Parallel Algorithms on a cluster of PCs

Ian Bush
Computational Science \& Engineering Department
Daresbury Laboratory
I.J.Bush@dl.ac.uk
With Thanks to W.Smith at DL

Case Studies

- In this lecture I want to give a couple of examples of code I have worked upon in recent years
- They are
- CRYSTAL - ab initio electronic structure of solids
- DL_POLY - Classical MD

CRYSTAL

- Electronic structure and related properties of periodic solids
- All electron, local Gaussian basis set, DFT and Hartree-Fock
- Under continuous development since 1974
- Distributed to over 500 sites world wide
- Developed jointly by Daresbury and Turin

CRYSTAL - Functionality

- Basis Set
- LCAO-Gaussians
- All electron or pseudopotential
- Hamiltonian
- Hartree-Fock (UHF, RHF)
- DFT (LSDA, GGA)
- Hybrid funcionals
- Techniques
- Replicated data parallel
- Distributed data parallel
- Direct -SCF
- Geometry optimisation
- Visualisation
- Cerius ${ }^{2}$ interface
- AVS GUI (DLV)

Properties

- Energy
- Structure
- Vibrations (phonons)
- Elastic tensor
- Ferroelectric polarisation
- Piezoelectric constants
- X-ray structure factors
- Density of States / Bands
- Charge/Spin Densities
- Magnetic Coupling
- Electrostatics (V, E, EFG classical)
- Fermi contact (NMR)
- EMD (Compton, e-2e)

CRYSTAL - Parallel Implementations

- Pcrystal
- Replicated data
- Good for medium to large problems on small to medium processor counts
- MPPcrystal
- Distributed data
- Good for large problems on large processor counts

CRYSTAL - basic algorithm

\longrightarrow	$H^{R}=P^{R} . I^{R}$
	$\operatorname{IR}^{R} \Leftarrow$ sum of independent integrals
	$H_{k} \Leftarrow Q_{k}^{\top} H^{R} Q_{k}$
	$H_{k} \psi_{k}=\varepsilon_{k} \psi_{k}$
	- Solve $H_{k} \Rightarrow\left\{\varepsilon_{k}, \psi_{k}\right\}$
	$P^{R} \Leftarrow\left\|\psi_{k}\right\|^{2}$

F.T. and matrix multiply

Diagonalization - each k point independent

Gather \& condense
Repeat until converged

Pcrystal - Implementation

- Standard compliant
- Fortran 90
- MPI for message passing
- Replicated data
- Each processor has a complete copy of all the matrices used in the linear algebra
- Makes implementation very simple

Pcrystal - Parallel Integrals

- Coulomb, Exchange and DFT terms all involve many independent tasks:
- Coulomb/Exchange have to evaluate integrals of the form $\left\langle\varphi_{i} \varphi_{\mathrm{j}} \| \varphi_{\mathrm{k}} \varphi_{\mathrm{l}}\right\rangle$ for all of $\mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{I}$
- Each integral independent
- So give a subset to each of the processors
- But requires more or less random access to H^{R} and P^{R}
- Bad for message passing - replicate
- DFT terms are a numerical integration over a grid
- Each point of the grid independent
- So give a subset of the grid to each processor
- Almost perfectly parallel!
- Only global sum at end required - v. few comms
- Limit on scaling is load imbalance

Pcrystal - Linear Algebra

- Each k point (and spin) independent
- So each processor performs the linear algebra for a subset of the k points that the job requires
- Again very few comms so potentially good scaling, but ...
- Potential load imbalance
- Complex v. real k points
- Number of k points limits the number of processors that can be exploited
- What if only a 「 point only calculation?
- Limit on size of job that can be performed does not scale with number of processors

Pcrystal - Changes to The Input

(except think about direct)

Pcrystal - Summary

- In general scales very well provided the number of processors \leq number of k points
- Will gain something due to integrals
- But large jobs in general require few k points
- The limit on the size of job is given by the memory required to store the linear algebra matrices for one k point
- More processors do not mean larger jobs can be run

