
Computational Science &
Engineering DepartmentCSE

Parallel Algorithms on a cluster of PCs

Ian Bush
Computational Science & Engineering Department

Daresbury Laboratory
I.J.Bush@dl.ac.uk

With Thanks to W.Smith at DL

mailto:I.J.Bush@dl.ac.uk

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

2

Case Studies

• In this lecture I want to give a couple of examples of code I have worked
upon in recent years

• They are
– CRYSTAL - ab initio electronic structure of solids
– DL_POLY - Classical MD

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

3

CRYSTAL

• Electronic structure and related properties of periodic solids

• All electron, local Gaussian basis set, DFT and Hartree-Fock

• Under continuous development since 1974

• Distributed to over 500 sites world wide

• Developed jointly by Daresbury and Turin

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

4

CRYSTAL - Functionality

Properties
• Energy
• Structure
• Vibrations (phonons)
• Elastic tensor
• Ferroelectric polarisation
• Piezoelectric constants
• X-ray structure factors
• Density of States / Bands
• Charge/Spin Densities
• Magnetic Coupling
• Electrostatics (V, E, EFG classical)
• Fermi contact (NMR)
• EMD (Compton, e-2e)

• Basis Set
• LCAO - Gaussians
• All electron or pseudopotential
• Hamiltonian
• Hartree-Fock (UHF, RHF)
• DFT (LSDA, GGA)
• Hybrid funcionals
• Techniques
• Replicated data parallel
• Distributed data parallel
• Direct –SCF
• Geometry optimisation
• Visualisation
• Cerius2 interface
• AVS GUI (DLV)

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

5

CRYSTAL – Parallel Implementations

• Pcrystal
– Replicated data
– Good for medium to large problems on small to medium processor counts

• MPPcrystal
– Distributed data
– Good for large problems on large processor counts

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

6

CRYSTAL – basic algorithm

• HR = PR . IR
IR ⇐ sum of independent integrals

• Hk ⇐ Qk
T HR Qk

• Hkψk = εk ψk

– Solve Hk⇒ {εk, ψk}

• PR ⇐ | ψk |2

• Repeat until converged

F.T. and matrix multiply

Diagonalization – each k
point independent

Gather & condense

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

7

Pcrystal - Implementation

• Standard compliant
– Fortran 90
– MPI for message passing

• Replicated data
– Each processor has a complete copy of all the matrices used in the linear

algebra
– Makes implementation very simple

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

8

Pcrystal – Parallel Integrals

• Coulomb, Exchange and DFT terms all involve many independent tasks:

– Coulomb/Exchange have to evaluate integrals of the form
<φiφj||φkφl> for all of i, j, k, l

• Each integral independent
• So give a subset to each of the processors
• But requires more or less random access to HR and PR

– Bad for message passing - replicate

– DFT terms are a numerical integration over a grid
• Each point of the grid independent
• So give a subset of the grid to each processor

• Almost perfectly parallel !
– Only global sum at end required – v. few comms
– Limit on scaling is load imbalance

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

9

Pcrystal – Linear Algebra

• Each k point (and spin) independent

• So each processor performs the linear algebra for a subset of the k points
that the job requires
– Again very few comms so potentially good scaling, but …
– Potential load imbalance

• Complex v. real k points
– Number of k points limits the number of processors that can be

exploited
• What if only a Γ point only calculation ?

– Limit on size of job that can be performed does not scale with
number of processors

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

10

Pcrystal – Changes to The Input

(except think about direct)

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

11

Pcrystal - Summary

• In general scales very well provided the number of processors ≤ number of
k points

– Will gain something due to integrals
– But large jobs in general require few k points

• The limit on the size of job is given by the memory required to store the
linear algebra matrices for one k point

– More processors do not mean larger jobs can be run

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

12

MPP Crystal - Implementation

• Uses common standards
– Fortran 90
– MPI for message passing
– ScaLAPACK 1.7 (Dongarra et al.) for linear algebra on distributed

matrices
• www.netlib.org/scalapack/scalapack_home.html

– Home grown BFG Jacobi diagonalizer
• www.cse.clrc.ac.uk/arc/bfg.shtml
• Scales better and less memory hungry than ScaLAPACK

