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Case Studies

• In this lecture I want to give a couple of examples of code I have worked 
upon in recent years

• They are
– CRYSTAL  - ab initio electronic structure of solids
– DL_POLY - Classical MD
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CRYSTAL

• Electronic structure and related properties of periodic solids

• All electron, local Gaussian basis set, DFT and Hartree-Fock

• Under continuous development since 1974

• Distributed to over 500 sites world wide

• Developed jointly by Daresbury and Turin
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CRYSTAL - Functionality

Properties
• Energy
• Structure
• Vibrations (phonons)
• Elastic tensor
• Ferroelectric polarisation
• Piezoelectric constants
• X-ray structure factors
• Density of States / Bands
• Charge/Spin Densities
• Magnetic Coupling
• Electrostatics (V, E, EFG classical)
• Fermi contact (NMR)
• EMD (Compton, e-2e)

• Basis Set
• LCAO - Gaussians
• All electron or pseudopotential
• Hamiltonian
• Hartree-Fock (UHF, RHF)
• DFT (LSDA, GGA)
• Hybrid funcionals
• Techniques
• Replicated data parallel
• Distributed data parallel
• Direct –SCF
• Geometry optimisation
• Visualisation
• Cerius2 interface
• AVS GUI (DLV)
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CRYSTAL – Parallel Implementations

• Pcrystal
– Replicated data
– Good for medium to large problems on small to medium processor counts

• MPPcrystal
– Distributed data
– Good for large problems on large processor counts
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CRYSTAL – basic algorithm

• HR = PR . IR
IR ⇐ sum of independent integrals

• Hk ⇐ Qk
T HR Qk

• Hkψk = εk ψk

– Solve Hk⇒ {εk, ψk}

• PR ⇐ | ψk |2

• Repeat until converged

F.T. and matrix multiply

Diagonalization – each k 
point independent

Gather & condense
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Pcrystal - Implementation

• Standard compliant
– Fortran 90
– MPI for message passing

• Replicated data
– Each processor has a complete copy of all the matrices used in the linear 

algebra
– Makes implementation very simple
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Pcrystal – Parallel Integrals

• Coulomb, Exchange and DFT terms all involve many independent tasks:

– Coulomb/Exchange have to evaluate integrals of the form 
<φiφj||φkφl> for all of i, j, k, l

• Each integral independent
• So give a subset to each of the processors
• But requires more or less random access to HR and PR

– Bad for message passing - replicate

– DFT terms are a numerical integration over a grid
• Each point of the grid independent
• So give a subset of the grid to each processor

• Almost perfectly parallel !
– Only global sum at end required – v. few comms
– Limit on scaling is load imbalance
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Pcrystal – Linear Algebra

• Each k point (and spin) independent

• So each processor performs the linear algebra for a subset of the k points 
that the job requires
– Again very few comms so potentially good scaling, but …
– Potential load imbalance

• Complex v. real k points
– Number of k points limits the number of processors that can be 

exploited
• What if only a Γ point only calculation ?

– Limit on size of job that can be performed does not scale with 
number of processors
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Pcrystal – Changes to The Input

(except think about direct)
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Pcrystal - Summary

• In general scales very well provided the number of processors ≤ number of 
k points

– Will gain something due to integrals
– But large jobs in general require few k points

• The limit on the size of job is given by the memory required to store the 
linear algebra matrices for one k point

– More processors do not mean larger jobs can be run
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MPP Crystal - Implementation

• Uses common standards
– Fortran 90
– MPI for message passing
– ScaLAPACK 1.7  (Dongarra et al.) for linear algebra on distributed 

matrices
• www.netlib.org/scalapack/scalapack_home.html

– Home grown BFG Jacobi diagonalizer
• www.cse.clrc.ac.uk/arc/bfg.shtml
• Scales better and less memory hungry than ScaLAPACK

• Distributed data
– Each processor hold only a part of each of the matrices used in the 

linear algebra
– More complex to implement
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MPPcrystal – Parallel Integrals

• More or less as Pcrystal with some memory saving tricks
– Works well so why reinvent the wheel ?
– However requires replicated HR,PR

• Ultimate limit on size of job
• However limit is less stringent than for Pcrystal because these are 

stored in sparse format 
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MPPcrystal - Linear Algebra (1)

• All matrices distributed
– More procs means more memory so larger jobs

• Mostly use ScaLAPACK for e.g.
– Choleski decomposition
– Matrix matrix multiplies
– Linear equation solves

