comm_world, numprocs, error)
– How many processors am I running on

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

24

MPI – The Big Six (2)

• Call mpi_send(buffer, count, type, destination, tag, &
mpi_comm_world, error)

– Send count data items of type type to processor destination using the
message tag tag

– Will cover type and tag in the next slides
– BLOCKING !!!

• Call mpi_recv(buffer, count, type, source, tag, & mpi_comm_world,
status, error)

– Receive count data items of type type from processor source using the
message tag tag

– BLOCKING !!!

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

25

MPI – The Big Six (3) – The type Argument

Type specifies what sort of thing is being sent or received. It is simply an
integer that is defined in mpif.h. You SHOULD use the symbolic forms as
each MPI implementation WILL use different values. Some symbolic values
are:

• MPI_CHARACTER
• MPI_INTEGER
• MPI_REAL
• MPI_DOUBLE_PRECISION
• MPI_COMPLEX
• MPI_BYTE

It’s fairly obvious what these mean !

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

26

MPI – The Big Six (4) – The tag argument

• Say you want to send a number of different messages from one processor
to another of different types, lengths, …… How does the receiving end
know which message to correspond with which receive

– Use the tag argument to differentiate – simply an integer variable so for
each of the sends and each of the recvs use a different number

– In practice rarely useful, at least in my experience, and I just tend to set it
to 10

• It is also possible to set tag to mpi_any_tag at the recv end (also source to
mpi_any_source) to receive the first message with any tag (and maybe
any source)

– DO NOT DO THIS IF AT ALL AVOIDABLE !
– In my experience this

• Just asks for deadlock and other, stranger, bugs
• Shows you don’t totally understand what is happening
• Shows you haven’t thought it through properly

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

27

A Simple MPI Program
Program Simple

Implicit None
Include ‘mpif.h’
Integer :: numprocs, me, procs, error
Character(Len = 8) :: msg = ‘Wotcha!!’
Call mpi_init(error)
Call mpi_comm_rank(mpi_comm_world, me, error)
Call mpi_comm_size(mpi_comm_world, numprocs, error)
If(me == 0) Then

Do procs = 0, numprocs – 1
Call mpi_send(msg, 8, MPI_CHARACTER, procs, 10, &

mpi_comm_world, error)
End Do

Else
Call mpi_recv(msg, 8, MPI_CHARACTER, 0, 10, &

mpi_comm_world, status, error)
End If
Write(*, *) msg, ‘ from proc ‘, me
Call mpi_finalize(error)

End Program Simple

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

28

So Now You Can Do it All !

• Everything can be performed by these routines, all else is for convenience

• However MPI has a lot more, so I’ll quickly cover a couple of useful other
things

– Collectives
– Communicators

• But first I’ll cover THE CLASSIC MPI BUG

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

29

THE CLASSIC MPI BUG

Two processes running though the same bit of code:
If(me == 0) Then

them = 1
Else

them = 0
End If
Call mpi_send(buffer, count, MPI_REAL, them, 10, mpi_comm_world, error)
Call mpi_recv(buffer, count, MPI_REAL, them, 10, mpi_comm_world, &

status, error)

Proc 0 and proc 1 swap buffers, right ?

NO !!!!!!

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

30

THE CLASSIC MPI BUG

If(me == 0) Then
them = 1

Else
them = 0

End If
Call mpi_send(buffer, count, MPI_REAL, them, 10, mpi_comm_world, error)
Call mpi_recv(buffer, count, MPI_REAL, them, 10, mpi_comm_world, &

status, error)

MPI_SEND IS BLOCKING and so this will DEADLOCK !
Unfortunately the MPI standard says that the programmer must assume

mpi_send is blocking, but implementations can do whatever is best. So this
nasty bit of code may, and will work on some machines, but not on others,
or for one message size, but not others.

BEWARE !

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

31

THE CLASSIC MPI BUG

• Using the simple call we have used so far it is
If(me == 0) Then

them = 1
Call mpi_send(buffer, count, MPI_REAL, them, 10, mpi_comm_world, & error)
Call mpi_recv(buffer, count, MPI_REAL, them, 10, mpi_comm_world, &

status, error)
Else

them = 0
Call mpi_recv(buffer, count, MPI_REAL, them, 10, mpi_comm_world, &

status, error)
Call mpi_send(buffer, count, MPI_REAL, them, 10, mpi_comm_world, & error)

End If
• Alternatives are mpi_sendrecv, or non-blocking communications with mpi_isend and

mpi_irecv, the latter being the most general solution. However not really enough time
to go into unless someone is interested.