• Distributed data
– Each processor hold only a part of each of the matrices used in the

linear algebra
– More complex to implement

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

13

MPPcrystal – Parallel Integrals

• More or less as Pcrystal with some memory saving tricks
– Works well so why reinvent the wheel ?
– However requires replicated HR,PR

• Ultimate limit on size of job
• However limit is less stringent than for Pcrystal because these are

stored in sparse format

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

14

MPPcrystal - Linear Algebra (1)

• All matrices distributed
– More procs means more memory so larger jobs

• Mostly use ScaLAPACK for e.g.
– Choleski decomposition
– Matrix matrix multiplies
– Linear equation solves

• However for diag use own BFG package
– Based on Jacobi which can better exploit the sparse nature of the

matrix
– Scales with processor number better than that provided by

ScaLAPACK
– Requires less memory than ScaLAPACK
– But slower on first 1-2 cycles

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

15

MPPcrystal – Linear algebra (2)

• As each processor only holds a part of the matrix comms are
required to perform the linear algebra, unlike for Pcrystal

• However N3 operations but only N2 data to communicate
– Scaling gets better for larger systems
– Very rough rule of thumb – if N basis functions can exploit

up to around N/20 processors
• Further the number of processors that can be exploited is NOT

limited by the number of k points
– Great for large Γ point only calculations !

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

16

MPPcrystal – other issues

• By default runs direct
– 100s or processors writing to/reading from one disk not a

good idea !
• Most but not all of CRYSTAL implemented

– Will fail quickly and cleanly if requested feature not
implemented

– Perhaps the most important is symmetry adaption of the
diag

• For large high symmetry systems Pcrystal may be more
effective

• Too small a job on too many procs will fail
– In general not an issue

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

17

MPPcrystal – Changes to Your Input

TEST08 - SILICON BULK: STO-3G
CRYSTAL
0 0 0
227
5.42
1
14 .125 .125 .125
END
14 3
1 0 3 2. 0.
1 1 3 8. 0.
1 1 3 4. 0.
99 0
END
END
8 4 8
MPP
END

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

18

MPPcrystal - summary

• For large systems can scale well, but not so good for small to medium size
ones.

• Size of linear algebra matrices is, at present, not an issue given enough
processors.

• Memory limitation is from the replicated HR,PR NOT the linear algebra
matrices. As the former are stored in a sparse format they tend to be much
smaller than the latter.

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

19

Pcrystal and MPPcrystal

• Pcrystal
– Few comms means scales very well
– However scaling limited by number of k points
– Memory usage in linear algebra limits size of system that may be

studied
– Load imbalance in linear algebra may be an issue

• MPPcrystal
– More comms but scales well for large system
– Scaling not limited by number of k points
– Distributing the matrices allows larger systems to be studied,

especially on large number of processors

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

20

MPPcrystal – an example

• I will illustrate the behaviour of MPPcrystal with some calculations on a
small protein, Crambin.

• I will also give an indication of what we are trying to do with MPPcrystal

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

21

Why Crambin (the official version)

• Small protein (46 residues)

• Crystal structure characterized to very
high precision by XRD studies (0.52 Å)

• PDB entry (1EJG) includes
hydrogens (this is unusual)

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

22

Crambin - The Crystal

• 2 Chains in unit Cell

• 1284 Atoms

• Initial studies using STO3G
(3948 basis functions)

• Upped to 6-31G * * (12354
functions)

• All calculations Hartree-Fock

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

23

Parallel Performance

0

128

256

384

512

640

768

896

1024

0 256 512 768 1024

Sp
ee

d-
up

• Fit measured data to Amdahl’s law
to obtain estimate of speed up

• Increasing the basis set size
increases the scalability

• About 700 speed up on 1024
processors for 6-31G * *

• Takes about 3 hours instead of
about 3 months

• 99.95% parallel

Linear
6-31G** (12,354 GTOs)
6-31G (7,194 GTOs)
STO-3G (3,948 GTOs)

Number of Processors

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

24

6-31G * * Parallel Performance

0
200
400
600
800

1000
1200
1400
1600
1800
2000

256 512 1024

Integrals

Diagonalisation

SCF Cycle

• The integrals scale almost
perfectly

• The diag is 3.1 times quicker on
1024 compared to 256 for the
whole run

• Overall good scaling exhibited

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

25

6-31G Latest data

0

10

20

0 128 256 384 512

Number of Processors

Pe
rf

or
m

an
ce

 (a
rb

itr
ar

y

Ideal
IBM p690+ HPS
IBM p690 SP
SGI Altix 1300

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

26

Results - Charge Density

• Isosurface of the charge density
at 0.1Å resolution

• Can be compared with SR
results

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

27

Results – Electrostatic Potential

• Charge density isosurface
coloured according to potential

• Useful to determine possible
chemically active groups

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

28

Rusticyanin

• Rusticyanin, a blue copper
protein, has 6284 atoms and is
involved in redox processes