• However for diag use own BFG package
– Based on Jacobi which can better exploit the sparse nature of the 

matrix
– Scales with processor number better than that provided by 

ScaLAPACK
– Requires less memory than ScaLAPACK
– But slower on first 1-2 cycles



Presenter Name
Facility Name

Computational Science & 
Engineering DepartmentCSEComputational Science & 

Engineering DepartmentCSE

15

MPPcrystal – Linear algebra (2)

• As each processor only holds a part of the matrix comms are 
required to perform the linear algebra, unlike for Pcrystal

• However N3 operations but only N2 data to communicate
– Scaling gets better for larger systems
– Very rough rule of thumb – if N basis functions can exploit 

up to around N/20 processors
• Further the number of processors that can be exploited is NOT 

limited by the number of k points
– Great for large Γ point only calculations !
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MPPcrystal – other issues

• By default runs direct
– 100s or processors writing to/reading from one disk not a 

good idea !
• Most but not all of CRYSTAL implemented

– Will fail quickly and cleanly if requested feature not 
implemented

– Perhaps the most important is symmetry adaption of the 
diag

• For large high symmetry systems Pcrystal may be more 
effective

• Too small a job on too many procs will fail
– In general not an issue
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MPPcrystal – Changes to Your Input

TEST08 - SILICON BULK: STO-3G
CRYSTAL
0 0 0
227
5.42
1
14  .125  .125   .125
END
14 3
1 0 3  2.  0.
1 1 3  8.  0.
1 1 3  4.  0.
99 0
END
END
8 4 8
MPP
END
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MPPcrystal - summary

• For large systems can scale well, but not so good for small to medium size 
ones.

• Size of linear algebra matrices is, at present, not an issue given enough 
processors.

• Memory limitation is from the replicated HR,PR NOT the linear algebra 
matrices. As the former are stored in a sparse format they tend to be much 
smaller than the latter.
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Pcrystal and MPPcrystal

• Pcrystal
– Few comms means scales very well
– However scaling limited by number of k points
– Memory usage in linear algebra limits size of system that may be

studied
– Load imbalance in linear algebra may be an issue

• MPPcrystal
– More comms but scales well for large system
– Scaling not limited by number of k points
– Distributing the matrices allows larger systems to be studied, 

especially on large number of processors
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MPPcrystal – an example

• I will illustrate the behaviour of MPPcrystal with some calculations on a 
small protein, Crambin.

• I will also give an indication of what we are trying to do with MPPcrystal
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Why Crambin (the official version)

• Small protein (46 residues)

• Crystal structure characterized to very 
high precision by XRD studies (0.52 Å)

• PDB entry ( 1EJG ) includes 
hydrogens (this is unusual)
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Crambin - The Crystal

• 2 Chains in unit Cell

• 1284 Atoms

• Initial studies using STO3G 
(3948 basis functions)

• Upped to 6-31G * * (12354 
functions)

• All calculations Hartree-Fock
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Parallel Performance 
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• Fit measured data to Amdahl’s law 
to obtain estimate of speed up

• Increasing the basis set size 
increases the scalability

• About 700 speed up on 1024 
processors for 6-31G * *

• Takes about 3 hours instead of 
about 3 months

• 99.95% parallel

Linear
6-31G**  (12,354 GTOs)
6-31G    (7,194 GTOs)
STO-3G (3,948 GTOs)

Number of Processors
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6-31G * * Parallel Performance

0
200
400
600
800

1000
1200
1400
1600
1800
2000

256 512 1024

Integrals

Diagonalisation

SCF Cycle

• The integrals scale almost 
perfectly

• The diag is 3.1 times quicker on 
1024 compared to 256 for the 
whole run

• Overall good scaling exhibited
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6-31G Latest data
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Results - Charge Density

• Isosurface of the charge density 
at 0.1Å resolution

• Can be compared with SR 
results
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Results – Electrostatic Potential

• Charge density isosurface 
coloured according to potential

• Useful to determine possible 
chemically active groups
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Rusticyanin

• Rusticyanin, a blue copper 
protein, has 6284 atoms and is 
involved in redox processes

• We have started calculations 
using over 30000 basis functions

• In collaboration with S.Hasnain
(DL) we want to calculate redox
potentials for rusticyanin and 
associated mutants. Rusti has a 
large potential, 680mV
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CRYSTAL Summary