MPP Crystal - Implementation

- Uses common standards
- Fortran 90
- MPI for message passing
- ScaLAPACK 1.7 (Dongarra et al.) for linear algebra on distributed matrices
- www.netlib.org/scalapack/scalapack_home.html
- Home grown BFG Jacobi diagonalizer
- www.cse.clrc.ac.uk/arc/bfg.shtml
- Scales better and less memory hungry than ScaLAPACK
- Distributed data
- Each processor hold only a part of each of the matrices used in the linear algebra
- More complex to implement

MPPcrystal - Parallel Integrals

- More or less as Pcrystal with some memory saving tricks
- Works well so why reinvent the wheel ?
- However requires replicated $\mathrm{H}^{\mathrm{R}, \mathrm{P}^{R}}$
- Ultimate limit on size of job
- However limit is less stringent than for Pcrystal because these are stored in sparse format

MPPcrystal - Linear Algebra (1)

- All matrices distributed
- More procs means more memory so larger jobs
- Mostly use ScaLAPACK for e.g.
- Choleski decomposition
- Matrix matrix multiplies
- Linear equation solves
- However for diag use own BFG package
- Based on Jacobi which can better exploit the sparse nature of the matrix
- Scales with processor number better than that provided by ScaLAPACK
- Requires less memory than ScaLAPACK
- But slower on first 1-2 cycles

MPPcrystal - Linear algebra (2)

- As each processor only holds a part of the matrix comms are required to perform the linear algebra, unlike for Pcrystal
- However N^{3} operations but only N^{2} data to communicate
- Scaling gets better for larger systems
- Very rough rule of thumb - if N basis functions can exploit up to around N/20 processors
- Further the number of processors that can be exploited is NOT limited by the number of k points
- Great for large 「 point only calculations!

MPPcrystal - other issues

- By default runs direct
- 100s or processors writing to/reading from one disk not a good idea!
- Most but not all of CRYSTAL implemented
- Will fail quickly and cleanly if requested feature not implemented
- Perhaps the most important is symmetry adaption of the diag
- For large high symmetry systems Pcrystal may be more effective
- Too small a job on too many procs will fail
- In general not an issue

Computational Science \&
Engineering Department

MPPcrystal - Changes to Your Input

```
TEST08 - SILICON BULK: STO-3G
CRYSTAL
OO
227
5.42
1
14.125 .125 . 125
END
143
103 2. 0.
113 8. 0.
1134.0.
990
END
END
84
MPP
END
```


MPPcrystal - summary

- For large systems can scale well, but not so good for small to medium size ones.
- Size of linear algebra matrices is, at present, not an issue given enough processors.
- Memory limitation is from the replicated $H^{\mathrm{R}}, \mathrm{P}^{\mathrm{R}}$ NOT the linear algebra matrices. As the former are stored in a sparse format they tend to be much smaller than the latter.

Pcrystal and MPPcrystal

- Pcrystal
- Few comms means scales very well
- However scaling limited by number of k points
- Memory usage in linear algebra limits size of system that may be studied
- Load imbalance in linear algebra may be an issue
- MPPcrystal
- More comms but scales well for large system
- Scaling not limited by number of k points
- Distributing the matrices allows larger systems to be studied, especially on large number of processors

MPPcrystal - an example

- I will illustrate the behaviour of MPPcrystal with some calculations on a small protein, Crambin.
- I will also give an indication of what we are trying to do with MPPcrystal

Why Crambin (the official version)

- Small protein (46 residues)
- Crystal structure characterized to very high precision by XRD studies ($0.52 \AA$)
- PDB entry (1EJG) includes hydrogens (this is unusual)

Crambin - The Crystal

- 2 Chains in unit Cell
- 1284 Atoms
- Initial studies using STO3G (3948 basis functions)
- Upped to 6-31G * * (12354 functions)
- All calculations Hartree-Fock

Parallel Performance

- Fit measured data to Amdahl's law to obtain estimate of speed up
- Increasing the basis set size increases the scalability
- About 700 speed up on 1024 processors for 6-31G * *
- Takes about 3 hours instead of about 3 months
- 99.95\% parallel