• We have started calculations
using over 30000 basis functions

• In collaboration with S.Hasnain
(DL) we want to calculate redox
potentials for rusticyanin and
associated mutants. Rusti has a
large potential, 680mV

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

29

CRYSTAL Summary

• Crystal can use to parallelization strategies
– Pcrystal uses replicated data

• Good for medium to large problems
• Memory limits size of problem that may be addressed
• Scales well up to number of k points
• The one you’ll use most often – it’s the DL day to day workhorse

– MPPcrystal uses distributed data
• Needs large problems to perform well
• Memory limitations much less stringent than Pcrystal
• For a big enough problem can scale very well

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

30

DL_POLY Background

• General purpose parallel MD code
• Developed at Daresbury Laboratory for CCP5 1994-today
• Available free of charge (under licence) to University researchers world-

wide

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

31

DL_POLY Versions

• DL_POLY_2
– Replicated Data, up to 50,000 atoms
– Full force field and molecular description

• DL_POLY_3
– Domain Decomposition, up to 1,000,000 atoms+
– Full force field but no rigid body description.

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

32

The DL_POLY Force Field

() ()

() () ()

() ()i
N

1i
external

N

i
dcbainversinvers

N

i
dcbadiheddihed

N

i
cbaangleangle

N

i
babondbond

N'

ji,

N

1i

1/2
i

n

ij
metal

N'

nk,j,i,
nkjibody4

N'

kj,i,
kjibody3

N'

ji, ji

ji
N'

ji,
jipairN21

rΦr,r,r,r,iU

r,r,r,r,iUr,r,r,iUr,r,iU

ρC
r
αεr,r,r,rUr,r,rU

|rr|
qq

4π
1|)rr(|U)r,.....,r,rV(

invers

invers

dihed

dihed

angle

angle

bond

bond

rrrrr

rrrrrrrrr

rrrrrrr

rr
rrrrr

∑∑

∑∑∑

∑ ∑∑∑

∑∑

=

=
−−

+

+++

+⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
++

+
−

+−=
ε

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

33

DL_POLY Force Field

• Intermolecular forces
– All common van de Waals potentials
– Sutton Chen many-body potential
– 3-body angle forces (SiO2)
– 4-body inversion forces (BO3)

• Intramolecular forces
– Bonds, angle, dihedrals, inversions

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

34

DL_POLY Force Field

• Coulombic forces
– SPME (3D), Adiabatic shell model, Reaction field, Bare Coulombic,

Shifted Coulombic

• Externally applied field
– Walled cells,electric field,shear field, etc

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

35

Boundary Conditions

• None (e.g. isolated macromolecules)

• Cubic periodic boundaries

• Orthorhombic periodic boundaries

• Parallelepiped periodic boundaries

• Truncated octahedral periodic boundaries

• Rhombic dodecahedral periodic boundaries

• Slabs (i.e. x,y periodic, z nonperiodic)

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

36

Algorithms and Ensembles

Ensembles
• NVE
• Berendsen NVT
• Hoover NVT
• Evans NVT
• Berendsen NPT
• Hoover NPT
• Berendsen NσT
• Hoover NσT

Algorithms
• Verlet leapfrog
• RD-SHAKE
• Euler-Quaternion*
• QSHAKE*
• [All combinations]

* Not in DL_POLY_3

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

37

Key Stages in MD SimulationKey Stages in MD SimulationInitializeInitialize

ForcesForces

MotionMotion

StatisticsStatistics

SummarizeSummarize

••Set up initial systemSet up initial system

••Calculate atomic forcesCalculate atomic forces

••Calculate atomic motionCalculate atomic motion

••Calculate physical propertiesCalculate physical properties

••Repeat !Repeat !