• Crystal can use to parallelization strategies
– Pcrystal uses replicated data

• Good for medium to large problems
• Memory limits size of problem that may be addressed
• Scales well up to number of k points
• The one you’ll use most often – it’s the DL day to day workhorse

– MPPcrystal uses distributed data
• Needs large problems to perform well
• Memory limitations much less stringent than Pcrystal
• For a big enough problem can scale very well
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DL_POLY Background

• General purpose parallel MD code
• Developed at Daresbury Laboratory for CCP5 1994-today
• Available free of charge (under licence) to University researchers world-

wide
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DL_POLY  Versions

• DL_POLY_2
– Replicated Data,  up to 50,000 atoms
– Full force field and molecular description

• DL_POLY_3
– Domain Decomposition, up to 1,000,000 atoms+
– Full force field but no rigid body description.
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The DL_POLY Force Field
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DL_POLY Force Field

• Intermolecular forces
– All common van de Waals potentials
– Sutton Chen many-body potential
– 3-body angle forces (SiO2)
– 4-body inversion forces (BO3)

• Intramolecular forces
– Bonds, angle, dihedrals, inversions
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DL_POLY Force Field

• Coulombic forces
– SPME (3D), Adiabatic shell model, Reaction field, Bare Coulombic, 

Shifted Coulombic

• Externally applied field
– Walled cells,electric field,shear field, etc
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Boundary Conditions

• None (e.g. isolated macromolecules)

• Cubic periodic boundaries

• Orthorhombic periodic boundaries

• Parallelepiped periodic boundaries

• Truncated octahedral periodic boundaries

• Rhombic dodecahedral periodic boundaries

• Slabs (i.e. x,y periodic, z nonperiodic)
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Algorithms and Ensembles

Ensembles
• NVE
• Berendsen NVT
• Hoover NVT
• Evans NVT
• Berendsen NPT
• Hoover NPT
• Berendsen NσT
• Hoover NσT

Algorithms
• Verlet leapfrog
• RD-SHAKE
• Euler-Quaternion*
• QSHAKE*
• [All combinations]

* Not in DL_POLY_3
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Key Stages in MD SimulationKey Stages in MD SimulationInitializeInitialize

ForcesForces

MotionMotion

StatisticsStatistics

SummarizeSummarize

••Set up initial systemSet up initial system

••Calculate atomic forcesCalculate atomic forces

••Calculate atomic motionCalculate atomic motion

••Calculate physical propertiesCalculate physical properties

••Repeat !Repeat !

••Produce final summaryProduce final summary
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Replicated Data

InitializeInitialize

ForcesForces

MotionMotion

StatisticsStatistics

SummarySummary

InitializeInitialize
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Replicated Data MD Algorithm

Features:

– Each node has copy of all atomic coordinates (Ri,Vi,Fi)

– Force calculations shared equally between nodes (i.e. up to N(N-
1)/2P pair forces per node).

• Use neighbour list

– Atomic forces summed globally over all nodes

– Motion integrated for all or some atoms on each node

– Updated atom positions circulated to all nodes
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Replicated Data MD Algorithm

Advantages:

• Simple to implement

• Good load balancing

• Suitable for complex force fields

• Dynamic load balancing possible
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Replicated Data MD Algorithm

Disadvantages:

• High communication overhead

• Sub-optimal type 2 scaling

• Large memory requirement

• Unsuitable for massive parallelism
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DL_POLY 3 - Link Cell Algorithm
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DL_POLY 3 Domain Decomposition MD

AA BB

CC DD
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DL_POLY 3 - Domain Decomposition MD

Features:
– Short range potential cut off (rcut << Lcell)

– Spatial decomposition of atoms into domains

– Map domains onto processors 

– Use link cells in each domain

– Pass border link cells to adjacent processors

– Calculate forces, solve equations of motion

– Re-allocate atoms leaving domains
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DL_POLY 3 - Domain Decomposition MD

Advantages:
• Good load balancing

• Ideal for huge systems 

• Simple communication structure

• Fully distributed memory requirement

• Dynamic load balancing possible

• Good but not perfect scaling
– Latency effects
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Domain Decomposition MD

Disadvantages

• Requires short potential cut off

• Complex force fields tricky

• Not Suitable for small systems
– ~< 50,000 atoms



Presenter Name
Facility Name

Computational Science & 
Engineering DepartmentCSEComputational Science & 

Engineering DepartmentCSE

47

Parallel Force Calculation

Short Range Non-Bonded Forces:
• DL_POLY 2

– Have complete list of all atoms
– User Verlet neighbour list
– So know how many forces we need to calculate
– So Simply spilt them up amongst the processors

• DL_POLY 3
– Once data exchanged with neighbour procs have all the data we need to 

calculate the forces on my atoms 
– So calculate them !