6-31G * * Parallel Performance

- The integrals scale almost perfectly
- The diag is 3.1 times quicker on 1024 compared to 256 for the whole run
- Overall good scaling exhibited

6-31G Latest data

Results - Charge Density

- Isosurface of the charge density at $0.1 \AA$ resolution
- Can be compared with SR results

Results - Electrostatic Potential

- Charge density isosurface coloured according to potential
- Useful to determine possible chemically active groups

Rusticyanin

- Rusticyanin, a blue copper protein, has 6284 atoms and is involved in redox processes
- We have started calculations using over 30000 basis functions
- In collaboration with S.Hasnain (DL) we want to calculate redox potentials for rusticyanin and associated mutants. Rusti has a large potential, 680 mV

CRYSTAL Summary

- Crystal can use to parallelization strategies
- Pcrystal uses replicated data
- Good for medium to large problems
- Memory limits size of problem that may be addressed
- Scales well up to number of k points
- The one you'll use most often - it's the DL day to day workhorse
- MPPcrystal uses distributed data
- Needs large problems to perform well
- Memory limitations much less stringent than Pcrystal
- For a big enough problem can scale very well

DL_POLY Background

- General purpose parallel MD code
- Developed at Daresbury Laboratory for CCP5 1994-today
- Available free of charge (under licence) to University researchers worldwide

DL_POLY Versions

- DL_POLY_2
- Replicated Data, up to 50,000 atoms
- Full force field and molecular description
- DL_POLY_3
- Domain Decomposition, up to 1,000,000 atoms+
- Full force field but no rigid body description.

The DL_POLY Force Field

$\mathrm{V}\left(\overrightarrow{\mathrm{r}}_{\mathrm{i}}, \overrightarrow{\mathrm{r}}_{2}, \ldots \ldots \overrightarrow{\mathrm{r}}_{\mathrm{N}}\right)=\sum_{\mathrm{i}, \mathrm{j}}^{\mathrm{N}^{\prime}} \mathrm{U}_{\text {pair }}\left(\left|\overrightarrow{\mathrm{r}}_{\mathrm{i}}-\overrightarrow{\mathrm{r}}_{\mathrm{j}}\right|\right)+\frac{1}{4 \pi \varepsilon} \sum_{\mathrm{i}, \mathrm{j}}^{\mathrm{N}^{\prime}} \frac{\mathrm{q}_{\mathrm{i}} \mathrm{q}_{\mathrm{j}}}{\left|\overrightarrow{\mathrm{r}}_{\mathrm{i}}-\overrightarrow{\mathrm{r}}_{\mathrm{j}}\right|}+$
$\sum_{\mathrm{i}, \mathrm{j}, \mathrm{k}}^{\mathrm{N}^{\prime}} \mathrm{U}_{3 \text { body }}\left(\overrightarrow{\mathrm{r}}_{\mathrm{i}}, \overrightarrow{\mathrm{r}}_{\mathrm{j}}, \overrightarrow{\mathrm{r}}_{\mathrm{k}}\right)+\sum_{\mathrm{i}, \mathrm{j}, \mathrm{kn}}^{\mathrm{N}^{\prime}} \mathrm{U}_{4 \text { body }}\left(\overrightarrow{\mathrm{r}}_{\mathrm{i}}, \overrightarrow{\mathrm{r}}_{\mathrm{j}}, \overrightarrow{\mathrm{r}}_{\mathrm{k}}, \overrightarrow{\mathrm{r}}_{\mathrm{n}}\right)+\varepsilon_{\text {metal }}\left(\sum_{\mathrm{i}, \mathrm{j}}^{\mathrm{N}^{\prime}}\left(\frac{\alpha}{\mathrm{r}_{\mathrm{ij}}}\right)^{\mathrm{n}}-\mathrm{C} \sum_{\mathrm{i}=1}^{\mathrm{N}} \rho_{\mathrm{i}}^{1 / 2}\right)+$