••Produce final summaryProduce final summary

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

38

Replicated Data

InitializeInitialize

ForcesForces

MotionMotion

StatisticsStatistics

SummarySummary

InitializeInitialize

ForcesForces

MotionMotion

StatisticsStatistics

SummarySummary

InitializeInitialize

ForcesForces

MotionMotion

StatisticsStatistics

SummarySummary

InitializeInitialize

ForcesForces

MotionMotion

StatisticsStatistics

SummarySummary

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

39

Replicated Data MD Algorithm

Features:

– Each node has copy of all atomic coordinates (Ri,Vi,Fi)

– Force calculations shared equally between nodes (i.e. up to N(N-
1)/2P pair forces per node).

• Use neighbour list

– Atomic forces summed globally over all nodes

– Motion integrated for all or some atoms on each node

– Updated atom positions circulated to all nodes

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

40

Replicated Data MD Algorithm

Advantages:

• Simple to implement

• Good load balancing

• Suitable for complex force fields

• Dynamic load balancing possible

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

41

Replicated Data MD Algorithm

Disadvantages:

• High communication overhead

• Sub-optimal type 2 scaling

• Large memory requirement

• Unsuitable for massive parallelism

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

42

DL_POLY 3 - Link Cell Algorithm

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

43

DL_POLY 3 Domain Decomposition MD

AA BB

CC DD

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

44

DL_POLY 3 - Domain Decomposition MD

Features:
– Short range potential cut off (rcut << Lcell)

– Spatial decomposition of atoms into domains

– Map domains onto processors

– Use link cells in each domain

– Pass border link cells to adjacent processors

– Calculate forces, solve equations of motion

– Re-allocate atoms leaving domains

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

45

DL_POLY 3 - Domain Decomposition MD

Advantages:
• Good load balancing

• Ideal for huge systems

• Simple communication structure

• Fully distributed memory requirement

• Dynamic load balancing possible

• Good but not perfect scaling
– Latency effects

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

46

Domain Decomposition MD

Disadvantages

• Requires short potential cut off

• Complex force fields tricky

• Not Suitable for small systems
– ~< 50,000 atoms

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

47

Parallel Force Calculation

Short Range Non-Bonded Forces:
• DL_POLY 2

– Have complete list of all atoms
– User Verlet neighbour list
– So know how many forces we need to calculate
– So Simply spilt them up amongst the processors

• DL_POLY 3
– Once data exchanged with neighbour procs have all the data we need to

calculate the forces on my atoms
– So calculate them !

Also bond forces and constraint forces – will not cover here

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

48

The Ewald Summation

()U
V

k
k

q ik rc
o k

j j
j

N
=

−
− ⋅ +

≠

∞

=
∑ ∑

1
2

42 2

2
0 1

2

ε
αexp(/) exp

r r

r

()1
4

4

0

3 2
2

1

πε
α

α
π ε

o

n j

jnn j

N

R
jn

o
j

j

N

q q
R r

erfc R r

q

r r
r r

l
r r l
l

+
+ −

<=

∞

=

∑∑

∑/

r
lk

V
m n= ⊥2

1 3
π
/ (, ,)with:with:

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

49

DL_POLY 2 - Parallel Ewald Summation

• Self interaction correction - as is.

• Real Space terms:
– Handle using parallel Verlet neighbour list
– A short range force so handle as appropriate for DL_POLY 2 or 3

• Reciprocal Space Terms:
– Distribute over atoms

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

50

()q ik rj j
j

N
exp − ⋅

=
∑

r

1

()q ik rj j
j N N P

N
exp

/
− ⋅

= − +
∑

r

1

()q ik rj j
j

N P
exp

/
− ⋅

=
∑

r

1

()q ik rj j
j N P

N P
exp

/

(/)
− ⋅

= +
∑

r

1

2

()q ik rj j
j N P

N P
exp

(/)

/)
− ⋅

= +
∑

r

2 1

3(

()q ik rj j
j N P

N P
exp

/)

(/)
− ⋅

= +
∑

r

3(1

4

•••

()q ik rj j
j

N
exp − ⋅

=
∑

r

1

2

Partition overPartition over
atoms:atoms:

Add to Add to EwaldEwald
sum on allsum on all
processorsprocessors

Global SumGlobal Sum

×
−exp(/)k

k

2 2

2
4α

ppPP

pp33

pp22

pp11

pp00

Repeat for eachRepeat for each
k vectork vector

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

51

Smoothed Particle-Mesh Ewald
Ref: Ref: EssmannEssmann et alet al., J. Chem. Phys. (1995) ., J. Chem. Phys. (1995) 103103 85778577