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

32

MPI Collectives

• As said in the general concepts part of the talk collectives are also very
useful

• One simple one is the broadcast mpi_bcast
– Call mpi_bcast(buffer, count, type, root, mpi_comm_world, error)
– This broadcasts the data in buffer held on processor root to all the other

processors
– We can use this to simplify our simple MPI program

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

33

A Simple MPI Program Using MPI_BCAST
Program Simple

Implicit None
Include ‘mpif.h’
Integer :: numprocs, me, procs, error
Character(Len = 8) :: msg
Call mpi_init(error)
Call mpi_comm_rank(mpi_comm_world, me, error)
Call mpi_comm_size(mpi_comm_world, numprocs, error)
If(me == 0) Then

Read(*, *) msg
End If
Call mpi_bcast(msg, 8, MPI_CHARACTER, 0, mpi_comm_world, & error)
Write(*, *) msg, ‘ from proc ‘, me
Call mpi_finalize(error)

End Program Simple

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

34

Other Useful Collectives

• The most commonly used is MPI_ALLREDUCE
– Do a reduction across all processors
– Operation can be from a large selection e.g.

• Max
• Min
• Sum
• Product
• Logical and
• Logical Or
•

• Also MPI_GATHER, MPI_SCATTER, MPI_ALLTOALL …….

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

35

Communicators (or what is this mpi_comm_world thing anyway ?)

• In MPI ALL communications occur within what is known as a communicator

• A communicator is essentially a set of processors, not necessarily all the
processors in the job

• MPI gives you for free a number of communicators, of which by far the most
important is mpi_comm_world

• However you are free to define your own using a number of routines.
MPI_COMM_SPLIT, which allows you to split an exisiting communicator
into a number of subsets, is both the most powerful and most useful

• This is a very useful concept

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

36

Using Communicators
• So to use comunicators

– Create one of your own
– Wherever we have used mpi_comm_world in the past now use your own,

call it my_comm

• So we can say
– Call mpi_comm_rank(mpi_comm_world, me, error)

• Give me my rank in the communicator mpi_comm_world, i.e. my global rank
– Call mpi_comm_rank(my_comm, me, error)

• Give me my rank in the communicator I have just created
– Call mpi_comm_size(my_comm, numprocs, error)

• How many procs are in the communicator I just created
– Call mpi_bcast(stuff, count, MPI_REAL, 0, my_comm, error)

• Broadcast stuff across all the communicators

Works for ALL message passing, can even split your own communicators !

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

37

Why is this useful ?

• Say we are running on 8 processors and have 4 tasks that can be
performed independently

– Natural to give each of the tasks to two of the processors
– May be necessary when, e.g., each of the tasks is too big for one processor

• Could do this all in mpi_comm_world but would have all sort of if conditions
to decide which task this CPU belongs to, and code would become very
messy

• Much neater to split into 4 communicators
– Typically once the new communicators are created all processors execute

the same code, the communicators taking care of the communications

• Solid State people – Say we have 4 k points and are running on 8
processors … think about it.

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

38

More About MPI

• MPI is ubiquitous in parallel computing

• There is an awful lot of information out there, including both MPI tutorials
and applications of MPI to specific problems

• I would suggest that if you want to learn more simply google for MPI. The
earliest hits include both the standard document and a number of good
tutorials (I like the stuff at ORNL myself, but choose one that suits you)

• However it really is a practical art, and the only true way is to get going is to
practice it yourself.

	Overview
	Message Passing Model
	Process Communication
	SPMD
	Messages
	Communication modes
	Synchronous or Blocking send
	Asynchronous or Non-Blocking send
	Point-to-Point Communications
	Collective Communications
	Broadcast
	Scatter
	Gather
	Reduction
	Issues
	Summary of Message Passing Concepts
	Pros And Cons Of Message Passing
	The Message Passing Interface (MPI)
	What does MPI Include ?
	Hello World in MPI
	The Output
	MPI – the big six (1)
	MPI – The Big Six (2)
	MPI – The Big Six (3) – The type Argument
	MPI – The Big Six (4) – The tag argument
	A Simple MPI Program
	So Now You Can Do it All !
	THE CLASSIC MPI BUG
	THE CLASSIC MPI BUG
	THE CLASSIC MPI BUG
	MPI Collectives
	A Simple MPI Program Using MPI_BCAST
	Other Useful Collectives
	Communicators (or what is this mpi_comm_world thing anyway ?)
	Using Communicators
	Why is this useful ?
	More About MPI