$\sum_{\mathrm{i}_{\text {inver }}}^{\mathrm{N}_{\text {inere }}} \mathrm{U}_{\text {invers }}\left(\mathrm{i}_{\text {invers }} \overrightarrow{\mathrm{r}}_{\mathrm{a}}, \overrightarrow{\mathrm{r}}_{\mathrm{b}}, \overrightarrow{\mathrm{r}}_{\mathrm{c}}, \overrightarrow{\mathrm{r}}_{\mathrm{d}}\right)+\sum_{\mathrm{i}=1}^{\mathrm{N}} \Phi_{\text {external }}(\overrightarrow{\mathrm{r}})$

DL_POLY Force Field

- Intermolecular forces
- All common van de Waals potentials
- Sutton Chen many-body potential
- 3-body angle forces $\left(\mathrm{SiO}_{2}\right)$
- 4-body inversion forces $\left(\mathrm{BO}_{3}\right)$
- Intramolecular forces
- Bonds, angle, dihedrals, inversions

DL_POLY Force Field

- Coulombic forces
- SPME (3D), Adiabatic shell model, Reaction field, Bare Coulombic, Shifted Coulombic
- Externally applied field
- Walled cells,electric field,shear field, etc

Boundary Conditions

- None (e.g. isolated macromolecules)
- Cubic periodic boundaries
- Orthorhombic periodic boundaries
- Parallelepiped periodic boundaries
- Truncated octahedral periodic boundaries
- Rhombic dodecahedral periodic boundaries
- Slabs (i.e. x,y periodic, z nonperiodic)

Algorithms and Ensembles

Algorithms

- Verlet leapfrog
- RD-SHAKE
- Euler-Quaternion*
- QSHAKE*
- [All combinations]
* Not in DL_POLY_3

Ensembles

- NVE
- Berendsen NVT
- Hoover NVT
- Evans NVT
- Berendsen NPT
- Hoover NPT
- Berendsen NoT
- Hoover NoT

Replicated Data

Replicated Data MD Algorithm

Features:

- Each node has copy of all atomic coordinates (Ri,Vi,Fi)
- Force calculations shared equally between nodes (i.e. up to $\mathbf{N}(\mathbf{N}-$ 1)/2P pair forces per node).
- Use neighbour list
- Atomic forces summed globally over all nodes
- Motion integrated for all or some atoms on each node
- Updated atom positions circulated to all nodes

Replicated Data MD Algorithm

Advantages:

- Simple to implement
- Good load balancing
- Suitable for complex force fields
- Dynamic load balancing possible

Replicated Data MD Algorithm

Disadvantages:

- High communication overhead
- Sub-optimal type 2 scaling
- Large memory requirement
- Unsuitable for massive parallelism

DL_POLY 3 - Link Cell Algorithm

\dot{H}	+	

DL_POLY 3 Domain Decomposition MD

DL_POLY 3 - Domain Decomposition MD

Features:

- Short range potential cut off ($\left.r_{\text {cut }} \ll L_{\text {cell }}\right)$
- Spatial decomposition of atoms into domains
- Map domains onto processors
- Use link cells in each domain
- Pass border link cells to adjacent processors
- Calculate forces, solve equations of motion
- Re-allocate atoms leaving domains

DL_POLY 3 - Domain Decomposition MD

Advantages:

- Good load balancing
- Ideal for huge systems
- Simple communication structure
- Fully distributed memory requirement
- Dynamic load balancing possible
- Good but not perfect scaling
- Latency effects

Domain Decomposition MD

Disadvantages

- Requires short potential cut off
- Complex force fields tricky
- Not Suitable for small systems
- ~< 50,000 atoms

Parallel Force Calculation

Short Range Non-Bonded Forces:

- DL_POLY 2
- Have complete list of all atoms
- User Verlet neighbour list
- So know how many forces we need to calculate
- So Simply spilt them up amongst the processors
- DL_POLY 3
- Once data exchanged with neighbour procs have all the data we need to calculate the forces on my atoms
- So calculate them!