()
2

10
2

22

exp)4/exp(
2

1 ∑∑
=

∞

≠

⋅−
−

=
N

j
jj

ko
recip rkiq

k
k

V
U

r
r

rr

α
ε

The crucial part of the SPME method is the conversion The crucial part of the SPME method is the conversion
of the Reciprocal Space component of the of the Reciprocal Space component of the EwaldEwald sum sum
into a form suitable for Fast Fourier Transforms (FFT).into a form suitable for Fast Fourier Transforms (FFT).
Thus:Thus:

),,(),,(
2

1
321

,,
321

321

kkkQkkkG
V

U
kkk

T

o
recip ∑=

ε

becomes:becomes:

wherewhere G and Q are 3D grid arrays (see later)G and Q are 3D grid arrays (see later)

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

52

SPME: Spline Scheme

Central idea Central idea -- share discrete charges on 3D grid:share discrete charges on 3D grid:

Cardinal BCardinal B--SplinesSplines MMnn(u(u)) -- in 1D:in 1D:

() ()

()

)1(
1

)(
1

)(

)0,max(
)!(!

!)1(
)!1(

1)(

/2exp)1()/)1(2exp()(

/2exp)()(/2exp

11

1

0

12

0

−
−
−

+
−

=

−
−

−
−

=

⎥
⎦

⎤
⎢
⎣

⎡
+−=

−≈

−−

−

=

−−

=

∞

−∞=

∑

∑

∑

uM
n

unuM
n

uuM

ku
knk

n
n

uM

KikMKknikb

KikuMkbLkiu

nnn

n
n

k

k
n

n

n

jnj

l

l

ll

ll

ππ

ππ

RecursionRecursion
relationrelation

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

53

SPME: Building the Arrays

∑∑ −−−−−−

=

= 321 ,,
333322221111

1

321

)()()(

),,(

nnn
jnjnjn

N

j
j KnuMKnuMKnuMq

Q

lll

lll

Is the charge array and QIs the charge array and QTT(k(k11,k,k22,k,k33) its discrete Fourier transform.) its discrete Fourier transform.

GGT T (k(k11,k,k22,k,k33) is the discrete Fourier Transform of the) is the discrete Fourier Transform of the
function:function:

*
3213212

22

321)),,()(,,()4/exp(),,(kkkQkkkB
k
kkkkG Tα−

=

2
33

2
22

2
11321)()()(),,(kbkbkbkkkB =withwith

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

54

SPME: Comments

••SPME is generally faster then conventional SPME is generally faster then conventional EwaldEwald sum sum
in most applications. Algorithm scales as in most applications. Algorithm scales as O(NO(NloglogNN))

••In DL_POLY_2 the FFT array is built in pieces on each In DL_POLY_2 the FFT array is built in pieces on each
processor and made whole by a global sum for the FFT processor and made whole by a global sum for the FFT
operationoperation

••In DL_POLY_3 the FFT array is built in pieces on each In DL_POLY_3 the FFT array is built in pieces on each
processor and kept that way for the distributed FFT processor and kept that way for the distributed FFT
operation (DAFT)operation (DAFT)

••The DAFT FFT `hides’ all the implicit communicationsThe DAFT FFT `hides’ all the implicit communications

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

55

Parallel FFTs - The Basics

FFTs are

• Fast (!) - O(O(VlogV) operations where V is the number of points in the
grid

• Global operations - to perform a FFT you need all the points
This makes it difficult to write an efficient, good scaling FFT.

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

56

Traditional Parallel FFTs (1)

• Distribute the data by planes

• Each processor has a complete set of points in the x and y
directions so can do those Fourier transforms

• Redistribute data so that a processor holds all the points in z

• Do the z transforms

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

57

Traditional Parallel FFTs (2)

• Allows efficient implementation of the serial FFTs (use a library
routine)

• In practice for large enough 3D FFTs can scale reasonably

• However the distribution does not map onto DL_POLY 3’s
distribution - large amounts of data redistribution

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

58

DAFT(1)

• Takes data distributed as DLPOLY

• So do a distributed data FFT in the x direction

• Then the y

• And finally the z

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

59

DAFT(2)

• Disadvantage is that can not use the library routine for the 1D FFT (
not quite true …)

• Scales quite well - e.g. on 512 procs, an 8x8x8 proc grid, a 1D FFT
need only scale to 8 procs

• Totally avoids data redistribution

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

60

Traditional v. DAFT

• Traditional has faster serial speed as can use library routines

• DAFT avoids a lot of communication because it maps directly onto
DLPOLYs distribution

In practice DAFT wins (on the few machines we have compared), and
also the coding is simpler !