Also bond forces and constraint forces – will not cover here
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The Ewald Summation
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DL_POLY 2 - Parallel Ewald Summation

• Self interaction correction - as is.

• Real Space terms:
– Handle using parallel Verlet neighbour list
– A short range force so handle as appropriate for DL_POLY 2 or 3

• Reciprocal Space Terms: 
– Distribute over atoms
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Smoothed Particle-Mesh Ewald
Ref: Ref: EssmannEssmann et alet al., J. Chem. Phys. (1995) ., J. Chem. Phys. (1995) 103103 85778577
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SPME: Spline Scheme

Central idea Central idea -- share discrete charges on 3D grid:share discrete charges on 3D grid:

Cardinal BCardinal B--SplinesSplines MMnn(u(u) ) -- in 1D:in 1D:
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SPME: Building the Arrays
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SPME: Comments

••SPME is generally faster then conventional SPME is generally faster then conventional EwaldEwald sum sum 
in most applications. Algorithm scales as in most applications. Algorithm scales as O(NO(NloglogNN))

••In DL_POLY_2 the FFT array is built in pieces on each In DL_POLY_2 the FFT array is built in pieces on each 
processor and made whole by a global sum for the FFT processor and made whole by a global sum for the FFT 
operationoperation

••In DL_POLY_3 the FFT array is built in pieces on each In DL_POLY_3 the FFT array is built in pieces on each 
processor and kept that way for the distributed FFT processor and kept that way for the distributed FFT 
operation (DAFT)operation (DAFT)

••The DAFT FFT `hides’ all the implicit communicationsThe DAFT FFT `hides’ all the implicit communications
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Parallel FFTs - The Basics

FFTs are

• Fast (!) - O(O(VlogV) operations where V is the number of points in the 
grid

• Global operations - to perform a FFT you need all the points
This makes it difficult to write an efficient, good scaling FFT.
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Traditional Parallel FFTs (1)

• Distribute the data by planes

• Each processor has a complete set of points in the x and y 
directions so can do those Fourier transforms

• Redistribute data so that a processor holds all the points in z

• Do the z transforms
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Traditional Parallel FFTs (2)

• Allows efficient implementation of the serial FFTs ( use a library 
routine )

• In practice for large enough 3D FFTs can scale reasonably

• However the distribution does not map onto DL_POLY 3’s 
distribution - large amounts of data redistribution
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DAFT(1)

• Takes data distributed as DLPOLY

• So do a distributed data FFT in the x direction

• Then the y

• And finally the z
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DAFT(2)

• Disadvantage is that can not use the library routine for the 1D FFT ( 
not quite true … )

• Scales quite well - e.g. on 512 procs, an 8x8x8 proc grid, a 1D FFT 
need only scale to 8 procs

• Totally avoids data redistribution
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Traditional v. DAFT

• Traditional has faster serial speed as can use library routines

• DAFT avoids a lot of communication because it maps directly onto
DLPOLYs distribution

In practice DAFT wins ( on the few machines we have compared ), and 
also the coding is simpler !
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DAFT, DAFT prices !

• DAFT is a standard Fortran 90 module and is extremely portable

• If anybody wants a copy for their other codes please ask me !
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DL_POLY_3 on HPCx

• Test case 1 (552960 atoms, 300∆t)
– NaKSi2O5 - disilicate glass
– SPME (1283grid)+3 body terms, 15625 LC)
– 32-512 processors (4-64 nodes)

• Test case 2 (792960 atoms, 10∆t)
– 64xGramicidin(354)+256768 H2O
– SHAKE+SPME(2563 grid),14812 LC
– 16-256 processors (2-32 nodes)
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DL_POLY_3 on HPCx

Case 1Case 1
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DL_POLY_3 on HPCx

Case 2Case 2
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Course Summary

• So I hope I Have
– Introduced you to what parallel computers are capable of
– Shown why it is very rarely possible to get perfect scaling
– Introduced you to the de facto parallel programming standards

• MPI
• OpenMP

– Introduced you to one or two common parallel programming methods
– Given you a feeling about how to think about how to get effective use out 

of parallel codes
– Introduced you to how a couple of real, large scale codes actually work

• I also hope that you have enjoyed it !
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