Also bond forces and constraint forces - will not cover here

The Ewald Summation

$$
\begin{aligned}
& U_{c}=\left.\frac{1}{2 V \varepsilon_{o}} \sum_{\vec{k} \neq 0}^{\infty} \frac{\exp \left(-k^{2} / 4 \alpha^{2}\right)}{k^{2}} \sum_{j=1}^{N} q_{j} \exp \left(-i \vec{k} \cdot r_{j}\right)\right|^{2}+ \\
& \frac{1}{4 \pi \varepsilon_{o}} \sum_{\vec{R}_{\ell}=\overrightarrow{0}}^{\infty} \sum_{n<j}^{N} \frac{q_{n} q_{j}}{\left|\vec{R}_{\ell}+\vec{r}_{j n}\right|} \operatorname{erfc}\left(\alpha \mid \vec{R}_{\ell}+\vec{r}_{j n}\right)- \\
& \frac{\alpha}{4 \pi^{3 / 2} \varepsilon_{o}} \sum_{j=1}^{N} q_{j}^{2} \\
& \text { with: } \quad \vec{k}=\frac{2 \pi}{V^{1 / 3}}(\ell, m, n)^{\perp}
\end{aligned}
$$

DL_POLY 2 - Parallel Ewald Summation

- Self interaction correction - as is.
- Real Space terms:
- Handle using parallel Verlet neighbour list
- A short range force so handle as appropriate for DL_POLY 2 or 3
- Reciprocal Space Terms:
- Distribute over atoms

Smoothed Particle-Mesh Ewald

$$
\text { Ref: Essmann et al., J. Chem. Phys. (1995) } 1038577
$$

The crucial part of the SPME method is the conversion of the Reciprocal Space component of the Ewald sum into a form suitable for Fast Fourier Transforms (FFT). Thus:

$$
\left.U_{\text {recip }}=\frac{1}{2 V \varepsilon_{0}} \sum_{k \neq 0}^{\dot{x}} \frac{\exp \left(-k^{2} / 4 \alpha^{2}\right)}{k^{2}} \right\rvert\, \sum_{j=1}^{N} q_{j} \exp \left(-i \vec{k} \cdot r_{j}\right)^{2}
$$

becomes:

$$
U_{\text {recip }}=\frac{1}{2 V \varepsilon_{o}} \sum_{k_{1}, k_{2}, k_{3}} G^{T}\left(k_{1}, k_{2}, k_{3}\right) Q\left(k_{1}, k_{2}, k_{3}\right)
$$

where G and Q are 3 D grid arrays (see later)

SPME: Spline Scheme

Central idea - share discrete charges on 3D grid:

Cardinal B-Splines $M_{n}(u)$ - in 1D:

$\exp \left(2 \pi i u_{j} k / L\right) \approx b(k) \sum_{\ell=-\infty}^{\infty} M_{n}\left(u_{j}-\ell\right) \exp (2 \pi i k \ell / K)$
$b(k)=\exp (2 \pi i(n-1) k / K)\left[\sum_{\ell=0}^{n-2} M_{n}(\ell+1) \exp (2 \pi i k \ell / K)\right]^{-1}$

$$
\begin{aligned}
& M_{n}(u)=\frac{1}{(n-1)!} \sum_{k=0}^{n}(-1)^{k} \frac{n!}{k!(n-k)!} \max (u-k, 0)^{n-1} \\
& M_{n}(u)=\frac{u}{n-1} M_{n-1}(u)+\frac{n-u}{n-1} M_{n-1}(u-1)
\end{aligned} \begin{aligned}
& \text { Recursion } \\
& \text { relation }
\end{aligned}
$$

SPME: Building the Arrays

$$
\begin{aligned}
& Q\left(\ell_{1}, \ell_{2}, \ell_{3}\right)= \\
& \sum_{j=1}^{N} q_{j} \sum_{n_{1}, n_{2}, n_{3}} M_{n}\left(u_{1 j}-\ell_{1}-n_{1} K_{1}\right) M_{n}\left(u_{2 j}-\ell_{2}-n_{2} K_{2}\right) M_{n}\left(u_{3 j}-\ell_{3}-n_{3} K_{3}\right)
\end{aligned}
$$