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

61

DAFT, DAFT prices !

• DAFT is a standard Fortran 90 module and is extremely portable

• If anybody wants a copy for their other codes please ask me !

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

62

DL_POLY_3 on HPCx

• Test case 1 (552960 atoms, 300∆t)
– NaKSi2O5 - disilicate glass
– SPME (1283grid)+3 body terms, 15625 LC)
– 32-512 processors (4-64 nodes)

• Test case 2 (792960 atoms, 10∆t)
– 64xGramicidin(354)+256768 H2O
– SHAKE+SPME(2563 grid),14812 LC
– 16-256 processors (2-32 nodes)

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

63

DL_POLY_3 on HPCx

Case 1Case 1

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

64

DL_POLY_3 on HPCx

Case 2Case 2

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

65

Course Summary

• So I hope I Have
– Introduced you to what parallel computers are capable of
– Shown why it is very rarely possible to get perfect scaling
– Introduced you to the de facto parallel programming standards

• MPI
• OpenMP

– Introduced you to one or two common parallel programming methods
– Given you a feeling about how to think about how to get effective use out

of parallel codes
– Introduced you to how a couple of real, large scale codes actually work

• I also hope that you have enjoyed it !

Presenter Name
Facility Name

Computational Science &
Engineering DepartmentCSEComputational Science &

Engineering DepartmentCSE

66

Acknowledgements

• All the people in the CSE department at DL, especially
– Mike Ashworth
– Bill Smith
– Martin Plummer
– Andy Sunderland
– Martyn Guest

• At EPCC
– Mark Bull
– Lorna Smith

• And to the organizers for inviting me.

	Case Studies
	CRYSTAL
	CRYSTAL - Functionality
	CRYSTAL – Parallel Implementations
	CRYSTAL – basic algorithm
	Pcrystal - Implementation
	Pcrystal – Parallel Integrals
	Pcrystal – Linear Algebra
	Pcrystal – Changes to The Input
	Pcrystal - Summary
	MPP Crystal - Implementation
	MPPcrystal – Parallel Integrals
	MPPcrystal - Linear Algebra (1)
	MPPcrystal – Linear algebra (2)
	MPPcrystal – other issues
	MPPcrystal – Changes to Your Input
	MPPcrystal - summary
	Pcrystal and MPPcrystal
	MPPcrystal – an example
	Why Crambin (the official version)
	Crambin - The Crystal
	Parallel Performance
	6-31G * * Parallel Performance
	6-31G Latest data
	Results - Charge Density
	Results – Electrostatic Potential
	Rusticyanin
	CRYSTAL Summary
	DL_POLY Background
	DL_POLY Versions
	The DL_POLY Force Field
	DL_POLY Force Field
	DL_POLY Force Field
	Boundary Conditions
	Algorithms and Ensembles
	Key Stages in MD Simulation
	Replicated Data
	Replicated Data MD Algorithm
	Replicated Data MD Algorithm
	Replicated Data MD Algorithm
	DL_POLY 3 - Link Cell Algorithm
	DL_POLY 3 Domain Decomposition MD
	DL_POLY 3 - Domain Decomposition MD
	DL_POLY 3 - Domain Decomposition MD
	Domain Decomposition MD
	Parallel Force Calculation
	The Ewald Summation
	DL_POLY 2 - Parallel Ewald Summation
	Smoothed Particle-Mesh Ewald
	SPME: Spline Scheme
	SPME: Building the Arrays
	SPME: Comments
	Parallel FFTs - The Basics
	Traditional Parallel FFTs (1)
	Traditional Parallel FFTs (2)
	DAFT(1)
	DAFT(2)
	Traditional v. DAFT
	DAFT, DAFT prices !
	DL_POLY_3 on HPCx
	DL_POLY_3 on HPCx
	DL_POLY_3 on HPCx
	Course Summary
	Acknowledgements