Is the charge array and $\mathrm{Q}^{\mathrm{T}}\left(\mathrm{k}_{1}, \mathrm{k}_{2}, \mathrm{k}_{3}\right)$ its discrete Fourier transform.
$\mathrm{G}^{\mathrm{T}}\left(\mathrm{k}_{1}, \mathrm{k}_{2}, \mathrm{k}_{3}\right)$ is the discrete Fourier Transform of the function:
$G\left(k_{1}, k_{2}, k_{3}\right)=\frac{\exp \left(-k^{2} / 4 \alpha^{2}\right)}{k^{2}} B\left(k_{1}, k_{2}, k_{3}\right)\left(Q^{T}\left(k_{1}, k_{2}, k_{3}\right)\right)^{*}$
with

$$
B\left(k_{1}, k_{2}, k_{3}\right)=\left|b_{1}\left(k_{1}\right)\right|^{2}\left|b_{2}\left(k_{2}\right)\right|^{2}\left|b_{3}\left(k_{3}\right)\right|^{2}
$$

SPME: Comments

-SPME is generally faster then conventional Ewald sum in most applications. Algorithm scales as $\mathrm{O}(\mathrm{N} \log \mathrm{N})$
-In DL_POLY_2 the FFT array is built in pieces on each processor and made whole by a global sum for the FFT operation
-In DL_POLY_3 the FFT array is built in pieces on each processor and kept that way for the distributed FFT operation (DAFT)
-The DAFT FFT `hides’ all the implicit communications

Parallel FFTs - The Basics

FFTs are

- Fast (!) - O(VlogV) operations where V is the number of points in the grid
- Global operations - to perform a FFT you need all the points This makes it difficult to write an efficient, good scaling FFT.

Traditional Parallel FFTs (1)

- Distribute the data by planes
- Each processor has a complete set of points in the x and y directions so can do those Fourier transforms
- Redistribute data so that a processor holds all the points in z
- Do the z transforms

Traditional Parallel FFTs (2)

- Allows efficient implementation of the serial FFTs (use a library routine)
- In practice for large enough 3D FFTs can scale reasonably
- However the distribution does not map onto DL_POLY 3's distribution - large amounts of data redistribution

DAFT(1)

- Takes data distributed as DLPOLY
- So do a distributed data FFT in the x direction
- Then the y
- And finally the z

DAFT(2)

- Disadvantage is that can not use the library routine for the 1D FFT (not quite true ...)
- Scales quite well - e.g. on 512 procs, an $8 \times 8 \times 8$ proc grid, a 1D FFT need only scale to 8 procs
- Totally avoids data redistribution

Traditional v. DAFT

- Traditional has faster serial speed as can use library routines
- DAFT avoids a lot of communication because it maps directly onto DLPOLYs distribution

In practice DAFT wins (on the few machines we have compared), and also the coding is simpler !

DAFT, DAFT prices !

- DAFT is a standard Fortran 90 module and is extremely portable
- If anybody wants a copy for their other codes please ask me!

DL_POLY_3 on HPCx

- Test case 1 (552960 atoms, 300 t)
- $\mathrm{NaKSi}_{2} \mathrm{O}_{5}$ - disilicate glass
- SPME (128³grid)+3 body terms, 15625 LC)
- 32-512 processors (4-64 nodes)
- Test case 2 (792960 atoms, 10 1 t)
- 64xGramicidin(354)+256768 $\mathrm{H}_{2} \mathrm{O}$
- SHAKE+SPME(256³ grid),14812 LC
- 16-256 processors (2-32 nodes)

DL_POLY_3 on HPCx

DL_POLY_3 on HPCx

Course Summary

- So I hope I Have
- Introduced you to what parallel computers are capable of
- Shown why it is very rarely possible to get perfect scaling
- Introduced you to the de facto parallel programming standards
- MPI
- OpenMP
- Introduced you to one or two common parallel programming methods
- Given you a feeling about how to think about how to get effective use out of parallel codes
- Introduced you to how a couple of real, large scale codes actually work
- I also hope that you have enjoyed it !

Acknowledgements

- All the people in the CSE department at DL, especially
- Mike Ashworth
- Bill Smith
- Martin Plummer
- Andy Sunderland
- Martyn Guest
- At EPCC
- Mark Bull
- Lorna Smith
- And to the organizers for inviting me.

